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Abstract

It has been suggested that the recently observed fast sawtooth crashes are caused
by a low-shear, pressure-driven ideal instability. This hypothesis is investigated, us-
ing asymptotic methods to solve the toroidal mode equations for a class of equilibria.
characterized by a low-shear central region in which ¢ — 1 is small, separated from the
wall by a region with finite shear. A dispersion relation which differs significantly from
previous results is obtained. An explicit expression for the growth rate is given for a

model ¢ profile.



I. Introduction

The appropriateness of the Kadomtsev reconnection model for the description of the dié-
ruptive phase of sawtooth oscillations has been challenged by observations on JET.! First,
the sawtooth collapses are too rapid to be accounted for on the basis of this model; fur-
thermore, the observed flow is cha,rz}cterized by a cellular convection pattern, as opposed
to the rigid displacement predicted by conventional kink-tearing mode theory.

Wesson has suggested that these observations could be explained, assuming a low-shear
central region, by an ideal quasi-interchange mode with poloidal mode number m = 1.23
Elementary considerations based on the cylindrical tokamak model and the toroidal sta-
bility analysis of Bussac et al.*® lend support to this thesis. "However, the cylindrical
model cannot be relied on to draw conclusions regarding fixed-boundary instabilities in
tokamaks.® The finite-shear analysis of Bussac et al. is also inadequate for the small val-
ues of shear and |¢ — 1| needed to allow instability at the observed values of the pressure
gradient. Here ¢ is the tokamak safety factor.

In this article we investigate the stability of Shafranov equilibria containing a central
region with low shear and ¢ ~ 1. After reviewing the cylindrical results, we develop
in Sec. II the general second-order energy expansion for arbitrary shear and discuss the
various limiting cases. In Sec. III we solve the mode equations énd derive the dispersion

relation for the low-shear quasi-interchange mode.

II. Cylindrical Model

The difference between the kink instability for a sheared equilibrium and the corresponding
quasi-interchange instability of low shear equilibria can be illustrated by the cylindrical
tokamak model. The potential energy per unit length of a perturbation with poloidal mode

number m and toroidal wavelength k, = n/R, can be expanded for large wavelengths



(e=ka<k1)as

§W = 6Wo+ W, +0 (), (1)

Wy = w/rdr(’—“;f)z) {r2 (%)2+(m2—1)§2}, (2) -

where
By 1

(k- B) = k. B,(mpu — 1), H= %,rB, = ;’l; (3)

The lowest order term in the expansion, §Wy, is non-negative, reflecting the stabilizing
effect of field-line bending. Instability requires (mu—1) ~ € somewhere within the plasma.
For sheared equilibria, such that r%ﬁi ~ 1, this can only occur in a singular layer of width
6 ~ ¢/p (Fig. 1). The m = 1 mode is then constrained by the line-bending term to take
the form of a rigid displacement, with the return flow taking place in the singular: layer.
This is the conventional m = 1 kink instability.” The m # 1 modes are strongly stabilized.

As the shear is reduced, however, the layer width grows until it eventually includes the
entire core (Fig. 2). In the resulting low-shear |mu—1| < 1 region the line bending energy is
of the same order as the e?-order pressure-gradient driving term. The “quasi-interchange”
instabilities associated with such equilibria will thus have continuous eigen-displacements
distinct from the rigid displacement characteristic of the kink mode: The m s 1 modes
are no longer strongly stabilized but the m = 1 mode will always be the first to reach
criticality.®

The cylindrical mode equation can be solved in the case of a parabolic pressure profile
(p=po-[1—(r/a)?]) and a constant g profile (¢ = ¢o).° Assuming ¢ < 1, f = %gL ~ €,
to = 1/ngo such that |mpe — 1| < 1, one finds that

E(r) = %m(/ﬁr/a) (4)

2 4]"3“2 IBP + (m/‘LO — 1) (5) ’
m? 42 4 (mpo — 1)




where J,, is the mth Bessel function, 4 is the normalized growth rate
6’ = VT4, T4 = (kz'UA)—l )

and f, = -g:ra, By, = By(a) where a is the wall radius. The growth rate is determined by

imposing appropriate boundary conditions. We consider two cases:
(i) ¢ is constant throughout the plasma. The boundary condition is then &(a) = 0.

(ii) The constant g region is separated from the wall by a sheared region. In the sheared

region the mode equation can be written

d—(f" {(m/,b - 1)2r3%} — (m2 - 1) (mp — 1)%r¢ =0 (62) . (6)
The displacement must satisfy {(a) = 0 and must remain of order one as (mu—1) —
€ in the low shear region. It is generally not possible to satisfy both conditions
simultaneously in the lowest order due to the singularity in the mode equation for
mu — 1 = 0. We therefore conclude that £(r) ~ € in the sheared region. Assuming
that the transition between the constant-¢ region and the sheared region is sharp,

we may then deduce the growth rate by imposing the boundary condition £ (ry) =0,

where ry is the transition radius.

The growth rate for both of these cases can be written

o Ak 2
= s (B + (mpao — 1)] = (mpso - 1), (")

It rer
where # = a in Case (i) and # = ry in Case (ii). Here j,, », is the n,th radial node of the

Bessel function J,, (7).

Im (Jmme) =0, J11=3.83.

We emphasize that these results are for a compressible plasma.® The various terms can

be identified as the pressure-gradient driving term, a parallel current driving term, and



the stabilizing line-bending term. We can distinguish two possible orderings for 8, and
(mpo — 1);

(i) For B, ~ 1 and (mpg—1) ~ € the current driving term in the bracket can be
neglected. The growth rate will be of order e, as distinguished from the kink mode

growth rate which is of order €2.

(ii) For B, ~ €® and (mpuo — 1) ~ € there will be a stabilizing contribution from the
parallel current term for ¢o > m/n. As we will see, the sign of this term is reversed

in toroidal geometry.

III. Toroidal Analysis

We now turn to the question of the stability of large aspect-ratio, low-beta tokamaks
with circular cross-sections. Toroidicity will weakly couple each poloidal harmonic to its
neighboring m + 1 sidebands. In this section we restrict our analysis to modes dominated
by the m = 1 poloidal harmonic and derive the appropriate mode equations for general
g profiles. We will depart from a previous derivation of these equations!® by working in
flux coordinates. The resulting equations are easier to analyze, particularly in the low
shear limit.

We define the equilibrium quantities as in Ref. 4 by B = V_icp x VF + T(F)ﬁcp, where
¢ is the azimuthal angle. The flux-based coordinate system is then defined by

2
B-V=£(1£+—a->, dT:g—rdrdega. (8)

0
The fluid displacement & is decomposed as follows: E = 5_; + £B/ B such that f-; . ﬁgo =0,
& = (T/To) &, Vr and & = (T/Tp) & - rV8. The total energy of the perturbation can now

be written

E = 6W,+6W,+ §Wy+4°N (9)



where

n”Bg 2 a_ P

N = S [#léPar, =L (10)
1 3 2 &\’

§Wy = §/Fp .§p+B.v<-§) dr (11)

19(r&) | 196 2
" or ' r o

2 T
sWy = éio/rdrdedgo{‘ﬁe (ggwé??%)Jrv (ar(&)—a—i)
v B [|§T|2r3d;( )w(a +——) s*+§e< 13) fr]

dp R* | [*r & | 96
i ROdF[r@r( qT )+T (68 +§96 )]} (13)

Here By = Ty/Ro and I''is the ratio of specific heats. The large aspect-ratio expansion

(12)

W, = —BzRo/ dr d6 dip ’

2

of the energy can be obtained by straightforward expansion of the coefficients in these
expressions. We define € by € = na/Ry so that the cylindrical model may be recovered by

taking the limit n — oo, € — k,a. The major radius is given by*!

R = Ry {1 - %po coswy — <£—>2 5(r)} , (14)
by = 1ot (-2-)2 [n(r) + v(r) cos 28] + O (%)3 (15)
wg = 6+ 5)\(9") sin 6 + (§>2u(r) sin26 + O (§>3 ) (16)

where we have rescaled r : r/a — r. The coefficient §(r) describes the eccentricity of the

(nearly circular) flux surfaces. Applying the definitions (8) one finds

o = - (24, )
n(r) = _g (5+f£-). (18)



The m = 2, e®-order coeflicients v(r) and u(r) will not be needed. §(r) is given by the

equilibrium (Grad-Shafranov) equation:

dfg(:) =oa(r) = (ﬂp(r) + %li(r)) o7,

where
2R3G® [ o dp(F) ..
Bo(r) = "~ B2rt o "R @
2q2 > f3
; = — P
(r) el A q2(ﬁ)dr

The following geometrical quantities are also needed:
o7 = 1-1(Sosmts (3 [+ 724
(Vr) =1 2(n>acos(9+(n 2a —|—4r + 61,
(rve? = 142 (E) (a+7)cosb
n
€\ [, 2 92,13 1 / 2
+ (;) [204 —|-4ra+zr +-§r a“+raa+ria +5] ,
(rvé.Vr) = <i—> [ra’ + o + r]sin 6.

Now the energy can be expressed as

FE = 6—25Wa + 5W0 + "')\/2N0 + §6WIT + 62 <6W2C + %5W2T> .

We next substitute the expansion

£= 32 e®(r) exp {i(mh ~ ng))

k=0 m

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

into (25) and minimize order by order. In the lowest orders, €2 and €°, we recover the

familiar cylindrical results
dir (7"67(,:‘2) + imﬁé’:ﬁ =0, k=0,1,Vm

and

2
n’Bj 2,4 5(1))
Wy = 5T /rdr(/.a— 1) (r B

6

(27)

(28)



where p = ;15. The identity of the energy expansions for cylindrical and toroidal geometries
up to this order justifies the use of the cylindrical model to draw conclusions as to the
nature of the possible instabilities. In particular the conclusion that the unstable modes
are characterized by rigidAshift displacements for sheared equilibria and cellular convection
flows within low shear regions is also valid in toroidal geometry. However, at this order the
appropriate displacements are only marginally stable: stability is ultimately determined
by the e’-term in the energy expansion. This implies that 4 is at most of order .

After eliminating 691 , (1), and é,%) with Eq. (27), the e*-order term can be expressed
as a functional of &, (0) §§) , 72 , §?, I(Ig)’ and 5”2 All of these variables except 552) and

§rz can be eliminated through algebraic minimizations. The results are:

Cing) = a(u- el {Stra’ 430t r) —ru} €9 (29)
—it) = —rzg; (6 = reD] =7 (r24) (1 — DEY
+%#2 [ro/+ (3-}-27"%,) r] reQ (30)
- Ij*_ﬂm {go) £9) } (312)
ind) = ﬁ%%z{ Dbl ow

where f = p/B32. Minimization with respect to the remaining two variables finally yields

the two coupled second order differential equations.'®

[P L+ D) -6P] e = cWed) (322)
L2§(1) — 0(1)16(0) (32b)

Here the operators L,, are the line-bending operators, T' is the kinetic energy operator,

C®) is the toroidal coupling operator, and Gy is the driving term containing the cylindrical
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coefficient ¢, as well as toroidal corrections. CM* is the operator adjoint to C®), defined

by
/01 dr f(r)C(l) [g(m)] = /01 dr g(r)cf(l)T [F()].

Explicitly,

= g { (=) PR - (o)

The general expression for C1 is

w0t = (u-g) e { - 0B+ {u- D

1
2

- D] - - D)

- = (N - %) (p—1)(ra' —3a+3r) — %,u(roz' +3a — 7")}7"262—31

(33)

(34)

(35)

where we note that the coefficient of ¢; is simply —Las(a + 7/2). For ¢ — 1 ~ ¢, the kinetic

energy operator can be written

Tfl — i{AAZCT dfl} Azrz'c%(p,f)ﬁh

where

PV +(1+2n2)I'p
P+ I8 '

¢ =
When 42 < I'8, p = 1, this expression reduces to
_ d 2\ 2,396
T4 = dr{(1+n2>7 " [

The operator G can be written

G = <1_-7‘L—2>GC+§GT’

Gotr = - {u-1rr 22 {(r8) + (o= D+ 9} &

(36)

(37)

(38)



+ {S-0r (6, -1) } &, (39)

where the last (total derivative) coefficient of ¢, arises from our definition of £, = (T'/Tp) &

-

Vr; _
d d 1\2 2 2
ort = {0 { (-2 [ ) e (4]
5 3 !
+ ( 2 - 1) %— +7 (9"2042 r3a) }51
d
R w
where
a? 1,
v o= z [3rozo/+3oz2 + 5ra+3r2] + 1 [ 204 (B, — 1)]’ (42)
4 or (M P
1 / 2
w o= 7 [raa + 3a —ra]. (43)

Three asymptotic cases can now be distinguished, according to the ordering of ¢ — 1

and r%‘l:
Yl

(i) r% ~ g—1~ 1 except in a singular layer of width € where ¢ — 1 ~ €2. This “finite
shear” case was treated by Bussac et al.* for monotone ¢ profiles and recently ex-
tended to more complicated profiles by Hastie et al.’® The operators in Eqs. (35)—(43)

have been written in such a way that one can easily recover these results.

(ii) 7% ~ g~ 1 ~ e. In this “low shear” ordering we recover the equations of Ware and
Haas.'® The instability is pressure-driven, including the Jj| contribution arising from

the nonzero divergence of j; (Pfirsch-Schliiter current).*

(iii) r% ~g—1n~ €, B, ~ e For this “very low shear” ordering there appears an

additional driving term due to the divergenceless part of j.1*



The free boundary stability problem for the “low shear” and “very low shear” cases was
studied by Frieman et al.,® who corrected a small error in the coefficient of the current
driving term reported in Ref. 14. Their analysis was restricted to constant ¢ profiles. We
present the first complete fixed boundary stability analysis of the “low shear” case for

general ¢ profiles.

IV. Solution of the Mode Equations

For the cases of low or very low shear the mode equations can be written
d [ - 2 < 2) Az] 396
dr {E [(,u—l) + 1+n2 T
1
(1= 2) {8+ 48) + (s + 8~ D} 6
4 r o, 2 13 3 1/r , d 3
ne { (Zﬁp + ﬂp) + 1‘6'(# - 1)} roéy = (Zﬂp + 519) o (1‘ 62) (44a)

L) vem ot ((men)e).

- We first remark that the cylindrical equations are recovered in the limit n — oo. Setting

n = 1 we integrate the second equation, assuming £; and ¢; are bounded at the origin:

b=~ [ 78,5 1 o - (] (452)
where e is an integration constant. Thus (44a) becomes
dii {6—2 (s — 1)% + 34?] 7'3%} f’( —1)rd = i {er4ﬂp} (45D)

In order to determine e we now specialize to the moderately low shear case for which
the current-driving term, proportional to (¢ — 1), can be dropped. Equation (45b) is then

easily integrated:

dé e2er B3, '
dr ~ (u-1P+ 35 (46)
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As in the cylindrical case we now consider two possibilities for the boundary conditions.
In the first case we assume that the low shear assumptions are satisfied throughout the
entire plasma. The appropriate boundary conditions are then £(1) = €3(1) = 0. This

leads to

rord (eﬂp)z ‘
b 337 (4 1)2d7" (47)

which can only be satisfied by 42 < 0. We conclude that in the absence of shear the mode

1=—

is stable. This is due to the stabilizing influence of the m = 2 harmonic which is driven
off-resonance by the m = 1 mode. |

In the second case the low shear central region is separated from the wall by a sheared
region. We will solve the mode equatibns by matching the solution in the inner (low shear)
region to the solution in the outer (sheared) region. In practical terms this procedure can
be expected to yield good results when the transition is sufficiently abrupt. In the sheared
region (u — 1) ~ 1'but { ~ €. Retaining terms of order €, we obtain from (32b) the

following outer equation for &;:

szzﬁji{( —%>2r3‘%}_ ( —%)zr&:o. (48)

With the boundary condition (1) = 0 if ¢(1) < 2 or {; bounded as r — ry for g(rs) = 2.

The asymptotic form of the solution to this equation in the low shear region is

o~ (5) o)

The constant ¢ is determined by integrating (48) through the outer region. The dispersion
relation is now determined by matching this asymptotic solution to the corresponding

asymptotic form of the inner region solution in the outer region:

7= (%2)2 oa 3&2’( efp((,:)—) 1)2 (%>5d <r%> ’ (50)

where we have restored the dimensions. Note that the integrand becomes negligible in the
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sheared region. Equation (50), in which o is implicitly determined by Eqgs. (48) and (49),
gives the general dispersion relation for the quasi-interchange instability at low shear.

To obtain an explicit dispersion relation, we use the model safety factor profile u =
=+ (;1,0 - %) [1 - (r/rg)”‘], for which Eq. (48) is a hypergeometric equation. When ry < a,
the constant o can be determined from the linear transformation formulas'® between the
fundamental solutions at the two singular points r = 0 and r = r,, provided A > 2. For

large A the result can be written

=3 ®

with an error less than 5% for A > 3. In order to calculate the integral in Eq. (50) we use
the pressure profile p(r) = po [l — (r/a)?]. Near marginal stability ("72 < |po — 1|2), this

integral can be evaluated asymptotically for |ug — 1| < 1. One finds
¥ = B{K(e8n)" (40— 1)} +0 [(no—1)*], (52)

where

K = o (2) () Y (53)

E = [B1-¢/3)(1-¢/2)]7 (54)
¢ = v+1)/A

1— 1/2X
™ = 7'2( ,Lé:?)
Ho =3

Bon = PBp(r1).

17,18

Equation (52) is in good agreement with numerical results, allowing for corrections

related to the current-driving term. An estimate of the error made in neglecting that

term can be obtained from the zero pressure, constant g solution®: &, = %Jl(/sr) with

K2 = —B(u - 1)[3%* + (u— 1)?]7*. Taking & (r;) = 0, one finds 4% = (u — 1) (e — 1),

2
where p. =1 — -1433% (%‘-) . The current term is thus destabilizing for ¢ > 1.

12



We emphasize that Eqs. (52)-(54) apply only to nearly marginal conditions. However,
for the particular case po = 1, our model profile also allows a calculation of the growth
rate far from marginality. By integrating Eq. (50) in this case one finds

= 5 [ (2) e 3o (30) ®

where fB,2 = f,(r2). Thus, in the flat current profile limit (A > v), the growth rate scaling
is similar to that near marginal stability (5/2 ~ ( eﬂpz)z) . However, for more rounded current
profiles (¢ S 1) we find a different scaling, leading to a reduced growth rate away from
marginal stability (e.g., for A\=3, v =1, ¥ ~ (ef,2)°).

We conclude this section by looking at the “low-shear” n # 1 modes. Although these
modes remain stable when the m = n = 1 mode reaches criticality, they will be important
during the nonlinear development of the instability. The mode equations for general m, n

arel3'15:

2

€2 (L +Tn)bm — . P {% (rﬂ,’, +4ﬂp)2 + (1 — %) (’rﬁ; 4 4ﬂp) } 3¢,

n%m
— 1 S1Fm (T’ﬂl + 4:/3 ) _d_ (r2im£ N ) (56&)
~ 2nm2(1+m) » P} dr maEl
Lypt1lmt1 = E%lil:—m)? {C% (r?’d%;ﬂ) — [(m +1) — 1] Tfmﬂﬂ}
= L n (g g i, ), (56D)

2m?(1£m)  dr

The sideband equations may again be integrated:
NEmas = —%(1 + m)r~(4m) /0 dr (7B, + 4B,) 5™ + exr™*1 7, (57a)

leaving a decoupled main-harmonic equation:
d m2\ 42 1\?] sdén
5{[(”%7)5* (+=5) ] ar

13



_¢ (1 _ ﬁi) 2 (48) b= St (ap) 1 (s7h)

We solve Eq. (57b) for constant u = po ~ 1, m = n, and 8, = for* 2. After imposing
the boundary condition £, (r1) = 0 at the transition radius r; between the low-shear and

finite-shear regions, one finds

€\ ? v+41 € :3 v v\ ,.m—
€n(r) = (E) 2v(v +m) 347 +Elo_ 1)2 (r2 —rl )7” L (58)

The dispersion relation is then obtained by matching the solution for £, given in (57a)

to the low-shear limit of the outer equations:

e -
We find |
3 =B |Kn Gﬂp)z - (% - 1) 2} , (60)
where B = 1/3,
Ko = 4im (z(/y++n3))§((21v++mwz) G%) . (%>2 (61)

The value of o, calculated for our model ¢ profile is

m m-+1 1
m= s - 40 (55)] (62

From the large m behavior of K,

}

we see that the growth rate at resonance (go = 1) for toroidal geometry will decrease much

K, ~m™2exp {—2m ’111 <T—1>
T2

faster for large values of m than the corresponding cylindrical result. We note that the

presence of the sheared region is also necessary for instability with n £ 1.
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V. Conclusion

We have re-examined the stability of m = 1 modes in a low-beta tokamak, allowing for
relatively weak magnetic shear. Our formalism is sufficiently general to allow previous
results*>12-15 t0 be recovered in appropriate limits. However, in the weak shear, |[¢—1] < 1
case we obtain a novel growth rate, given in general by Eq. (50), and more explicitly, for
a model profile, by Eq. (52). The new quasi-interchange instability displays no threshold
with regard to the poloidal beta. The scaling of its growth rate (¥ ~ €f, for flat current
profiles) and its continuous, cellular-convection type of flow set it sharply apart from the
usual kink mode (ﬁ/ ~ (eﬂp)z). The quasi-interchange mode does, nonetheless, share some
features with the kink mode, such as a sensitivity to the location of the ¢ = 2 surface. Our
analysis differs in this respect from that of Ramos'® for noncircular tokamaks in which the
sidebands as well as the principal harmonic were assumed to vanish outside the low-shear
region. Numerical results for the noncircular case have also been obtained by Turnbull.??

The nature of the marginal stability condition is, however, the most important charac-
teristic of this model. Indeed, by requiring the pressure gradient to balance the line-bending
force at marginal stability, we have taken a significant step away from the traditional em-
phasis on ¢ profiles to determine critical stability. This trait distinguishes this model from
that of Denton et al.,® which is also based on a low-shear central region but which relies on
the line-bending term in a surrounding island to drive the instability. In Wesson’s model,?
therefore, the evolution of the pressure profile during the rise phase of the sawtooth be-
comes as important as the current diffusion. In particular, it is not clear in this model
why additional heating fails to shorten the sawtooth period. Another area for concern is
the failure of the theory to account for the suddenness of the onset of the instability. It is
hoped that this feature can be accounted for by a nonlinear analysis. In this respect we

0

have found that the linearized Reduced Magnetohydrodynamics equations?® are identical

15



to the full Magnetohydrodynamics equations in the ordering of Ware and Haas, except for
the neglect of parallel kinetic energy and the effects of compressibility.
After this work was completed we learned of a similar analysis by Hastie and Hender,

in which equivalent marginal stability criteria were obtained.?®
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Figure Captions

1. Radial eigendisplacement for a g-profile with ¢’ ~ 1 at the rational surface r = ry,

where ¢ (r;) = 1.

2. Radial eigendisplacement for a g-profile with a low shear central region such that

lg — 1] ~e.
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