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Abstract

The electron temperature gradient in tokamak geometry is shown to drive a short
wavelength lower hybrid drift wave turbulence due to the unfavorable magnetic cur-
vature on the outside of the torus. Ballooning mode theory is used to determine the
stability regimes and the complex eigenfrequencies. At wavelengths of order the elec-
tron gyroradius the polarization is electrostatic and -the growth rate is greater than the
electron transit time around the torus. At longer wavelengths of order the collisionless
skin depth the polarization is electromagnetic with electromagnetic vortices producing
the dominant transpoft. The small scale electrostatic component of the turbulence
produces a small by (m./ m;)l/ ? drift wave anomalous transport of both the trapped
and passing electrons while the ¢/wpe scale turbulence produces a neo-Alcator [Nucl.
Fusion 25, 1127 (1985)] type transport from the stochastic diffusion of the trapped

electrons.




I. Introduction

The electron temperature gradient in tokamaks has long been recognized as a source of free
energy available to drive the collective drift modes unstable while producing an anomalous

2 across the

transport of particles and, in particular, the anomalous electron thermal flux!:
confining magnetic field. For the low frequency electron drift wave the destabilization by the
electron temperature gradient in the dissipative trapped electron regime is well known and
has been developed as a model for explaining the anomalous electron transport in tokamaks.
Less theoretical attention, however, has been given to the higher frequency lower hybrid drift
wave which can also be destabilized by the electron temperature gradient. Recently, Guzdar
et al.? have proposed that it is the lower hybrid drift mode driven by the electron temperature
gradient and magnetic shear that may be resiaonsible for a substantial anomalous electron
transport. The linear theory for a sheared slab with the 5. driven lower hybrid instability is
given by Lee et al.*

In the present work we argue that it is a toroidal version of the lower hybrid drift mode
driven unstable by charge separation due to the unfavorable grad-B and curvature electron
drifts in the presence of the electron temperature gradient that may drive this form of
short wavelength drift wave turbulence in tokamaks. Ballooning mode formalism is used
to examine both the hydrodynamic and the kinetic theory of these instabilities. The local
hydrodynamic and kinetic dispersion relations are used to derive the threshold for instability
and the parametric dependence of the growth rates.

In the nonlinear regime we recognize that the turbulence problem contains two space
scales. At the short wavelengths, where the maximum linear growth rate pumps energy into
the electrostatic turbulence, the reduced equations have essentially the same form as those
governing thé electrostatic n; mode turbulence with an appropriate interchange of the ion and

electron dynamics. Results from the 7; studies®~*° show that the fluctuation spectrum mode
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couples energy to larger scale fluctuations with spectral index of about 3 in the appropriate
range of k space. For the n. mode this inverse cascade, or mode coupling to larger space
scales, drives a coupling to A) fluctuations at the scale ¢/wp,.

At the larger space scales on the order of the collisionless skin depth, ¢/wpe, the fluc-
tuations become neutrally stable electromagnetic vortices with small k). This driven sec-
ondary electroma;gnetic turbulence is expected to lead to a large stochastic diffusion of the
trapped electrons as shown in the nonlinear transport studies of Horton et al.'* and Parail
and Yushmanov.'? The stochastic transport studies indicate that once the turbulence level
reaches the mixing length level, the electron diffusivity is insensitive to the details of the
fluctuation spectrum and is given by the random walk of the trapped electrons over the
correlation length ¢/w,. at the rate of the decorrelation frequency which is of order the
bounce frequency of the trapped electrons. The stochasticity occurs due to the overlap; of
the vortex circulation frequency with the parallel bounce frequency. These considerations
suggest the conclusions that for electron temperature gradients well above the linear thresh-
old, 7ecrit & 2/3, the transport may become approximately independent of 7, and be given
by the simple stochastic diffusion formula (as studied in Ref. 11) for densities below a crit-
ical density. The stochastic diffusion studies show that for the electron density above a
criticai value the scale length ¢/wpe becomes too small for this component of turbulence to
compete with the anomalous transport from the longer wavelength low frequency drift wave
turbulence driven principally by the ion temperature gradient.

In Sec. II we analyze the electrostatic toroidal ballooning mode equations. The electro-
magnetic equations are investigated in Sec. III. In Sec. IV we analyze the reduced nonlinear
hydrodynamic equations and their conservation law(s) and discuss the expected turbulence
and anomalous transport predicted by this model. Finally, in Sec. V. we summarize the char-
acteristics of the toroidal 7, turbulence and the expected scaling of the anomalous transport.

The absence of an explicitly strong dependence of the diffusivity on the parameter 7. is in



marked contrast with the results of Guzdar, et al.?, who found x. o Ne(l + ne). The sig-
natures of the processes considered are summarized for experimental identification, and we

suggest directions for future linear and nonlinear studies of the toroidal 5, turbulence.

II. Hydrodynamic Description of Short Wavelength
VT, Turbulence

We assume that the dominant part of the toroidal VT, driven turbulence can be taken to fall
in the hydrodynamic regime for the electron response functions since y ~ ve/(rr.R)*? > kv,
and k3 p. < 1. We compute the electron density fluctuations from a continuity equation of

the form:
on.
ot

where the hydrodynamic velocities are given by

+Vier Ve +n.V vie+n.V- v, +n.Vy =0 (1)

ch xV® b x Vpe

Vie = B + —eneB (2)
mec? [ O
Vp = —E (% + Ve * V> VJ_@ (3)
and
dv”e e\ B < Vpe
—T_(—_}b. — 4
dt <m6> ve MeNe (4)

In the perpendicular electron momentum balance, Eq. (3), we neglect the E x B convective
derivative of the vg and the divergence of the finite Larmor radius stress tensor since they
give no linear contribution. Their nonlinear form is given in Ref. 5. The electron thermal

balance is given by

30 3
EE?(neTe) + V- <§neTeV.Le + qe) +neleV vy = ";HvﬁTe (5)
where
_ 5p.bx VT,

2 MeWee
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and k|| = an T, /mev. with a = 3.16. In the thermal balance equation (5) we neglect the
effects of the parallel compression and V - v,. In the limit where the diamagnetic drifts are
small compared with the £ x B drift and the finite Larmor radius heat flux q. is neglected

the thermal balance Eq. (5) reduces to the adiabatic equation of state

%pe+v-Vpe+FpeV-v=0

with T' = 5/3.

For the modes of interest here, appropriate form for the kinetic ion response is

_ n;ed W— Wi o [ kLvL
o= [1 <w—tz‘J°(wcz' )>} - ®

”ieq)(l —i5) (7)

1

i
where §; is a small resonant contribution that occurs for modes rotating in the wp, direction
with wp, being the ion grad-B and curvature drift frequency. The adiabatic ion response in
Eq. (7) follows in fluid theory from the balance, e;n;E = —e;n;VO® = Vp; = T;Vén,.

We now consider ballooning type modes in the usual circulaf cross section tokamak with
Br = By/(1 + €cosf) and By = (¢/q)Br where ¢ = r/R and ¢(r) = rB/RBy. The density,

temperature and potential fluctuations are taken to vary as
f = £(r) + 8F(0)e eI mit 4 o (8)

This mode gives rise to k2 = kZ(1 + s%6%) with ks = £g/r and the parallel derivative z'fc” =
(1/qR)0/04.
In this geometry, where V(1/B?) = 2%/B?R, the fluid compression terms in Eqgs. (1) and

(5) are computed to give

b B, Vne
Vovee = —— vae.(_z_%JrVnn)




V.vp = ——;—evDe Vo
VDe
V. (nve) = jff - Vpe (9)
where
. 2cTe ~ . . chVpe
Vpe = eBRb XX and Vge = — B, (10)

with & = Vz = V(r cos §). Similarly, the divergence of g, reduces to

V- g = g-nvD,3 VT, — —g-nvde .VT., (11)

where the first term cancels parts of the vy contributions in Eq .(5). With Eqgs. (9)—(11)

the thermal balance Eq. (5) reduces to

aapte +vg- Vpe + F]—”eV Vg + PVDe . Vpe + FnevDe . VTe = gmﬁvﬁTe-

The results from Egs. (8)—(11) are used along with the following definitions:

cI. dn
xe @ — k- e =—k - i
@ Vv eeBne dr
Wipe = (1 + 7e)wne (12)
2T
=k- =k £ a(6

and

9(0) = cos 0 + sfsin b.

We obtain from linearizing Eqs. (1) and (5) and using Egs. (9)-(12):

—iwéne + i(whe —w )e<I>
T *e De Te
. bpe . ed kv (D bp,
+dwpe— =+ A —w,.gp.s)?e - Z% T o) 0 (13)

and



Pe e Ne Te
+ iTwpe (5“ - 5”") =0 (14)
De Ne
Solving Eqgs. (13) and (14) for én. and &p, as functions of ® gives
kz”ﬁ kzuz w*e! e it )

6.ne Wye — Wpe T+ k_zl_pz(w - w*Pe) T Tw + (wDe + _uw_> ( wjl"tlper ) (6@) (15)

= k22 —w T
Ne . w—T (wDe + Jw_) (ﬁ) Te

' k202

6pe I'(w —wpe) (w*e —wpe + kI p(w — wige) — _lclu_> +wwe(ne +1—T) e (16)

= 202 T
Pe w (w - I‘wDe) -T (wDe + ﬁlf) (W - wDe) \T

where we consider kﬁfc”e S kjve < w in writing Eq. (16).
The density and temperature fluctuations (15) and (16) reduce in the magnetohydrody-
namic (MHD) limit [w| >> Wse,wpe to

5ne . Wiee Wphe Wipe 1.2 2( w*pe) kﬁvz < w*pe) <6©>
Ne [w w (1 w)+klpe 1- w w? ! w \T,
6pe ~ <w*pe wDe) (e®> '

= -T — .
Pe w w T,

In the earlier work on the toroidal V7 modes, the ion pressure fluctuations were taken

in the incompressible convective limit where 6p;/p; = —(wipj/w)(e;®/T;). The present
work includes the fluid compressional effects from the many terms given in Egs. (15) and
(16). Recently, Jarmen et al.!° have also derived the 7; mode equations with these thermal
compressional terms in a hydrodynamic description.

We use Egs. (7) and (15) to compute the charge density fluctuations for Poisson’s equation
in the ballooning mode approximation. After some algebra we obtain

Wae 1 1 v2  d*®(9)
[t r o (1 D)o (1) o] i i

2,2
—[<1+M+mgi —z'5i>w
T




+<% _ Depepa o (2F T l) Whe — FwDek-szz>
T T T !

WxeWDe _g___ > < l) w%e WxDeWxpe 12 2 _
2 (2 1) 4T (14 2) Doy 12D r g0 =0, (17)

TW
Equation (17) describes the propagation of the lower hybrid drift mode in toroidal ge-

ometry. Using the local approximation and taking wpe/wse = 2€, < 1, the frequency of the

mode is
o Y [1 — (1 + We)kiﬂz] (18)
T 14K p2d. /T — 6

where wy; = —wye /7 and de =1 4 w2 /w?,. For increasing 7. the frequency (18) of the lower

hybrid mode decreases until it couples with the toroidal drift frequency wpe(é). The coupling
produces a destabilizing charge separation on the outside of the torus where wy,ewpe(§) > 0.
The coupling of the lower hybrid drift to wp. is strongest where the coefficient of the terms
independent of w in the square bra,ckét in Eq. (17) vanishes. Physically, this is where the
phase velocity of the mode in Eq. (18) is vanishing. in this range of k the local dispersion

relation gives

42 = —?

WieWDe (9) (775 +1-— P)
T+ B, | (19)

IR

We now consider the instability domain and the characteristic growth rates in both the local

limit and as determined by the ballooning mode Eq. (17).

A. Local Approximation

The unstable eigenmodes are localized to the outside of the torus with ®(8) ~ exp(—016?/2).
For Reoy, > 1 the mode frequency and growth rate are given to the first order by dropping
the v2/w?¢?R? term in Eq. (17) and evaluation the toroidal drift terms at = 0. In this

limit the dispersion relation becomes the quadratic equation

(14 k2 p2ide)w® -+ L—:— [w*e —wpe (1 +27T) — Wapek? p2 — prekipz]

WpeWsxe (

+ 773+1—F)—£w*ewDe+F(1+%> WZDe
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+ Tk} plwipewpe = 0 : (20)

In Eq. (20) and the following it is useful to introduce the natural dimensionless variables for

the mode by the following definitions

T\ /2 ve;  c(meTy)Y?
o = | — = — = d k= kp.;.
v (me> P Wee eB an P
We measure frequencies in units of ve; /7y, so that
kpeives oi
Wye = TBPeilei _, 1 Wy = AL
’ Tn r'n,
and ‘
Wpe — 2e,Tk Wipe — Th(1+17e)
(21)
where
] Ty and _dlnT, 7,
" R ne_dlnne_r;pe'

In these units the dispersion relation becomes
Aw* 4+ Bw+C =0 (22)
with
A = 14kd, —15
B = kuyy=k [1 — 26, (1 +207) — B2 (7(1 +7e) + 2PT€n)]
C = 2,7k [ne - g T+ B (1 + )T + 20en(1 + T)]

The local modes are given by

© _ k B [42_
Wi 2(1+k2cle—i5z-){ up £ |up — 87¢,

1/2
: (ne - g — T+ T7k*(1 + 1) + 2Ten(1 + T)) (1+k*d, — i5i)} } (23)




in units of ve;/r,. The maximum growth rate «,, occurs at k = k,, where u? — 0 which

gives

(1 + 77e‘) + 2I'7e, <l (24)

[1 — 2, (1 +2T'7) ]
km =
For k ~ k,, the growth rate is
9 1/2
Vm km(ZGnT)1/2 [736 3" I'+ 2T, (1+7)+ Tk2r(1+ 773)]

~ F(26,7) Y2 (9, + 1 — )2 | (25)

giving
ne,crit ~ 2/3

as the critical temperature-to-density gradient ratio for instability. A more precise condi-

tion follows from examining B? = 4AC using coeflicients (22). This condition gives.the

approximate critical value

2 1 —2¢, (1+207)
e,crit — = r-2 n - e 2
o = 24T = 2ey(1+7) T +5) | F 2T (26
For ne >> e, crit the maximum growth rate varies as
T 22 (260)1/2 |24 (21)

valid for ¢, < 1.

For flat density profiles where ¢, & 1 it is important to redefine the dimensionless fre-

quencies with ve; /7, — ve;/rre. Then the instability exists for r, — oo with the frequencies

k 0 00\2
wr = m{ +uy & [(Uk )" — 8rer
1/2
(14 Tk 7 + 2Ter(1+ 7)) (1 + kzde)] } (28)

(in units of ve;/r7) where
uy = 2er (1 +2T7 4+ FTk‘2) + k2.
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Examining B? = 4AC leads to the unstable domain

—z; —/a} — 2, 1 —z1 + /2 — x5 (29)

R TTe R
where
T = —4—(1 + kd,) (1 + PTkz) 2 (1 + 2T + I‘Tk2>
! kit ° k2t
4 \2  160(1+7) 2
@ = g (L4207 +Trk?) " — (1 + K%d.) (30)

The condition (29) is similar to that given by Jarmen et al.? for the 7; mode where, however,
the study is restricted to €, < 1/4. The stabilizing effect of compressibility is also studied
by Dominguez and Moore.®

In Fig. 1 we show the domain of instability in the rr. — r, parameter space at fixed k.
There are onset thresholds required by Eq. (29) for finite bad curvature and cut-off values
at large er due to compressional stabilization. The threshold at 5. = 2/3 is clearly shown
for the system without the finite Larmor radius (FLR) heat flux, but the threshold is moved
to 7e < 1 when the FLR heat flux is included.

The stability. conditions for r, > r7. are relevant to auxilary-healed divertor tokamak
discharges which exhibit improved (“H “mode type”) confinement properties.’* With the
exception of the edge region, the characteristic density profiles tend to be relatively flat.
Even though there can be a factor of two to four improvement in the energy confinement
time for such plasmas, the electron thermal transport nevertheless remains anamalously
large by at least two orders of magnitude over neoclassical estimates. Previous studies have
demonstrated that even in the limit of zero density gradient, low frequency microinstabilities
can persist because of the non-zero temperature gradient.’® The unstable 7;-mode domain for
flat density profiles is given by Dominguez and Waltz for hydrodynamic equations neglecting
the FLR heat flux.!® The weaker overall pressure gradients in the interior region of the H-

mode plasmas do lead to correspondingly smaller values of the electron thermal diffusivity,
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which is in turn consistent with the observed improvement in the energy confinement time.
With respect to the relatively high frequency toroidal electron temperature gradient driven
drift modes analyzed in the present work, the fastest growing mode for the flat density

gradient limit, 7, — oo, occurs for

1/2
ke () | (31)
with
Veq 20
Yoo = Fm(2er7)"/? = 2¢r [E] =7 (32)

which is greater than kfjve = ve/qR for (T;/T)'? > 1/2q. At fixed k > Te;«/z/q as required
by 7% > kjv., the growth rate scales as v = kve;/ (rreR)M2.
For local theory we can compare the results of the hydrodynamic dispersion relation with

the Vlasov kinetic theory dispersion relation using the guiding center dispersion function

W — Wye(v?)]JZ (BazL) | |
[ ( )]J (wce>> . (33)

o (B 0)

P,y 6n) = <

M-B

The electrostatic dispersion relation is

1

D = 1+k2)\§)1+;(1 —Pe(wakanm%)) (34)

Using Nyquist stability diagrams we find that for small & < 0.5 the condition for instability
Ne > ne,cri; obtained from I mD(w) =0 is that
| 2
Ne > Ne,crit = 'é‘ (35)

When the condition given by Eq. (35) is satisfied, the wave-particle resonance produces
an unstable sign of ImD < 0 for w' > 0 for positive energy modes. The condition for
accessibility of the temperature gradient free energy fo the wave requires that ReD(wy,) < 0
where wy, ~ 2¢,k(1 — 3n./2)/(2€, — ng) is the frequency where I'm D.s(wy,) = 0. Evaluating

Re D(wy,) leads to the condition
_.7’Te 242
6T—§<0'7/(1+7—+k)‘Di) (36)
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when 7. > 2/3 for unstable modes. The Nyquist diagrams are shown in Fig. 2. At marginal
stability the mode frequency is near zero for k < 0.5. Resonant thermal electrons are involved
in the kinetic dispersion relation. The wave phase velocity wy/2ke, ~ (3/2 —n.!) determines

the resonant ellipse in velocity space through

1 w
(—ivﬁ_ + v|2|> /vf = —2k;. (37)

The strength of the resonance vanishes as ImP, ~ (w/ 2ken)1/ 2 as w/2ke, — 0T,

Thus in toroidal geometry the resonant electrons determining stability and the anomalous
transport are the thermal electrons. Only for €, — 0 where wy/2ke, — 1/€/? > 1 is the
resonance limited to high energy electrons. In slab geometry the reson;mnce occurs for vy ~ v,
but only for a given v = w/ k|°| > v, which Substantially reduces the number of resonant
electrons.

In Figs. 3-4 local electrostatic kinetic theory parametric dependence of the toroidal 7,
insta,bility is given. In Fig. 2 the growth rate is shown to onset at 7. = 2/3 for small %k
and closer to 9 = 1 for £ = 0.5. Above the threshold in 7. the growth rate increases
as v ~ 0.1ve;/rre = 0.1n.(vei/rn) for & R 0.3. The frequency of the mode changes from
rotation in the ion diamagnetic direction for n < 2/3 to rotation in the electron direction
for 7. > 2/3. Well above threshold there is less than one oscillation (w/vy < 27) in each
{-folding. In Fig. 5 the toroidicity parameter is varied at fixed 1, = r,/rr.. The instability
requires fixed 5, = r,/rre. The instability requires finite toroidicity and then is stabilized
by compression for €, > €7(n,) as described in Fig. 1 with fluid theory. There is good
agreement between fluid theory and kinetic theory with the FLR heat flux required to explain
the kinetic theory results for k¥ R 0.3. (The y(k),w(k) curves not given here are similar to
those obtained from Eq. (22) with the usual kinetic theory reduction of 4.y and broadening
in wave number range.) Since thermal electrons are resonant at marginal stability, the

hydrodynamic dispersion relations do not accurately predict the conditions for marginal
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instability as is well known for 7; modes. Now we consider the effect of magnetic shear and

the averaging of wp.(#) over the eigenmode wavefunction.

B. Ballooning Mode Dispersion Relation

The analysis of the 7, ballooning problem is similar to that in Refs.6-8 for the 7; mode. We

look for modes localized to along the magnetic field to the outside of the torus
B(0) = g exp(—016°/2) (38)

with complex 0. From Eq. (17) we obtain

k(1 + ne))

olw, k) = e [k232w (de —

€n

1 Tk 2 4T'7%ke,
+2k6n<§—8>(l+2PT—U(’I]e—§—I‘>—(1+T) w )

1/2
+ 2T, k3T <32 + 35— %) (M — 1) }

w

w

Jla+Tnw -k et -p 59)

Since o(w, k) is complicated, we consider here the limiting form for |w| < w,re and ks >

(2€,)Y/? leading to
| oo twgslk]  gsklm
T e(14+T7)12 7 (14 Tr)1/2

For modes with 7, 3> 2/3 and k < 1 the hydrodynamic growth rate is 75 = |k|(2€,7e)*/? for

(40)

s < 2q giving oy ~ k%qs(2n./€,)/? requiring k > k, ~ (¢5)~Y?(e,/21n.)*/* for localization.
The ballooning mode dispersion relation is
(1+Kd. —i6)w? + whk (1 —k*r(1+n.) — 26, (207 + 1) — 2Ten k?7)
+ 2e,7K? <ne - g —T+2T¢, (1 +7)+T7E*(1 + ne)>
ero 1
= [<P+—>w—k(ne+1—l“)]. (41)
T

¢*w
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From Eq. (41) the lower hybrid drift frequency again vanishes at for k£ ~ k., given in
Eq. (24) giving the maximum growth rate v, modified by shear and toroidal mode coupling
through o.

Near k,, the ballooning mode dispersion relation becomes

27€, k? (ne —2 T+ 2le, (1+7)+Trk?(1 + ne)> +i[(1+T7)w—kr(n.+1—T)]

enlkls

q

wo= 1+ k2d, — i6;

~ —27e, K {ne +1-T —isg(k)(n.+1-T) (%)}

for k2, < 1and neglecting §;.

Equation (42) describes the transition from the sheared slab regime to the toroidal regime
according to s > 2¢ and s < 2¢, respectively. In the toroidal regime s < 2¢g the growth rate
is

~ L1, 1/2 | Vei
o = Rl[2er(ne + 1 T2 %]
and in the slab regime s > 2¢ the complex frequency is

142 T€,S 1/2 Vs
Wi + 17k = ﬁlkl< ;) (Ue+1~r)1/2[r—m]- (43)

The formula in Eq. (43) is comparable to Eq. (7) of Ref. 6 at k2p2(1 4 7.) ~ 1, except for

the absence of the threshold 7. > I' — 1 in Ref. 4.
With these results for the toroidal slab eigenmodes we compute the (k2) and <k|21 ac-
cording to Eqs. (10) and (12) of Ref. 6.

For the toroidal regime s < 2¢ we obtain

<k2p2> ~ (Tﬁn>1/2i _ (TE>1/2£
xrre - 2773 q 2 q

kfv? ren) s _ (zex) ()
7 M) ¢ \2 q

giving the condition for validity of the hydrodynamic treatment as s/q¢ < (1./2€,)? =

1/(2¢r)'/2. For the slab regime we obtain

1/2 1/2
<k2 2> o [TSen _ (7ser
zPe) = e 4

15
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kﬁvﬁ TSEy - 1/2 TSET 1/2
_’YT qMe B q (45)

For strong turbulence we may estimate the anomalous transport by v/ (k2). In the toroidal

regime we obtain

me\ /2 /2 s cl;
o= (22) " () el (46)

™My 8 r, eB

for €, < 1 and in the limit n, > 1

12 /9 T;
t _ (e 24 12 Ps CLi 4
Xes (m) (3 ) (2e) rr eB (47)

We note that even in the sheared slab regime our formula (46) differs from that of Lee et al.*
where XLee o 7e(1 4+ 7¢). The factor 1 + 7. apparently results when compressional terms
are neglected in the thermal balance equation, and the extra unexplained factor of 5. seems
to be used as a fit to the speciﬁc'numerical results from their analysis of the sheared slab

eigenvalue equation.

ITI. Electromagnetic Fluctuations

The long wavelength part of the spectrum derived in Sec. II develops.an electromagnetic
component described by the parallel vector potential Aj. In this section we first estimate
the wavenumber for the change of E) from its electrostatic value, and then we derive the
electromagnetic ballooning mode equation ignoring magnetic compressibility 65.

For fluctuations with w > kjv. the parallel conductivity is

: 2
of = e (1 -~ “’—P> . (48)
MW w

Using j) = o} B} with bxV-B=4r 7)1/ ¢ for the electromagnetic fields

E=—V&+—Ab and B = V4 x b (49)



one obtains for A”

2 2
O

e w w
Using (50) to calculate Ay and then Ej; we obtain
4

E“ :'_Zk”@——-ki m kg(w, k) (51)
with
2 9 1/2
2 _ Ype (1 “’*Pe) ~ e <_77i> 2
ko = c? (1 w /2 \2, (52)

where we use w ~ 1v; given in Eq. (25) for the last estimate. From Eqgs. (51) and (52) we

find that the electromagnetic shielding-of —ik)® is strong for k& < k, where

b = (ELpe)s = (@) (26n)1’2 - (ﬁ_‘; )/ (53)

The shielding at k¥ = k; is in the regime wie > ve/qR prov1ded (Be/4er)? > €n/q or

¢*Be/€% > 4ep. For €, ~ € =r/R the quantity ¢*f./€? is the beta poloidal fp, = 87p./B2.
We now consider the full set of electromagnetic equations for these fluctuations in the hy-

drodynamic approximation for the electrons and the adiabatic approximation for the ions.

A. Nonlinear Electromagnetic Equations

For the electron dynamics we write the density and pressure as 7, + 7o, Pe + P and the
v|le = ¥|]e Where the equilibrium current and its gradient are neglected. Here we define the

y,z average of f(z,y,z2,t) by

Flz,) //dydz (@02,8) = [ gef(e.0,.0)

For completeness we write the nonlinear equations here and reduce them further in Sec. IV.

The electron continuity equation is
Ot
ot

+ Vg Vie+ Ve -Vie+n.V -vE+ V- (nevge)
+ 1V - Ve + 1 Ve = 0. | (54)
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The parallel momentum balance equation is

Ylle

ot

MeTe + MeneVE - V|

. ]§ 18A|| A N f3 B .
= en, (b.v¢+§-v¢+z—5t—) —b-vpe———B--V(peere) (55)

where b is the unperturbed unit magnetic field vector. The electron thermal balance equation

is

0Pe _ .
BZ; -+ VE"vpe-I-VE'VP6+PPeV'VE+FVDe'Vpe
4+ I'nvpe - er + ’U”eB - Ve + ]__‘peV”’U”t3 = 0. (56)
For the ions we take
;= —2i%%

i
and rewrite Poisson’s equation

k2 ® = dme(fi; — fie)

as
0 7
KAL)= = =l
(BT = -2 7
The parallel component of Ampere’s law is
drn.e
Vle- (58)

ViAj=—kLA) =
B. Linear Electromagnetic Fluctuations

Substituting Eqs. (49) into Eqgs. (54)-(57) and reducing with formulas (8)-(12) yields the

following relations between the ballooning mode fluctuations with ]Ac” = —i(qR)1(8/99) :
Tie e® De ed

Ww— - (w*e —wDe) <_> - wDeZP;_ - Jz_pZ(w - “-’*;oe) <E>

ne Te e

+ k”v”e =0 (59)
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. /ed e A
oo =~z (7)o (2] 4 0~ (1) (60

. mec
B e () -1 (w2 -0, D) T. _
Wb w*pe< =) ~T (w2 w52 ~Tupezs = 0 (61)

where Te/T,5 = Pe/De — Tie/Ne-

Eliminating v). and p. in Eq. (59) using Eqs. (60) and (61) yields

2;“32 _ ~ 2
oo (e 3H) (sz2m)] 2 o) (S22)
w w W — Wpe Ne w mcw

022 22
+|:w*e WDe+kj2_/)z <1_w:jae> _ e + (wDe_l_ e ||>

v w w? w w?
W*e(ne +1-— F) (@) _
© _To. )~ 0. (62)

Expressing pe/pe in Eq. (60) in terms of ® and A) yields the generalized Ohm’s law
and parallel conductivity. The resulting expression for v, leads to a fourth order system of
equations. In the remainder of this section we consider the simplified limit where only the first.
two terms of Eq. (61) are used to determine the pressure fluctuation p./pe = (wipe/w)(e®/Te)
in Eq. (60). The resulting ofj is given in Eq. (48) and gives the A — @ relation in Eq. (50)
valid for n. > 2/3. '

Finally, ﬁsing Eq. (50) to eliminate Aj in Eq. (62) yields the ballooning mode equation

v2 ( _w*pe> d k2 do
? R%w? w /df | g2 4 “Be (1 - &p_e) df

C w

—6 .2 ) 2 Wee _ Wape 2 2  WDe _
+[T(1 i6) + Kb, + 22 +(1 - ><klpe - )]@ 0. (63)

For ¢k} /wl, = (w2 /[viwl,)k*(1 + s%0%) > |1 — wepe/w| the ballooning mode Eq. (63)

e“%pe

reduces to the electrostatic ballooning mode Eq. (17). For ¢?k} /w?Z, < |1 — wipe/w]| the

Eq. (63) reduces to

2 1.2 )
Cack® d 22, 9@
ER%” & [(1 0%

19



+[1—“::"+ (1—%) (k2(1+3292)—w1’—6—@”<1>=0 (64)

TW

where ¢}, = Pw?, [wl,.

Analysis of Eq. (64) shows modes similar to those in Sec. IT except that the wave functions
are not as well localized to the outside of the forus, and thus the growth rate v; is weak
or marginally stable in this longer wavelength regime. We now consider the mode coupling

between the two k regions. These marginal stable longer wavelength modes, however, can

be driven by mode coupling, ky = k — ki, of the shorter wavelength unstable modes.

IV. Nonlinear Equation (Mode Coupling, Saturation
and Transport)

In this section we give the reduced nonlinear equations that describe the coupling of the short
wavelength electrostatic fluctuations to the longer wavelength electromagnetic fluctuations.
The long wavelength k) ~ wpe/c regime is expected to produce the dominant transport.
Here we investigate the nonlinear equations analytically reserving for future studies their
numerical solution.

First we discuss the magnitudes of the nonlinear terms and the mixing length level of
saturation. We note that in the electrostatic limit the equations are the same structure as

the toroidal n; equations where the mixing length level of saturation was shown in Ref. 7.

A. Mixing of the Electron Pressure

In the nonlinear regime there are two mixing rates: (1) the E x B mixing frequency Qg
determined by the time for convection around the vortex given by ®@x(z,y) and (2) the
spatial rate of mixing kl’]”z determined by the distance along By required for going around

the magnetic vortex (or island) given by Ajx(z,y) The E x B mixing rate is given by

_ Ckgky (. e®k>
=2 @k—(ern ) e (65)
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which produces!® stochastic E x B transport at the saturation level Qg ~ w,.. The magnetic

mixing rate is given by
ne Kok

which causes stochastic transport when kl’l‘é ~ kﬁ. For electromagnetic fluctuations with

E) ~ 0 the mixing rates are related by
Qg
nf ., 1.0 [ 08
@l—%(w)’
and the saturation levels w ~ Qg and kﬁ ~ kﬁz yield the fluctuation amplitudes

~

B "k,

ed 1

— N

T, kyry

W

(67)

Wi
Studies of test electron orbits in tokamaks with such levels of electromagnetic drift wave
fluctuations shows global stochasticity with transport well described by the diffusion ap-

proximation.

For 7, €, well past their threshold values the linear instability may continue to grow until
the mixing rates are sufficiently rapid to eliminate the mean electron pressure gradient over

the width 7 /k, of the fluctuation. Thus we estimate for the saturated state that
VE - v(ﬁe +ﬁe) ~ 0 B- v(ﬁe +]3e) ~0 (68)

in the strongly turbulent state. Both conditions in Eq. (68) determine the same mixing

length level of the pressure fluctuation
S\1/2 1
pe - pe =g
() o

If we assume that the rate of mixing Qg saturates when Qg ~ |wg| ~ 7% (consistent with

dpe

- (69)

Ref. 11) and the rate of magnetic mixing when kﬁ"z ~ kﬁ, then the nonlinear fluctuations are
consistent with the quasilinear fluctuation equations (59)-(61). For example, using the first

two terms in Eq. (61) and Eq. (69) yields

e  w P 1 E1<2)1/2 (70)
Te - Wipe Pe B Wye ka:rn B lkml RTT
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consistent with Qg ~ 4. Using level (70) for ® and the relation (50) gives for A

eAy ~ 1 — Wape/w ﬂ I i”ﬁ 147 (71)

kot Wae kyry, [(ne/2en)1/2 + czki/wge]

T. 1 — = i_gi Wxe

WhichAis consistent with kﬁ” = k.
Thus, we argue that in the stronly unstable regime the fields saturate to within numerical

constants at the level where O = 7; and k[’l‘e ~ kﬁ with . ~ p./|k;|. In this regime the

actual electron motion is a stochastic diffusion since the conditions found in Refs. 11, 12 and

13 are satisfied.

B. Nonlinear Model Equations

To test the scaling arguments given in Sec. IV.A and to determine the fluctuation spectrum
quantitatively we propose further théory and simulations of the dimensionless nonlinear
equations derived in this section.

We define the dimensionless space-time variables by

T = P Y — Py 2= TpZ

t — rnt/vei. (72)

We scale the amplitude of the fields as follows:

De Tn Vel Tn

73
g _ Pei eveiA” _ &&A ( )
T. T cT; 2 rn

where f3; = 8mn;T;/B?. The equations are simplified by considering the high density limit

Wpe > Wee and using quasineutrality where

Ne 1y Tn

ﬁ'e ﬁz T Pei
Be T Theiy (74)
With these scalings Ampere’s law reduces to
v = V2A. _ (75)
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Using (74) and (75) to eliminate fi. and v|. in Eqs. (54)-(56) we obtain the following three
coupled field equations:

04 99

(1-Vi) 35 = (1-2a+7(1+n)V0) 5 3 +zenay +7(¢, V3 ]
1[0 2 ﬁz 2
(2o fusia) e
\ 0A 0 P ;
(vi-2)58 - 2 Bug -0 S
4L O s A -4 (77)
2 Oy :
0P 107¢,] 0p 107, OP "
W = — [‘T(l‘i‘ﬂe)_—g—'] a_zJ—_Tg:y——T[qS)P]
107e, O , oOViA B
_ ;6 gy Pré)-T (——6: - %[A, Viz‘ﬂ)
+ 6 VP + k) VEP (78)

In Egs. (76)-(78) we include electron crossfield diffusion, resistivity and electron thermal
conductivity to absorb energy transformed to |k| — oo which is outside the range of validity
of the fluid equations. Using the classical transport coefficients, the dimensionless coefficients

are

VeiTn Te _ VeiTn 2 . VeiTn Te
6= (=) (7)) nmom (M) (7)) wman (B2) (),

vez Te
a=211(52) (7).

In reducing Egs. (54)-(57) to (76)-(78) we assumed that the dominant nonlinearities are

and

the E x B convective derivative and the B - V bending of the magnetic field lines due to the

perturbations in the magnetic field lines. In writing these two nonlinearities it is convenient
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to introduce the Poisson bracket operator defined as follows:

B.Vf = —2-VAxVf=—[A,f] (79)
vg:Vg = %-VéxVg=[p,g] (80)
with the property [f,g], = —0&, (g—g—;—) = 32,( S_Z)' We define the volume average by
(F)y =V~ [d% F(z,y,2,t) = L;* [ dz F(z,t) and note the properties (k[f, g]) = (flg, h]) =

(glh, 1)
The nonlinear model in Egs. (76)-(78) reduces further for the case of flat density gradients

ne — oo. The reduction is given in the Appendix.

C. Anomalous Fluxes and Energy Conservation

The essential crossfield correlation function, such as ges(z) = (vgPe), determine both the .
quasilinear evolution of P,(z,t) and the flow of fluctuation energy between the three field

components of the total fluctuation energy E = Ey + Fy + E3 where

E, = Ey= %<¢2+ (Ve)?)
By = Ea= -;— <(V"’A)2 + %(VA)2>
By = E,= %<(P)2> . (81)

The four crossfield correlation functions required for 0;E, and Btpe(w, t) are

0¢ ~
‘(@Pe)

Ges(2) = (vaP.)

Q(z) = (vEles) = —(’UBO . qu)
Wi(z) = (Pelso . Vv) = (P%) (82)



where by = Bo/|B| = ¢+ (€,/q)0 = 2. In Eqs. (82) ge, is the E x B flow of electron thermal
heat and gen, is a magnetic flutter thermal flow. The work done by the parallel electric field
on the electron fluid is Q and the work done by thé parallel compression of the electron

pressure is W. The fluctuation modified collisional transport flux is

qa(z) = . fu 5 +fv||§z (6 VIIP)

The net thermal balance equation (follows from averaging over y, z and yields the trans-

port equation

0P, _ 0 ( ~ = V||e Bz 2=
8t = a—w(Pe’Um—l-Pe B ) §P3V VE
2== 2. 0 Vjje Bz
— 'gPebO V’U”e — §P88_ZL' B
4 2.
= ""83:(%3 + ch) - §Qes - §W
2.0 (q 2
—p— (£ — peat 83
37 %Fz < P, > + 3°° (83)

where P2 is the externally injected electron heating. Subtracting OP,/dt from the total
pressure balance leads to equation Eq. (78) for 8,7,
The energy balance equation can be written in several forms Ref. 5-7. In terms of Eios

in Eq. (81) we have from Eqgs. (76)-(78) that

% = 26 {g) + = (Q) — d((V.6)")

Da o @)+ (W) =0 ((V24)7)

% = (1+47) (¢es) — logen {ges) + 'NT%E (ges) =T (W) = 50 {(V1p)*)

— e ((Vip)?). (84)

From which it follows that :
1 3
Er = E¢, —+ T_ZEA + 5—7_Ep (85)
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satisfies

dEr

D (1) () + 2 (1)

~do{(V29)*) =1 (VAA?) — ks ((Vip)?) — s {(Vp)?) . (86)

Further studies of the saturated nonlinear states predicted by Egs. (76)-(78) are in
progress to determine the dominant space scales and relative importance of the electro-

magnetic and electrostatic transport mechanisms.

D. Electron Orbits and Stochastic Diffusion

Although the anomalous fluxes given in Eqs. (82) are straightforward to evaluate in the
quasilinear approximation by using the linear fluctuations given in Egs. (15), (16), and
(50), the quasilinear approximation breaks down at the mixing length level of saturation
(69). At the mixing length level the circulation time 1/Qz around the electric vortex is
comparable to the linear mode frequency. Renormalized electron-wave propagators gf.(v) =
<(w — Wpe — kﬁwv — Qg+ iy)“1> describe this regime for Rz = Qg7 S 1. The development
of the anomalous flux formulas in the regime Rz S 1 is a complex procedure which is perhaps
less useful fhan the alternate approach advanced by Horton et al.l*:17

For the toroidal transport problem the crossfield (z,y) electron motion is given by

Eqgs. (10) and (11) of Ref. 11.

d_:c = —ﬁ(z? Eug—f—l + vpsind
dt Bdy B0y
@ — i@_@ _?ﬂi(As+A)+vD cos (87)

d¢  Bdz Boz

with A;(z) = (Bo/2R)sz?, vp = (cI./eBR) (%vi —I—vﬁ) /v? and 0(¢) = 2(t)/qR. In this
model the parallel motion (z,v)) along by is given by the elliptic functions for trapped and

circulating electrons.
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For a ballooning mode fluctuation with k, = k,s0 the characteristic frequency shift due

to the z,y -motion in the mode is
k-v, =0+ wDe(vi,vﬁ)(cos 6 + s0sin 6) (88)

with
an =k- {'fE + ’U”(kJ_ . B_L/BO) = QE + kﬁ’e’l)"

For Rg R 1 the stochastic diffusion from the resonance Q5 ~ |wi| gives the anomolous

transport

. Ae [T c cT.
sl () 5 () -

rr WpeT'T

using Ug ~ peiVei/rr and the correlation length g ~ ¢/wpe. For the longer wavelength part
of the spectrum the motion is stochastic from the resonance overlap Qg ~ kﬁve for circulating
electrons and from Qg ~ wye = €/2v,/qR for trapped electrons. In this regime the stochastic

diffusion is dominated by trapped electrons with the net thermal diffusivity given by

2 2
_ 1/2€ wbe: TC Ve 90
Xem ¢ 2 R2,2
wpe q wpe

for O R wye, implying the confinement time 75 = a?/4Xem = qaszze /4c?v,. The condition
on the turbulence level can be expressed in terms of rr. by using Qg ~ k;0g, and v6p. =
DEep. = Ugsks6pe to write Qp ~ v > e*/?v./qR. the that Ref. 11 finds that Eq. (90) is
independent of rr. when the turbulence level satisfies the condition Qg 2 wee.

The test particle transport simulations in Ref. 11 show that once the fluctuations levels
are sufficient to produce global stochasticity the deviations of the diffusion coefficient from
Eq. (90) are rather weakly dependent on the details of the fluctuation spectrum used in the
test particle Hamiltonian. This hypothesis was tested by using a 5 x 5 isotropic ki space
with ¢(kL) = ¢1/kT where m = 1,2,3 and computing the stochastic diffusion coeflicient for
variable ¢1,s,vp and u = wi/k,. Once the electrons are globally stochastic the diffusion

is essentially determined by the correlation scale length £, = 1/Ak, and the decorrelation
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rate 771 & Qp ~ wy,. The diffusion does increase with increasing ¢, but less rapidly than

linearly.

The formula given in Eq. (90) differs from the results of Eq. (6) of Ref. 3 and Eq. (32) of
Ref. 4,

_0.13¢%sm,(1 + ne)

X
¢ w2, qR

This result was derived from a quasilinear formulation and the use of linear sheared eigen-
value mode characteristics. The factor n.(1 + 7.) was reported to come from fitting the
numerically computed result for wy. The value of‘k; R wpe/c is found using the amplitude
limit cér/B =~ 2nwy/k? and carrying out the k, summation in the quasilinear transport
formula for the resonant electrons. As noted in Sec. I, our result for the electron diffusivity
differs significantly from that in Refs. 3 and 4 in that Eq. (90) does not show the strong,
explicit dependence on 7.. Experimental evidence from H-mode plasmas suggests that X,
should not comtain a strong 7. dependence. Specifically, 7. is large in the bulk region of the

H-mode discharges, but confinement is observed to be improved.

V. Conclusions

Using toroidal ballooning mode theory we show that the electron temperature gradient 7,
drives the lower hybrid drift mode unstable due to charge separation from the unfavorable
grad-B and curvature drifts. We analyze the nonlocal hydrodynamic regime keeping the
electron fluid compressibility and the FLR heat flux to obtain the stability threshold and
characteristic unstable fluctuations. We compare these results with local kinetic theory where
the wave electron resonance gf = [w —wpe(vl, vff) + z'v] i kept along with JZ(kiv, [/wee)
and the driving force 7,(v?/2 — 3/2) to obtain the kinetic theory threshold and spectrum éf
linearly unstable fluctuations.

Including magnetic perturbations from A in the hydrodynamic analysis we show that
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the short wavelength regime k; 2 wg. /v, is electrostatic with substantial growth rate v, ~
|wr| > kj|ve, while the long wavelength regime k1 ~ wpe/cis neutrally stable with By < |k)®|.

We introduce a nonlinear hydrodynamic model with the fields ¢, A, ép. that is closely
related to earlier 7; mode models®=7 and the electromagnetic edge turbulence equations of
Bekki and Kaneda.'® For the nonlinear model we find only the energy integral of the motion
for the isolated, dissipationless system. For the unstable, dissipative system we may thus
expect a result between the 2-D inverse cascade and the 3-D cascade since the system is
only weakly 3-D with V) > V). We suggest that it is important to perform a complete
analysis of this nonlinear model system for the amplitude and fluctuation spectrum of this
drift wave-like system. Here we give the mixing length formulas for the expected saturation
level with kﬁ"e 4 kﬁ and Qg ~ wy, ~ Y.

We note here that similar equations without magnetic shear are solved by Bekki:and
Kaneda®® for electromagnetic edge turbulence. In that work with a 32 x 32 x 16 grid the
buildup of large amplitude low k; modes is reported. That simulation shows that the
transport is dominated by k, = 0. In the present problem we expect nonlinear Iﬁagnetic
vortices with kl’lze + kﬁ 2 0 may a,rise for not too strong a magnetic shear s < 2q.

For saturated mode spectra of the form ¢;/kT with m = 1,2,3 the associated vortex
circulation frequencies are of the form Qr ~ ¢1k] with p = —1,0,+1 with the evolution
of distributions of test electrons given in tokamak geometry by Horton et al.'* For the long
wavelength k) ~ wye/c part of the spectrum the stochasticity arises frorﬁ the overlapping of
the z,v) resonance with the (g,wp. and kﬁ“%” motions producing a strong diffusion of the
trapped electrons and a weak diffusion of the passing electrons. In this regime we predict
the Neo-Alcator or Merezhkin-Mukhovatov formula (90) for the thermal diffusivity.l?

In summary, the present work shows that the toroidal electron temperature gradient
driven lower hybrid turbulence leads to an injection of small scale p¢; turbulence at or

just above the transit electron frequency, as shown in Fig. 6. The small scale electrostatic
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turbulence directly produces the anomalous x. given in -Eqs. (46) and (47), which is larger
than the electron neoclassical plateau value but small compared with the electron diffusivity
obtained from c/wpe and pg-scale drift turbulence. The importance of the p; turbulence,
however, is the injection of a drift wave turbulence near the electron transit and bounce
frequencies, together with the known property of the quasi-2D (VL > V) drift turbulence
to mode couple energy to both larger and smaller spatial scales.

The theory presented has direct implications for the x. formulas given by Horton et al.lX
and Parail and Yushmanov.!? In Ref. 11 the transition from c¢/wy. t0 p,-scale turbulent
transport was reported from test electron diffusion theory and simulations. Recent transport
studies by Parail and Yushmanov'® based on the transitional formulas derived in Ref. 11 for
¢/wpe and ps scale drift turbulence explain well the power balance . in both ohmic and
auxiliarly heated tokamak discharges. The present work presents a mechanism in teroidal
geometry that may explain the source of this turbulence and the associated anomalous
electron transport. In particular, we suggest here a sub-regime in the transition from the
low density neo-Alcator and Merezhkin-Mukhovatov scaling given in Eq. (90) to a modified
¢/wpe-scaling given by Eq. (89) at higher density or beta poloidal. At still higher values of
beta poloidal, the transport is given by the p, scale turbulence in Ref. 11 and compared with
experimental power balance studies by Parail and Yushmanov.'®

From the theoretical point of view, further work using nonlinear simulations and transport
theory will be required to determine the conditions for the transitions between the regimes
and to estimate the numerical coefficients in the transport formulas. Nevertheless, from an
experimental point of view the existence of such electron instabilities which appear as the
direct analog of the toroidal n;-mode turbulence® may be sufficient reason for adopting the

associated anomalous . formulas for empirical studies of power balance in tokamaks.
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Appendix: Reduced Nonlinear Model Equations in
H-Mode Plasma

For flat density profiles, it is important to redefine the dimensionless space-time variables

by

T = P, Y — pPeiyy 2 —rrz  and t — rrt/ve. (A1)

We rescale the amplitude of the fields as follows:

P pip Ve _ b,
P rp Ve
B puy el _ ﬂz Pei 4 (42
T. rp T, 2 rT
Then, Eqs. (76)-(77) reduce to
¢ _ rT _ ) d¢
_v2\9¢ _ 1_ol'T 1 2\ 99 T O
(1 VL) at (776 2R +T(??e + 1)VJ_ 8 +2R a P

+ (¢, V3B + = (8 VLA— & [A % A]) +d.Vig (A3)

(Vi—@)@-= 9 _Bia g -3 Bia )

2 ) ot dz 2
. B
| +T<n;1+1)%§—y o6, Vi -nViA  (AY
or _ [ 2FT’"T] 9¢ _op,rz0P _
- 6t - [T(ne + 1) R ay 2I'r R 8:‘/ T[¢7 P]

9
0z

—n 'k VAP — /iﬁVﬁP (A5)

rp O

— 2D (P ) - r( V'jA—%[A,Vf"LA])

where d, = n;'de, ) =n."n, £ =0 k1, and & = 1 k). For r, > R/2 Eqgs. (A3)-(A5)
reduce to

06 8 :
(1—- Vl)at = (- —2er + V3 )8 +2€TayP+T[¢,VJ_¢]

41 (——8~Vi A- .f_T (4, viA]) +d.Vig (A6)

T \ 0z
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Figure Captions

1. Stable (S) and unstable (US) domains in the rr. — r, parameter space at two values

of k = k pei. The dispersion relation in part (a) neglects the FLR electron heat flux

and part (b) includes the FLR heat flux.
2. Nyquist diagram of kinetic dispersion relation above and below the critical 7. value.

3. Kinetic mode growth rate from the local (§ = 0) dispersion relation versus the tem-

perature gradient parameter.

4. Kinetic mode frequency corresponding to the growth rate in Fig. 2. Positive frequencies

rotate in the electron diamagnetic direction.
5. Kinetic theory growth rate as a function of €, for fixed n. and kgpe; = 0.3.

6. Qualitative diagram of the k, ,w fluctuation spectrum. (a) characteristic frequencies
and resonances versus inverse scale length k) and (b) the associated mixing length

level of the fluctuation or vortex amplitude as a function scale size.
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