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Abstract

The Self-consistency of the renormalized perturbation theory of Ref.l is demon:-
strated by applying it to the Vlasov-Poisson System and showing that the theory has
the correct weak turbulence limit., Energy conservation is proved to arbitrary high.
order for the electrostatic drift waves. The theory is applied to derive renormalized
equations for a low-# gyrokinetic system. Comparison of our theory with other current
theories is presented.

Introduction

This paper is devoted to an investigation of several generic problems in plasma turbuleﬁce
using the techniques of renormalized perturbation theory presented in Ref.l. Our aim is
two fold; 1) To apply our methods to problems which have already been studied so that
we can compare and contrast our formalism with the existing theories. A detailed study of
the Vlasov-Poisson system will be undertaken towards this end, 2) Use our formalism to
solve new problems; the development and applications of renormalized gyro-kinetic theory
(including the transport theory) is a case in point.

We begin by giving a short history of electrostatic turbulence in plasmas. There are two
different popular approaches to deal with strong turbulence in a Vlasov-Poisson system;
the perturbative and the non-perturbative, or functional approach. The former was initi-

ated by Dupree’s pioneering work?, commonly known as “resonance broadening theory,”



in which the bare propagator (w — k- v)~! in the Vlasov equation is intuitively replaced
by a renormalized propagator (w— k- v+ i)™, where iT'}, stands for the stochastic diffu-
sion arising from the turbulent fields acting on particle. Further progress in perturbation
theories consists mainly of the following two developments: |

(1) The “single renormalization theory” (named by Horton and Choi®) is replaced by the
“fully renormalized theory,” which leads to an equation for :I'y in terms of the spectrum;
it is no longer determined through the bare propagator alone®*3.

(ii) Dupree and Tetrault added the famous S-term to the nonlinear coherent dielectric
function (the terminology of coherent dielectric function will be explained in Sec.II) in
order to conserve energy in electrostatic drift waves, a property of the exact system which
was being violated in earlier versions of perturbation theory. |

The incorporation of these developments has led to the now widely used modern per-
turbation theories 6~1°. These theories are, so far, limited to second order (of coherent
part) in expansion, although the concept of ‘order’ is not unafnbiguous. An important.
shortcoming of these conventional perturbation theories consists in their failure to reduce
(in the corresponding limit) to the commonly accepted weak turbulence theory. For exam-
ple the well-known Kadomtsev spectrum equation [Eq.(11-50) in Ref.11] does not follow
from the weak trubulence limit of Dupree’s equations.

The non-perturbative approach!? for the Vlasov-Poisson system can be constructed
on the basis of the rigorous MSR (Martin-Siggia-Rose) systematology®. It is basically a
generating functional method for constructing the Green function. However, the system
of equationé in the MSR systemotology contains a functional differential equation for the
renormalized vertex I'. Its rigorous solution seems illusive with present mathematical tech-
niques. In practice, progress is achieved by introducing a rather ad-hoc closure technique
of replacing the renormalized vertex I' by its lowest order approximation — the bare vertex
7, which is a known quantity. This is the DIA (Direct Interaction Approximation)'*14-16,
Obviously, the DIA, although an approximate theory, has the advantage of keeping the
form of the exact equations in the MSR systematology. To find a solution of the DIA is
not easy. Krommes constructed the DIA equations for the Vlasov-Poisson system, and
proposed the DIAC (Direct Interaction Approximation Coherent) to find a solution in its

diffusion approximation and proved the energy conservation of electrostatic drift waves!’.



The approximations used in this solution as well as the proof of energy conservation are
equivalent to the work of Dupree and Tetrault®. A significant sucess of the DIA lies in
its ability to reproduce (in the appropriate limit) Kadomtsev’s weak turbulence equation.
Particularly, the dielectric function defined in statistical mechanics®® is derived in the limit
of weak turbulence, and found to be different from the coherent dielectric function used
by Dupree®. Besides the diffusive part in the renormalized theory, the polarization part
also contributes to the dielectric function. In a sense, this is equivalent to the correlation
between the background waves and the induced waves. Therefore, the coherent dielectric
function in Dupree’s sense is not the dielectric function defined in statistical mechanics,
because the contribution from the incoherent part, arising through the correlations men-
tioned above, is ignored.

Although the DIA has the correct weak turbulence limit, it has gone little beyond the
perturbative results in physical application to strong turbulence problems. For example,
the renormalized version of Kadomtsev’s equation (including Compton scattering,, nonlin-
ear scattering, and three-wave interactions) and the dielectric function have still not been
derived from this approach®?. ‘

The failure of Dupree’s theory to yield the correct weak turbulence limit has. been
attributed to its lack of proper, self-consistent treatment of the Vlasov-Poisson system.
The difference between Dupree’s approach, and the DIA emerges when we examine the
renormalized propagator used in these two approaches. The propagator used in Dupree’s
approach contains only the diffusive part (which is related to the self-energy effects), while
the propagator used in the MSR systematology (and the DIA) includes a polarization
part also; this part is related to the polarization cloud around a test particle and to the
statistical fluctuations in the dielectric response. We shall see in Sec.II that the effects
like §fx(¢(®)/ 5<p,(§) | o= for k& # k' are intrinsically related to the incoherent waves, or
more precisely, to the correlation between the background waves and the induced (by the
external source) waves. These physical effects do not need to be put in the propagator.
The secularity in the bare Green function can be eliminated by self-energy renormaliza-
tion alone, something like the mass renormalization for Dirac equation. Therefore, if the
incoherent part is manipulated correctly in a properly matched perturbation theory, the

physical effects represented by the polarization part will be automatically included in the



new description.

The perturbative approach developed in Ref.1 fulfills this demand. In fact, the renor-
malization procedure of Ref.1, when applied to the Vlasov-Poisson system, is a general-
ization of ‘Rudakov-Tsytovich’s method® to arbitrary higher order. Renormalization, here,
means that the counter (or compensating) term ¢I'y (corresponding to frequency broad-
ening and shift in the propagator), formally added to the equations, has to be eliminated
in each perturbative order. The proof of renormalizability thus leads to a self-consistent
determination of i[';, [Eq.(11), Ref.1], and in addition provides a unique definition of ‘order’.

The proof of renormalizability , however, is not enough to guarantee that the perturba-
tive approach of Ref.1 is, at least, equaivalent to the DIA. To do this we must demonstrate
that our approach can match the most important success of DIA in the weak turbulence
limit, i.e. the calculation of the dielectric function and the derivation of Kadomtsev’s spec-
trum equations. Therefore, we present in Sec.Il a detailed derivation of the renormalized
dielectric function (starting from its statistical mechanics definition), and then obtain: its-
explicit form to second order and show that it reduces to the correct weak turbulence
limit. In Sec.III, we derive the renormalized version of Kadomtsev’s spectrum equation.
Therefore, we present in Sec.II a detailed derivation of the renormalized dielectic function
(starting from its statistical mechanics definition), and then obtain its explicit form to
second order and show that it reduces to the correct weak turbulence limit. In Sec.III,
we derive the renormalized version of Kadomtsev spectrum equation and discuss its weak
turbulence limit. Since the diagrammatic technique (used in Ref.l) is not essential for
these calculations, we adopt the usual conventional approach.

In Sec.IV we deal with the problem of proving energy conservation for the electrostatic
drift waves to all orders in perturbation theory. We remind the reader that this was a
crucial test for the validity of several theories and the perturbation approach passed this
test to second order only after Dupree and Tetrault introduced their famous S-term. We
present explicit calculations to order three (although we have proved energy conservation
to arbitrary high orders). Notice that for orders greater than two, there are no existing
proofs. We also show that, in these orders, DIAC (without diffusive approximation) is
not expected to conserve energy. The energy conservation follows from some symmetry

properties of the wave-particle interaction vertex. We show that these crucial properties



are not mentioned in some presentations using ballooning representation’®. Clearly energy
conservation is violated in these theories.

In Sec. V, we turn to the second part of our program, i.e., use our procedure to
elucidate and solve new problem. Since finite Larmor radius effects are considered quite
important in plasma microturbulence we choose a low-3 gyrokinefic system as our object
of study. We first show that our method is ideally suited to develop ‘finite-Larmor radius’
renormalized theory [Sec.V.A], Then apply it to illustrate the nonlinear behavior of the
kinetic 7; mode (Sec.V.B);i.e., we derive the coupled nonlinear wave equations. Sec.V.C is
is devoted to the development of a transport theory with analytic general expressions for
the transport coefficients. General properties of the energy transport coefficient (D) are
discussed with particular emphasis on the effects of finite Larmor radius onD,.

Section VI gives a short summary and discussion of the main points of this paper.

II Renormalized Dielectric Function

We now use the methodology developed in Ref.1 to calculate the renormalized dielectric
function for the Vlasov-Poisson system. We use the standard statistical physics definition of
the inverse dielectric function (€;') pertaining to the electrostatic waves. Defined through

the Poisson equation'®, e is given as a functional derivative
9 k\‘,

o K $ele) (1)
o gl

where ¢}, is the potential induced in the plasma in response to the disturbance ©(®) gener-

ated by an infinitesimal external (unrandom) source p(*). We remind the reader that the

bare source quantities 905:) and p,(:) are related through

) _ 4T (e
o) = k—2p§c) (2)
and the potential ¢y is determined by the Poisson equation
or = o) + (—ama /%) [ dofi(e) = 6 + Oufi(6), (3)
where f is the plasma distribution function which obeys the Vlasov equation (8 = 9/9v)
[0 +v - V = (¢/m)Vp(p) - 8]f () = 0. (4)
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Making use of Eqs.(2) and (3), Eq.(1) takes the form

§ (e)
& =1+0k<-ff£%)—-)—> . (5)
58010 ¢(3)=0

Thus to calculate €}, we must solve f;, in terms of go,(f), and obtain the required functional

derivative. Notice that the problem is not forbiddingly difficult because we need to cal-
culate the response only linearly in the infinitesimal source ¢(9). Before manipulating the
Vlasov equation, we notice from Eq.(3) that the variation in the induced potential due to

an infinitesimal source ©(®) is

§Fu (0] .
Sipr = pi(p®) — 0u(0) = [6k,k' + Ok% 2 (6)
kl

where 1,(0) = O fu(0®) | o()=0> and 8¢y, is linear in go,(j).

With the definitions < fp® = O)> = f,, and f(¢®) = f, + 6f(¢(®)), the Fourier trans-

formed Vlasov equation becomes

§fi = GrL(E)flpr(0) + 8i]

+ D0 GrL(k1)r, (0) + 60k, )6 Firy + iGRT16 i (7)
k1 ‘

where G = (w — k- v +:T'%)™! is the renormalized propagator, T}, is the compensating
term to be determined, and L(k) = —(g/m)k - 8 is the wave-particle interaction vertex.
In Eq.(7), it is understood that all the fluctuating quantities (§fx, §¢x) are functionals of
0, :

Eqation (7) is precisely of the form for which the renormalization procedure of Ref.1
was developed. The procedure will yield us an expression for :I'; in terms of the operator
G and ¢(0), and also a formal expression for § fi (the solution of the Vlasov equation) in
terms of Gy, ¢1(0) and ¢(®). From the latter, we can determine the functional derivative
8fi/ 5g0§f) to complete the evaluation of ;. The frequency broadening, iT', is determined
entirely by the fluctuating fields ©r(0) rather than go,(f) (which is an unrandom external
source). Keeping this fact in mind, and following the prdcedure of Ref.1, we obtain a
perturbation expansion of :I'; by demanding that ¢I'; cancel, order by order, all the self-

energy terms (terms associated with the contraction of the fluctuating fields) produced in
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the iteration of Eq.7). The first four terms are

=iy = L(k1)Ght L(—H1) (r(0)(0))
| t L(k1) Gty L(2) Gty s (= 1) Gy L(— ) {101, (0) 25, (0))
{rs(0)(0))
+ L(ky) Gre iy L(Fe2) Gy kg L(Ke3) Gy —ky—
 L(—ky = ks = ks) (01 000k, (0)0ks (00 1y s (0)) + -+ (8)

After the aforementioned cancellation, we obtain the expansion of é f in terms of gogi),

8fk = Arbior + Fiu((®), (9)
with |
Ay = GL(k)fo+ GrL(k1)Ghor, L(k)G_k, L(—F1) (0x(0)%(0))
+ G L(k1) Gy L(E) G, L(K2) G —y 1
Bk = k) (o1 Ok (0) 42, 0))
+ G L (k1) Gy L(k2) Gy —ky L(K)G _ty— iy L(—Fey — k2) fo
om0t () £+, W

and

F(@®) = GrL(k1)Giok, L(k-ts) fo (01, (0)60s—t, + 601,05, (0))
+ G L (k) Gty L(k2) Gy =i L (k — Fo1 — k2) £o(401: (0) 0k (0) 60k ks -y
+ 90131(0)6901%9016—791—}02(0) + 590k1 ¢k2(0)¢k—k1—k2(0)) e (11)

where only the terms linear in 6y ~ ¢(®) are retained (we are interested in determining
the plasma response to an infinitesimal external perturbation). The breakdown implied in

Eq.(9) is the familiar breakdown into the coherent (Axbpr) and the intrinsically incoherent



part (f;); the latter cannot have the fluctuating quantities with the momentum index k.

Making use of Eq.(6) to evaluate (6¢r/ 59055)), we obtain from Eq.(9)

5 6 8
8¢ ii) =4 [1 +On J?:)} i Jz) =
Pk
leading to
) c ¢ 6 i )" e d L
=1+ 04 fk) =1+ Ol Ay + Orel” 1% =7 + ¢ 1Ok_f(l«ce)-’ (13)
6‘Pk 6(Pk 6ka
where
e,(:) =1— 0OrA; (14)

is the coherent dielectric function defined by Dupree®, and the second term on the right-
hand side of Eq.(12) originates from the incoherent part of § f.

To complete the evaluation of €5, we must calculate the right-hand side of Eq.(13) by
using the expressions given by Egs. (8)-(13). A general calculation, although straightfor-
ward, is obviously very complicated. But to check our theory against the results ofiearlier -
theories (the DIA, for example), we need to calculate the response correct to second order
only. The final step in our calculation yields (in terms of the renormalized propagator Gy)

_ ¢ -1 ¢ -1, ) -1 2 -1
' =) 4 e e In (15)
k1
where

~(2) 1 ) 4 q

D=3 [ d0Gss, [E(k)Grul (k) + Lk)Gru L)) for (16)

the coherent dielectric function is

c 4 T 7 F 7
Egc) =14 %/d’va I:L(k) -+ ZL(kl)Gk_klL(k)G_le(——kl)Ikl for (17)
k1
the spectral intensity is

I = (ex(0)pk(0)) - (18)

and where we have spelled out the operator Ox[Eq.(3)]. We now invert Eq.(15) to obtain

an expression for the dielectic function

-1,
42 5(?, k—ky €k )kl el(cz)ku I, (19)



where the quantity multiplying I is taken to be small. To obtain the results correct to
second order, we substitute all the quatities calculated to the appropriate order (including

expanding G}, to second order) and find the weak turbulence limit of our theory to be

(2)

— 9 k ,k k1 €k, —ky
k[weak] = K[weak] Z : 65:3)1 ) Iy, (20)
1
(4]
l(c[)weak] = ek )+ 2:L;ek?;,—-k1,ka17 (21)
where e( )k2 is just e( )kz with Gy replaced by G( ), and
he = ing GO, L(k)GD
k1,k2,k3 - Ik1+k2+k3| v k1+kotks ( 1) ko+-k3
- (L) G L (k)G L(R2)] fo (22)

The linear operator

€D =1—0,GOL(k) fo, | (23)

and G,(co) =(w-—-k-v)1 is the bare propagator.
Equation (20) with Eq. (21) is just the dielectric function (in the weak turbulence
limit) obtained by Krommes and Kleva using DIAY. Thus the perturbation theory of

Ref.1 has the correct weak turbulence limit for the dielectric function.

IIT Spectrum Equation

Since the concept of ‘order’ is clearly delineated in our perturbation theory (Ref.1), it is
obvious that the contribution of the lowest order incoherent source terms (to the equation
describing the fluctuation spectrum) should be more important than the higher order cor-
rections due to the renormalization of the propagator. When the phase-space available for
the three wave interaction with frequency broadening becomes significant, the incoherent
source is expected to play a crucial role in the determination of the saturated level of
turbulence. For electrostatic turbulence (Vlasov-Poisson system), a closed set of spectrum
equations can be constructed from the renormalized perturbation theory of Ref.1 provided
ew/T (the ratio of potential to the kinetic energy) is small enough to be a perturbation

parameter.



From the formalism presented in Sec.Il, it is straightforward to derive the nonlinear

Poisson equation (to second order),

6§CC)SDk = Z gl(czl),kg‘Ph Pk, + Z 5;(931’),162,@90@ PkaPks) (24)

ki +ka=k ki+kotka=k

where the coherent dielectric function e( ) is given by Eq.(17), 6k1 s, 18 given by Eq.(16),

and
(3 4dmq - - ~
G s = T Eat Rl / &Gy kotks L(k1 ) Gyt ks L(K2) G L(3) fo. (25)
Multiplying both sides of Eq.(25) by ¢} and ensemble averaging yields [Ij = <kago’,f>]
Egcc)Ik = Z gg),kg <(Pk190k290:> + Z ggi),kz,ks <90k190k2‘70k390:> (26)
k1 +ko=k k1+kotka=k

Notice that the last term of Eq.(26) does not contribute to the lowest order (quadratic in
It), while the triplet is approximated by the quasi-Gaussian assumption

A A (2>*

(Prprer) = 2202 ;?)lff Ty Iy, + 205 —écl)’kalIk 4 2%k (c) 2 I, I (27)

converting Eq.(26) to

~(2 ~(2) |~(2) I2

c k,kk —k, k;k
6()‘ E 1 (c; 1 I Ik_2 Z 1,k2

()* Iankz) (28)
€k—ky katko=k €} :

which along with the other independent equation (correct to second order)

— il = GO7 — G = Y L(k1) Gty L(—k1) I, (29)
k1

where GEQO) = G; ' —il, is the inverse bare propagator, provides a closed set of equations
for I, and Gy (all & ’s are functionals of G%). Eqgs. (28), (29) are quite similar to the
equations proposed by B1skamp (using diagramatical techniques), and by Orzag and

Kraichnan?®
If the turbulent level is so small that the renormalized propagator G ' can be replaced
by the bare propagator C?,(:))—1 [making Eq.(29) trivial], Eq.(28) with e( ?) given by Eq.(21)
reduces to the standard spectrum equation in weak turbulence theory [cf. Appendix of

Ref.1]. In a sense the set of Eqs.(28),(29) form the renormalized version of weak turbulence
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theory, in which the resonance broadening (and shift), the three wave interaction, and the
nonlinear scattering are all included in a consistent way.

For small, but finite I Eq.(27) is approximated by the single renormalization
Gt~ GO _ S (k)G E(—F ) i, (30)
k1

Substituting Eq.(30) into Eq.(28) yields a spectrum equation for I} only. The back-reaction
of particle on waves still exists through the spectrum equation.

By doing explicit ca,lcﬁlation to second order, we have demonstrated in Sec.IT and III
that our perturbation approach is, indeed, naturally reducible to the weak turbulence
theory in the appropriate limit; this constitutes a definite advantage over the conventional

perturbation approaches*~*° which do not.

IV  Energy Conservation in Electrostatic Drift Waves

It is well-known that the energy conservation is an essential test for the validity of a nonlin-
ear wave-particle interaction theory. For the electrostatic drift waves the perturbed power
term (67, - 6E ) is rigorou‘sly equal to zero. This property should remain valid for any
approximate theory with the implication that any plausible and acceptable perturbation
theory must conserve energy in each order of the perturbation.

We now show that the perturbation theory proposed in Ref.1 does meet the required
demands of energy conservation. In particular, we prove the energy conservation in the
perturbation order higher than the second to which most analyses (including DIAC with
diffusion approximation) have been limited®®'7.

For simplicity, only the shearless slab model is considered. The generalization to a
sheared slab model is straightforward.

The starting point here is the Fourier transformed drift kinetic equation [Vlasov equa-

tion for the guiding center in a uniformly magnetized plasmal,

Fi = GrLo(k) foor + G > Lk, by )pry fuety + Grilefi (31)
k1
where
Lo(k) = —(e/Te)(yvy — w3)

11



Bk k) = (e/m)byad) — i(e/B)(k x kr) b
Gr = (w—Fkyoy+:T%)™" 9=9/dy)

with the ambient magnetic field B = Bb, the electron diamagnetic drift frequency w¥ =

ky(cT./eB)|d Inn/dr| and v = v - b. The rate of work done by the drift current is

expressed as

(63, 8BL) = i [ doakGP (figk), (32)
where

Gl(co)_l = WwW-— k“'U”.

Notice that Eq. (31) is formally equivalent to Eq. (7) analyzed in the last two sections.
Substituting fx = Api + fi and GECO)—I = G;' —iT; into Eq. (32), we have

(65, 6B1) = ie [ doydk{ (¢FG7" Aps)
+ ¥ (=iT%) Apr) + (0¥ G5 i) + (i0k (—iTw) i) }. (33)

Energy conservation holds if we can show that the right-hand side of Eq. (33) is zero in

every order. For convenience, we first prove the following two useful lemmata:

Lemma 1 All terms of the form

Z /dvﬂi(ka kl) P (k - kl) onsotl = 07
k,k1

where P (k — kq) i3 any functional of k — k.

Proof: Since

E(k ) = B (ko k) + B (b ) = (=) Byady =4 (%) (k x k)-8,

e
m
it is obvious that the first term equals zero being purely a surface term in v. The second

term vanishes because Ly (k, k) is odd under the transformation (k < —k;) while the rest

of the term are even.
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It is helpful to define the adjoint of a term Q, i.e., if

Q = Z/dvlli(k,k1)T(k,kl)a
kk1

then
& = X [anE (k)T (-, k),

kK1

where T is any functional of & and k;. This leads us to the second lemma.

Lemma 2 The sum of two adjoint terms is zero, i.e.,

R+Q=0.

Proof: The contribution from I, is equal to zero after integration over vj. The contribu-

tion from Lo (k, k1) terms are cancelled because T'(k, k1) + T'(—ky, —k) is invariant under

the transformation (k « —k,), while L, (k, k1) changes sign.

We shall show the energy conservation in the first few orders explicitly by using the

above two lemmata.

To zero order, only the linear term Lo fo from <gotG;1Ak<pk> contributes which changes

sign under k-inversion and thus integration over k yields zero.

To first order, only the incoherent source <gofG;1 fk> contributes a term

O =3 [ gl (k1) Gio B (k — k) fobon o
kiky

which is zero because of Lemma 1.

In second order, we have three nontrivial terms making up the energy:

ng) = kkz:k /dv||E(k,k1)G}c—k1E(k—k17k2)

+ Gty Lo (£ — by — k2) fook Pk P Phba ks
from the incoherent term <90:G,:1 fk>,

) = X [ o (k1) Gaia B (o, 1) Gy B (=) {ohom ) (s
vy 01

from <go,’fG;1.Ak(pk>, and

13

(34)

(35)

(36)



o = ;§ [ aoiZ (ks k) G L (= by, —ke) GuLo(B)fo (0w ) (k) (37)

from <go’,f (—iT%) Akgok>. It is obvious that energy conservation is valid in this order be-
cause 01(2) = 0 by Lemma 1 and C§2) + C§2) = 0 by Lemma 2. Notice that violation of
energy conservation would occur if we had kept only the term proportional to the reso-
nance broadening zI'x K oF (—iT%) Axep k>] and neglected the second order contribution from
the term <(,0:G,;1Akgok> which represents the renormalized averaged distribution function.
This latter is just the famous f# term introduced by Dupree and Tetrault to insure energy
conservation.

The energy conservation in second order is essentially a consequence of the cancellation
of the two coherent contributions because the incoherent contribution 0{2) was identically
zero due to Lemma 1. Thus up to second order, a theory would pass the energy conservation

test even if the incoherent part is neglected altogether. The situation changes entirely in the

third and higher orders where incoherent terms are not individually (and hence trivially):

equal to zero. Thus the proof of energy conservation in third (and higher) order becomes
a crucial test to any progress beyond Dupree and Tetrault. In third order, <go,’: (—iT%) f;,>

gives a term

c® = / do|L (k, k1) Gy L (k — ko, k1) GiL (b, k2) Gogy Lo (k — E2) fo
kyka ko
(ko) (P on-ia} ) | (38)
cancelled by its adjoint |
P = P=cP+cP =0 (39)
contributed by <50:G,:1.Akgok>, which also gives ‘
c® = 3 / doy (k, kr) G L (k — Fu, ko) Gpy -ty (k — oy — by, — k) Gy s,
ko ka
+ Lo (—k1, —ks) fo <‘P;‘Pk> <<Pk1 ‘Pk2¢2‘1+k2> (40)
cancelling its own adjoint
O = OO = o 40P =0 ()

originating from <cp’,f Git fk> The non-Gaussian frequency broadening term
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Cé?’) B kkzk /dv”“i (ka kl) Gk—krz (k — ka, k2) Gk_kl"‘-’zfj (k = ky = kg, =k, _kz)
W14 R2

- GrLo(k) fo {0k or) (rsPhaPhana) » (42)

added to its adjoint C’é3) = 6'5(3) coming from <g02‘G,';1 fk>, also gives zero contribution
to the right-hand side of Eq. (31); the conservation of energy in third order, thereby, is
proved.

At this point we would like to stress that the energy conservation in third order resulted
from exact cancellation between the non-Gaussian contributions from the coherent part,
and similar contributions from the intrinsically incoherent source. Clearly a theory like
DIAC (without diffusive approximation) will violate energy conservation in this order
because it neglects the incoherent part altogether. To the best of our knowledge, energy
conservation has not yet been proved for DIAC.

We have also succeeded in proving energy conservation up to arbitrary high orders by
using diagrammatic approach. The results, not relevant to the main thrust of this:paper,
will be presented elsewhere.

We wish to emphasize that energy conservation in electrostatic drift waves is a conse-
quence of the antisymmetry (change of sign for k < kq) of the wave-particle interaction
vertex. Explicit antisymmetry must be maintained in any treatment, otherwise energy
conservation will be violated. To illustrate our point, we make a small digression to show
that there exist examples in published literature'® (using ballooning representation) where
antisymmetry and hence energy conservation is not preserved.

Manipulation of the gyrokinetic equation in the ballooning representation (in the elec-
trostatic, and small gyro radius approximation) yields the explicitly antisymmetric non-
linear term

w(c/BYF Y. mang Y 4{ exp(—2migni£)6@n, (1,0 + 2mL)6hn, (1, 6)
4

ni+nz=n

- exp(—27riq’n2£)5g5m (1)[)7 9)5;\?%2 ('l»b) 0 + 27('5)} | (43)

where cﬁzn(v,/;, 6) is the non-adiabatic part of ballooning amplitude 6@, defined by

8p(,0,() = zﬂ: exp [zn (C - /6 q(izp, ") dG')] Ze: 6Pn (2, 0 + 27L) exp(—2mingl)  (44)
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with

7= $as,0)d0,

and

Fo= V(C— / 9q(¢,9')d9') X Vg -b | (45)

It is obvious that it is only the combination of the two terms on the right-hand side
of Eq.(43) that guarantees the antisymmetry which makes Eq.(43) correspond to the slab
model nonlinear term

(¢/B)(Vép x b) - Vép = 0.
Unfortunately, the second term in Eq.(43) is missing in the aforementioned treatment,
and in that treatment there is no way to assure energy conservation in each order of the

perturbation theory.

V Renormalized Gyro-Kinetics:

The methodology developed in Ref.1 and presented (in some deta,ﬂ) in earlier sections of
the present paper can be readily generalized to deal with more complicated and realistic

problems in plasma physics.

A: Collisionless Plasma with Finite Larmor Radius Effects

An obvious extension of the previous work is to develop a renormalized theory of colli-
sionless plasmas including finite Larmor radius effects. Clearly one must begin with the
nonlinear gyrokinetic version of the Vlasov equation. To make the problem more realistic
and interesting, we allow the equilibrium to have temperature and density gradients also.

Notice that in a gyrokinetic theory, the perpendicular (to the magnetic field) thermal
motion of the particles comes into its own implying that self energy terms, etc. will become
function of the perpendicular velocity »,. Thus the evaluation of all the renormalized
(linear as well as nonlinear) terms will involve cumbersome v, integrations’” It turns
out however, that in slab model to second order in perturbations, the v, -dependent self

energy terms can be replaced by v, -averaged terms (independent of v, ) provided drift
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frequencies are ignored. As a result, only the familiar v| integrations (just like the drift-
kinetic treatment) will be necessary to derive the nonlinear wave equation.
In a slab model, the non-adiabatic part of the perturbed distribution function obeys

(in Fourier space with §4, = 0)
(w = Eyoy)ohe = Lo(k)Jo(viky /Q) Fobihy, + > Ly(ky, k2)Jo(vikis /@)%, 6Tky,  (46)

k1+-ko=k
with the definitions
Lo(k) = (¢/T){w—wil1+n(H/T - 3/2)]} (47)
Ly(ky, k) = i(c/B)(kyx ky)-b . (48)
and
b = bpr — (v)/c)6Ax (49)

where w¥ = (c¢T'/eB)(k,/L,) is the density gradient induced diamagnetic frequency, Ly, is
the density scale length, n = L,/Lr, Lt is the temperature scale length, H = (m/ 2)(v|2| +
v?) is the particle energy, ) is the gyrofrequency, B is the ambient magifield and Jy repre-
senting finite gyroradius effects, is the Bessel function of order zero. Direct renormalization
of Eq.(46) would yield the v, dependent self energy term

— T = D _(¢/B)*[(ky x k) - BP T3 (v krs /) Gmty |69, (50)
ky

and an appropriate expression for the distribution function § hx(v). As pointed out earlier,
this would lead to complicated v, integration. Indeed, we prefer to deal with the v,

averaged distribution function
57%(?)“) = I,,Léhk(v) = A 'UJ_d'UJ_JO('UJ_kJ_/Q)(Shk(v) | (51)

whose equation of motion is obtained by applying I,, to both sides of Eq.(46). Standard
manipulation of the resulting equation with the assumption Fo(v) = Fy(v|?) - Fo(v.?) yields
the renormalized second order expression,
Shu(vy)) = GRLO®R)Fo(w})owbs+ 3 GrL(ky, ko) o L (B, ko) Fo(v])6tbr, 63,
k1 +ko=k .

+ Y GiL(kik — ky)Ghopy L(ka, ka) Gy L§ By, B, Kes) Fo(v])

k1 +kotkz=k
s

: 5¢k1 5¢k2 5¢k3 (52)
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with
LQ(k) = (¢/T){(w - will + (v} /o] — 1/2 = B)To(b) — winbl(b)} (53)
f’gl)(kh k) = /Ooo dvy Jo(vy |k1y + koy| /S2)
- Jo(vikyy /) Jo(vikar /) Lo(ky) Fo(v.?) (54)

L (ky, gy k) = /0 dvy vy Jo(vylkiL + k2y +ksy|/S2)

- Jo(viky /) To(viksy /) To(viksy /) Lo(ks)Fo(v.?) (55)

G, = (w - k”v“ + iFk)_l (56)

Ty = S J(ki, k1 )L(ky, k)Ghopy L(—Fr, k — k1) |69, | (57)
k1

/0 doy vy 2 (v by /Q) T2 (v kis /) Do(k) Fo(v.L?)
/0 dv, o1 J2(vy ks ) Do(k) Fo(v.?)

with J(ky, k1) (58)

Substituting EBk(v”) into Poisson equation and Ampere’s law will yield the set of non-
linear coupled wave equations in ¢ and Ay.
B: Nonlinear Kinetic 7; mode:

The renormalized gyrokinetic formalism presented in V.A can be used to delineate some
general features of the behavior of the n; mode which is thought to be a possible candidate
responsible for anomalous particle transport in Tokamaks?'. Since the n; mode is essentially
electrostatic, the basic wave equation is the equation of quasineutrality. Perturbed density
can be readily calculated from Eq.(52). We begin with the first term on the r.h.s which

leads to the renormalized linear ion response (G, is the renormalized propagator)
61" = —(en/T)bi [1 = (1 = Wi /w)To(bs) — (wli/w)b{Ti(bs) = To(bi)] = 5(R)]  (59)
where

Gy = (wh/w—1)To(b:)[1 + ¢Z(Q)]

+ (Wi /@) {(C+¢22(0) - 2(¢)/2)CTo(5:) + [1 + {Z(OIbiITa(5:) — To(B)]} (60)
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Z is the plasma dispersion functions, I',(b) = exp(—b)I'y(b),I'x(b) is the modified Bessel
function, and b; = k;?p?/2. Notice that the argument of the Z-function

¢ =(w+ilr)/ ki = E-{- il"k/k”'vi

contains the effects of renormalization (frequency broadening and shift). Since the electron
response for the 7; mode is adiabatic (5n§f) = epy /Te) a nonlinear dispersion relation is
obtained by equating 6n§:) = e/ Te. The solution (of the nonlinear dispresion relation) at
marginal stability implies a saturation frequency broadening which can be associated with
the transport coefficients. At this level, the result has no contribution from the incoher-
ent part, particularly, the three wave interaction. Since longer perpendicular wavelength
(kLp; < 1) modes cause a larger transport, while the shorter wavelengths (kip; >~ 1)
modes are more easily destabilized (due to finite ion Larmor radius effects), it is important
to examine the three wave interaction processes which can carry energy from the shorter
to the longer wavelength part of the spectrum.

Let k;, and ky, be the two short wavelength modes which produce a long wave length
(small k) beat wave k. This process will be mediated by the term Eo(kl, ky) given by
Eq.(54). Straight-forward algebra leads to the nonlinear perturbed density (the density
characterized by k, driven by the interaction of waves k1, and k2 J_)A corresponding to the
second term on the right-hand side of Eq.(50),

0" = i(c/Bu)(en/T) Y. (ky xky)-b

ki+ko=k
{184(2) {sen(t) Z(¢) — sgn(kay) Z(C2) b — wiz(2)To(b:){sgn (k)W (()

— sgn(ka )W (C2) )/ [y (w + iTh,) — k(w2 + iTh,)]

—(1 = 2)}6r, 6, (61)

where
0@2) = [w — win(2)ITo(b:) + wiz(2)bi[To(b:) — T1(b:)] (62)
W) = CL+¢2(01-2(0)/2 (63)

which, incidentally, is just the term > ; ip,—x €@(ky, ky)60r, 61, in the nonlinear wave

equation Eq.(24). In a similar manner, we can evaluate 5n§cn'£)” which corresponds to the
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third term on the right-hand side of Eq.(52), and is naturally divided into the coherent
and the incoherent part. As expected these terms are nothing but the appropriate explicit
expressions for the terms in the nonlinear wave Eq.(24); the coherent part is determined
by €®(ky, k, —k;), and the incoherent part by €®)(k;, k2, k3). Further manipulation of these
equations will depend upon the detailed physics of the n; mode, and are not relevant for

this paper.

C. Transport Equations in Gyrokinetic Theory:

Several of the recent candidates for causing turbulent transport in Tokamaks are modes
which depend on finite larmor radius effects. In this section, we derive the transport theory
relevant for these modes. We begin with the (for simplicity, the drift frequency wy has been

neglected) collisonless gyro-kinetic equation®?
[0/8t +vjb -V — Q8/8a]f = —q(SRf) (64)
with
SR = —Véi - [v9/OH + (v./B)8/0u — (v x b/mv,2)8/da] — (V63 x b/m€) -V, (65)

and where V acts on the guiding center motion, and « is the gyroangle. Ensemble averaging

Eq.(64), we obtain
(8/0t+vyb-V —Q8/00)F = ¢(V¥-[v0/0H + (vi/B)0/0p
— (v x b/mw,%)8/0a + (mQ) b x V]6f)  (66)

where F' = (f) is the ensemble averaged distribution function; §f[(6 f) = 0] is the perturbed
or the fluctuating part. From the point of view of transport, the quantity of basic physical

interest is the gyroaveraged distribution function (F)_ = ((f)), which obeys
(8/0t +vb- V) (F), = q(vjb-V(5y),(8/0H)sfo)

+ (¢/mQ) ((V8y),, - b x V6ho) (67)
which is obtained by gyroaveraging Eq.(66), and where 6ho satisfies the nonlinear equation
(8/8t +vyb- V)6ho = g[(8F/0H)iw + (mQ)~'b x VEFy - V]

[(69) o + (c/ B)b x Vb - V (6¢),] (68)
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Notice that we have not yet specified the nature of ensemble averaging; a convenient
ensemble will be defined later. We shall also show that the second term on the right-hand
side of Eq.(68) is the diffusion term (the first term is clearly the power term). The analysis
becomes much more perspicuous in the Fourier representation in which the aforementioned
term takes the form |
(Vép),, - bx Véhy =V - [(Vé), X bbho] =V - kzkj i(ky X )8y, Jo(krivs /Q)8he, (69)
1,k
The ensemble is now so chosen that the ensemble averaging implies k; + k; = 0, ie.,
one chooses only those modes which have equal and opposite four momenta. The op-
erator V outside the summation over Fourier component acts only on the macroscopic
quantities contained in the summation (these quantities are D.C., and hence not Fourier
transformed). Equation (69) becomes
(Vo) bx Voho) =V 37 i(ky x b)8tby, Jo(kr1v1/Q)8hs, (70)
. k1+k2=0
At this stage, we go back and apply the standard renormalizing procedure to Eq.(68)

and obtain the linear response
ki = —Gra{(0Fp/0H)w + (m€)™*b x VFy - by }o(kLv1 /Q)6%s (71)

where Gy is the renormalized propagator [Eq.(56)]. The nonlinear power term (the first
term on the right hand side of Eq.(68)) is associated with transport in velocity space
and will not be investigated in this paper. Substituting Egs.(70), (71) into Eq.(68), and
integrating over v, , we obtain

(8/0t + b VFo(vy) = V-(c/BPIm Y (k1 x b)Gi, (k2 x b)

k1+ko=0
- [V Fo(o))To(6*k21/2) {8pa, 8357 ) + .. (72)

" The transport equations can be built up by taking various v moments of Eq.(72); the
associated transport coefficient can also be readily identified. In particular, the energy

transport coefficient is associated with the term (from the second moment)

V. (c¢/B)*Im zk:(k « B)To(p?k.?/2)(k X B) - m/:o doyv* GV Fo(v)) <6¢k5¢,’5> (73)

21




where FO(;UI!) = (/mvo) " exp(—v)?/vg) is the one dimensional Maxwellian. From Eq.(72)
we see that the turbulent transport coefficient can be written in the familiar form DS_T) ~
(6v,)*1,, where v is the perturbed perpendicular velocity induced by the fluctuations,
and 7, is the shortest correlation times. Several general properties of the diffusion coeffi-
cient are easily gleaned from Eq.(72):

1) Larmor radius effects cause the diffusion coefficient to be suppressed by the factor
To(b = k3 p?/2) = Io(b) exp(—b) ~ b~2(b — o),

2) In the expression for the diffusion coefficient there are two competing time scales [pro-
vided w is small so that w™ > 7] (k)" and I'y' = (k3 D,)™?; their origin is in the
renormalized propagator G ~ (w — kv +iI'x)™". Thus 7, will equal the shorter of these
times, (kjvo)~" if kyvo > k. 2D, and k2D, if k 2Dy > ko,

3) It is possible to obtain the ratio of electron to ion turbulent transport coeflicient
(R= 1“55) / 1",(:) although neither of these can be evaluated without knowing the saturation
fluctuation level which, of course, requires the complete solution of the nonlinear problem.
As an example, we work out the ratio R for the energy transport caused by kinetic elec-
trostatic drift waves which are characterized by the inequality kjv; < w < kjve. For the
regime kjve > l",(:), kv < l",(j), it is straightforward to evaluate 7(8) ~ (7/2/kyv.)(w/kyve)?,
and 70 =Ty II‘g) /(w? + (I‘§j))2) leading to the ratio between the transport coefficients

Rmwufxim 00 = s () 2 (74)
o/ =700 = Ty k) TO

Notice that R < 1 because for the drift waves k) p, ~ 1 and w < kjv.. The conclusion R < 1
does not change even if the other limit (kv < I’;ce)) were examined. This conclusion seems
to be in direct conflict with the tokamak experiments where R = x./x; > 1. It is thus
difficult to believe that the electrostatic drift wave could be responsible for the observed

anomalous electron transport in tokamaks.

VI Summary and Discussion

In this paper, we have made use of the general methodology of renormalized perturbation
theory (Ref.1) to deal with a variety of problems of interest to plasma physics.

We first investigated the much studied Vlasov-Poisson system to compare and con-
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trast our approach with DIA (Direct Interaction Approximation) and with the theory of
Dupree and Tetrault. It was remarked earlier that DIAC with diffusive approximation was
equivalent to Dupree-Tetrault. Both of these theories are equivalent to our perturbation
theory to second order provided the incoherent terms, (even in the first order) present in
our theory, are neglected. ‘The reason for equivalence is that the incoherent terms do not
contribute to energy up to this order in perturbation.

Since DIAC with diffusive approximation neglects incoherent terms in DIA (though
it keeps the polarization terms), it cannot have the correct weak turbulence limit; the
three wave interaction and nonlinear scattering is neglected both in DIAC and in Dupree-
Tetrault. In fact DIA has not yielded any significant practical results beyond DIAC with
diffusive approximation; it has not been possible, for example, to prove energy conservation
in electrostatic drift waves beyond second order, or to derive correct weak turbulence
equations. _

The incoherent term was studied non-perturbatively by Dupree in his clump theory”;
and if the incoherent term is properly treafed in Dupree’s perturbation theory, the correct
weak turbulence limit should follow. Thus the failure of Dupree’s theory to give the correct
weak turbulence limit must be attributed to a mismatched perturbation theory and not
due to a faulty iteration procedure!?.

Our perturbation theory, on the other hand, is a properly matched perturbation theory
with an unambiguous difinition of ‘order’ which allows us to retain all the relevant terms
(including the incoherent terms) to a particular order. As a result, we can routinely
reproduce all the appropriate weak turbulence expressions as limiting cases of our theory
(Secs. II and III). The perturbative nature of the theory allows us to do a whole variety of
calculations (like proving the energy conservation in electrostatic drift waves to all orders
in Sec.IV) not accessible to non-perturbative schemes. |

It should be pointed out that our perturbation theory is quite different from DIA;
the propagators in the two theories are different even in the lowest non-trivial order (the
polarization term is included in the DIA propagator).

In addition to showing the usefulness of our approach to standard problems like Vlasov-
Poisson turbulence, we have also applied it successfully to derive the relevant equations

for a gyro-kinetic system, i.e., the nonlinear coupled wave equations and the equations
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of transport of particle, energy etc. By comparing expressions for the ion and electron

fluctuation induced transport, we show that it is difficult to believe that electrostatic drift

waves could be responsible for anomalous electron transport in low 3 tokamaks.
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