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The evolution of a localized, axially symmetric vortex under the action of shear stresses
assosciated with decaying two-dimensional turbulent vorticity which is inhomogeneous in
the presence of the vortex is studied analytically. For a vortex which is sufficiently strong
relative to the coefficient of turbulent eddy viscosity, it is shown that turbulent fluctuations
in the vortex interior and diffusion of coherent vorticity by the turbulence localize to the
vortex periphery. Itis .also found that the coefficient of diffusion is smali compared to the

coefficient of eddy viscosity.



The phenomenon of spatially intermittent behavior in turbulent flows is both
intriguing and potentially of importance, not only because it has bearing on what
approximations are appropriate for describing turbulence, but because it can affect cascades
and transport as well. This type of phenomenon has recently been observed in numerical
simulations of decaying 2-D Navier Stokes turbulence, where long lived coherent vortices
emerged as the flow evolved from random initial conditionsl. Cascading turbulence

‘ocurred in nearby but spatially distinct regions of the flow and was viscously dissipated
;much before the lifetime of coherent vortices. Similar phenonema have been observed in
‘simulations of plasma turbulence, both in fluid-like flows2 and in flows sensitive to
velocity distributions3. In the latter case, the existence of the coherent structure can be
understood hueristically in terms of a self-binding force associated with a self-electric field
which electrostatically t;aps the particles comprising the structure. Coexistence of the
structure with cascading turbulence is possible when the self-binding force exceeds the
shear stresses associated with detrapping by the random electric fields of the turbulence3;
In the case of Navier Stokes turbulence, there are no electric fields. N evertheless, a type of
force balance constraint appears to apply, e.g., in the numerical experiments it was noted
that squared vorticity exceeded mean square shear stress for the coherent vortices, while the
opposite was true in regions of cascading turbulencel. This observation is consistent with
the fact that in 2-D anisotropic turbulence, subgrid scale turbulence is supressed if vorticity
is strong and shear stresses are weak, and it is generated if the opposite holds5. More
recently, this idea has been extended to inhomogeneous turbulence, where a general
tendency toward growth of small scale excitation in regions where strain exceeds vorticity
has been demonstrated.

Here, we report the principal results of a detailed study of the interaction of a

localized, axially symmetric vortex with decaying, 2-D Navier Stokes turbulence.



Assuming, a priori , that the vortex lifetime is long relative to the time scales of the cascade,
a two time scale analysis is developed which treats the rapid evolution of inhomogeneous
turbulence in the presence of the slowly varying vortex, and slow vortex evolution under
the shearing stresses of the inhomogeneous turbulence. The object of the study is to obtain
a detailed picture of the spatial and temporal characteristics associated with interaction of
regions of strong vorticity and turbulent straining fields. This analysis uncovers the
conditions under which vortex decay is significantly slower than that of the typical
turbulent eddy (justifying the two-timescale assumption), and elucidates the underlying
processes giving rise to this phenomenon.

The dynamics of nonlinear flows in two dimensions is described by the scalar
vorticity evolution equation obtained by taking the curl of the Navier Stokes equation. For
simplicity, a vortex which has no bulk motion of translation is considered (or equivalently,
the co-moving reference frame is selected). The origin of a polar coordinate system is
located at the vortex center. Assuming an axially symmetric vortex and isotropic turbulence
with no mean (angle averaged) vorticity, the vorticity evolution equation is Fourier
transformed in the angle coordinate. The n = 0 component then unambiguously represents

ithe vorticity of the vortex while the remaining components represent vorticity of the
Ft_urbulence (where n is the Fourier transform variable conjugate to the angle). Note that
while the vortex is localized radially and remains so on the rapid scale, the turbulence can
not be restricted in its radial location because of its tendency to diffuse. Thus, radial
overlap of turbulent vorticity with the vortex occurs in general. Assuming two time scales
of evolution, the n = 0 component of the vorticity evolution equation describes quasi-static,
slow time scale evolution of the vortex under the action of turbulent Reynolds stresses
which can be time averaged on the rapid scale. The n > 0 components of vorticity

evolution describe fast scale evolution of turbulence. The evolution equations are:
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where q = V2¢ =1 -19/0r (r 9¢/91) + r -2 92¢/092 is the vorticity, U = 9¢/or is the polar
velocity, V =r -19¢/09 is the radial velocity, ¢ is the stream function, and O is the
|viscosity. The vorticity and polar velocity of the vortex are 21— and U. A Fourier-Laplace
En'ansform has been performed, i.e., dny(1) = f: dt exp(yt) ngs dd exp(—in®) q(r,8,t) and
| the inverse Laplace transform with t = 0 in the vortex evolution equation accomplishes the
average over rapid time scales.
With the time scale separation, the fast scale motions can be treated statistically,
i.e., a statistical closure can be applied to the rapid scale fluctuations represented by the n >
0 components. Vortex evolution is expressed as an effective eddy diffusion on the slow
scale by solving the renormalized fast scale equation for gy y (in terms of Vn',yaa/ar ) and
by substituting into the vortex equation. Note, however, that whereas eddy viscosity
typically incorporates only smaller spatial scales, here it represents shorter temporal scales
and higher n but does not necessarily make any restrictions on radial scales. The objective
of the present work is to determine the structure of the turbulence and the vortex diffusion

coefficient for a specified model vortex. For simplicity, a rigid rotor is considered with a



constant vorticity qo inside a radius ro. Outside 1o, the vorticity is taken to fall smoothly to
zero in some finite layer. The region of primary focus will be the region of significant
vorticity inside of ro. The corresponding flow velocity is U= Upt/r forr <1 and U =
Upto/r outside of the region of nonzero vorticity, where U = 1/2 1qo. Consideration is
also restricted to large Reynolds numbers so that the viscosity may be neglected.

A renormalized fast scale equation is obtained from Eq. (2) using an EDQNM
closure” in order to formulate the coherent response of dn,y to the convection lea—cI/ar of
the vortex vorticity by the turbulence. To implement the closure, the driven vorticity
dn-n',y-y and driven flows Up.p'yy, Vn-n',y-y are iteratively evaluated consistent with the

é assumption of quasi-Gaussian statistics. The driven vorticity satisfies Pon'yy Ao’y +
!Vn-n','y-'y' 9q/or = —r -19/01[ (Vo yQ-n',-y + Vo', -yqn,p] — i(a—n")r -1 [Uﬁ,yq-n',-y' +
U.n',-yQn,y] where Pnn',y-y is the self-similar nonlinear coherent response. The driven
flows are expressed in terms of the vorticity by inversion of the Laplacian which relates
vorticity to the stream function, e.g., Un-n'yy = 9/0r (¢n-n'y-y) where [r -1 9/0r (xd/or) —
(n—n")2r -2] On-n'yy-y' = qn-n'y-y~ The Laplacian inversion is accomplished with a Green's
function: ¢p.n'y.y = [ ar Gpn'(r It') qnon'yyy = Lp-n-l Qn-n',y-y where Gp(rlr') = —
(1/2n)(rr)1/2(x/r')n for r < 1" and Gy(r It') = —(1/2n)(xrr')/2(r'/r)n for r' < r. The
renormalization procedure yields a diffusion tensor and the turbulent back-reactions or B
terms which appear as renormalizations of the velocity. Representing the nonlinear
contribution to the response as an eddy viscosity, the turbulent vorticity (averaged over a

suitable ensemble) is governed by

inU 19 1 94qn, 02 5.9 dq
("Y + 'r—) C{n,'y—‘?g(r D(Irlr) ?Y-j + ;2‘D(n )Qn,Y = - Vr'l,'}(a__r (3)



iln—n") . 4 -
D(;’r) = Z(Vn' 'Pn -n' Yy -n'-y' Ao’y r_L Pﬂ -n' Y'\Y noy ) ()
n'#o,n

13"6 = 1At —1 H t t t a -1 - - t t
Dgl )= E (Un, Pn-n‘,Y-ﬁp'n,-Y I qn'y T or nnPnn ’YYr IU‘U,-'YJ’ &)

n'#0,n
\
!and :
‘ iU 19( n9) . @12 .0 -
Py = ~OF7) +—F— -3 5;( Do arj 0 D’ ©)

The slow scale evolution of the vortex is governed by a diffusion coefficient obtained by
inverting Eq. (3) and substituting into Eq. (1). Formally, dq/ot — r -! 9/3r(rDydg/or) = 0,
where Dy = [dY S Van,y P iy

The radial structure of turbulent vorticity in the presence of the vortex is given by
Eq. 3). In general, Eq. (3) is complicated since the coefficients of eddy viscosity are
functions of radial position. However, the turbulent velocities Vpy and Up,y are integrals
of the vorticity qn,y; therefore, the radial variation of .Velocity is smoother than that of
vorticity. This is consistent with the results of simulations of 2-D Navier Stokes
turbulence, which show that for vorticity with steep gradients, the variation of the stream
function remains smooth!. Consequently, the variation of the coefficients of eddy
viscosity is also smoother than that of vorticity. This follows from the fact that these
coefficients are functions of velocity and the response function (Dy ~ EH.P'D ' nz) The
response function Pp.p is smooth because it represents the response of driven fluctuations

which are dominated by turbulence in the exterior of the vortex where turbulent vorticity is

homogeneous asymptotically. These features allow the coefficients of eddy viscosity to be



replaced by spatially averaged coefficients, to lowest order in the parameter describing the
difference of rapid radial varjation of the turbulent vorticity in the vortex interior relative to
that of velocity.

Under this approximation, the turbulent vorticity equation can be solved exactly.
Constructing a Green's function from the homogeneous solutions to Eq. (3), ;he turbulent

vorticity in the vortex interior is given by
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The function J; is a Bessel function of the first kind; Hy, is a Hankel function, Hy = J, +
1Yy , chosen to facilitate the matching onto exterior solutions. The radial scale Ar is the
interior turbulence scale given by Ar = {y/Dp — iUgn/Dyro}-1/2 where Dy, is an isotropic
eddy viscosity (V=U = ‘ljrn’r) = Dg}’@) — Dy ) adopted for simplicity. Note that the
Laplace transform variable represents the damping rate of vorticity dn,yand is given
approximately by Dp/ry2 where 1y, is a turbulence scale in the exterior re gion.

A natural strong vortex limit, Upnro/Dy >> 1, is suggested by these equations.
Physically, this limit means that the vortex turnover rate exceeds the eddy decay rate of an
eddy of size ro. In this limit, Iro/Arl >> 1 and the Green's function gn(r Ir') can be
expanded asymptotically from the large argument expansions of the Bessel functions. If

Im(ro/Ar)l >> 1 as well, then the radial integral over the Green's function in Eq. (7) can be



-performed using saddle point methods to obtain the dominant asymptotic contribution to the

integral. The turbulent vorticity is then given by
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The internal turbulent vorticity (n,y(r) matches at r =1, onto an external vorticity solution
whose amplitude is consistent with the level of vorticity fluctuations in the external region.
From Eq. (9), it is evident that the interior vorticity is localized to an exponentially narrow
layer inside_ r =1, of width bi-l. The existence of this layer is significant. It means that the
coefficient of vortex decay will be exponentially small in the vortex interior. Moreover,
because the layer becomes narrower with increasing vortex amplitude, the coefficient of
vortex decay will decrease with increasing vortex amplitude. The precise conditions for
this localization of turbulent vorticity to the vortex periphery depend on the radial scale of
turbulent eddies relative to the vortex size. For eddies which are larger than the vortex, 1y,
> To, the strong vortex condition introduced previously, Ugnro/Dy >> 1, is a necessary and
sufficient condition. In terms of the eddy decay rate v, this condition states that the ratio of
vortex turnover rate to eddy decay rate must exceed the ratio of the squares of eddy size to
the vortex size, Ugn/rgY>> (tp/rp)2. For eddies which are smaller than the vortex, 1, < To,
it is sufficient for the vortex turnover rate to exceed the eddy decay rate, i.e., Ugn/rgy >>
‘1. The constraint on vortex vorticity for localization of turbulent vorticity is thus less

stringent for eddies which are smaller than the vortex than it is for large eddies.



Substitution of Eq. (9) into Eq. (1) yields the vortex diffusion equation, dq/dt —
1-19/0r (tDy(r)dq/or,) = 0, where
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The inverse Laplace transform is a contour integration which must take account of the
analytic properties of the integrand. Because the turbulence is decaying, the turbulent
velocity spectrum has a simple pole at y =y : [V 42 = V42 (y+y5)"! where ¥, > 0. The
remaining part of the integrand has branch points at y =+ iUgn/ro . For purposes of the
integration, branch cuts are taken form these points to —c0 along lines parallel to the real y
axisf The integration follows a Landau contour® which is deformed from = i 00 +Yp tO
proceed along a vertical line displaced to the left of the Imy axis by an amount v > ;.
Indentation along horizontal lines intersecting singularities keeps the singularities to the left
of the contour and prevents crossing branch cuts. The dominant contribution comes from

the pole at 'y = ¥y, giving
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where S(rby) = [(1+i)cos(r+ro)br — (1-i)sin(r+ro)br]cos[n(n—1/8)] is an oscillatory structure

J function of unit amplitude and the upper limit of the summation has been chosen to exclude
| modes whose excitation is confined to regions outside the vortex.

Like the turbulent vorticity, vortex diffusion is localized to the vortex periphery in a
layer of width bi-l. The matching to exterior solutions effectively guarantees that Dy =

D[ 1+Uy2n%/1o2n2]-12exp[(r-1o)bi]. When Ugn/roYa >>1 for the relevant values of n, it



follows that Dy <<Dy. In this case the vortex has a lifetime which is greater than the decay
time of the turbulence. It is also apparent that the turnover rate and decay rate for the vortex
are not comparable as would be the case in homogeneuos turbulence. Here, the turnover
rate increases with the vorticity of the vortex, while the decay rate decreases. From random
initial conditions, such as in the simulationsl, a region of large vorticity satisfying Ugn/ro¥n
>>1 could be expected to emerge as an isolated, coherent vortex as the turbulence relaxed.
This condition is consistent with the observation that squared vorticity exceeded mean
square shear stress in the coherent vortices of the simulations. Here shear stress is
represented statistically by an eddy decay rate. It should be noted that the two time scale
assumption which permited the statistical description is shown to be justified a posteriori
when Ugn/roYn >>1.

FIn summary, the interaction of a symmetric, localized vortex with decaying
turbulence has been investigated. It is found that when the vorticity of the vortex is
sufficiently large, turbulence is restricted to regions outside the vortex and to a narrow layer
‘at the vortex periphery. The diffusion of the vortex under the action of turbulent shear
| stresses is also localized to the edge of the vortex and is found to be small relative to eddy
viscosities. The vortex strength required for this behavior depends on the relative sizes of
the vortex and turbulent eddies. In general, the vortex turnover rate must exceed the larger
of the eddy decay rate or the eddy decay rate times the ratio of eddy size squared to vortex

size squared.- |
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