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Abstract

The coupled drift-shear Alfvén mode including the complete Bessel function gyro-

- radius effect and the V B-curvature guiding center drift resonance of kinetic theory is

solved forA the toroidal ballooning mode eigenvalues and eigenfunctions. Comparisons
between nonlocal (ballooning) andﬂ local kinetic theory and between nonlocal fluid and
kinetic ﬂleory are made. The critical plasma pressure for kinetic ballooning mode in-
stability is only the same as the magnetohydrodynamic (MHD) theory critical pressure
Bmup for n; = 0. The critical kinetic theory plasma pressure B (7;) is well below
Bmup and the kinetic theory growth rate is unstable for all k. The MHD second sta-
bility region is also unstable in the kinetic theory. The kinetic theory growth rate is
a maximum around k < 0.3 — 0.5 for finite aspect ratio &, = r,/R. The effects of
trapped electrons are found to be weakly stabilizing both analytically and numerically,
and the instability is still signiﬁ.cant outside the ideal MHD stable window from the
ion magnetic drift resonances when 7; & 1. The kinetic growth rate is a function of

o . N
the six dimensionless parameters k, ¢*83, €n, s, 1, and 7 = T¢/T;.



I. Introduction

For finite beta, high temperature plasmas in tokamak confinement systems an accurate
description of the drift modes requires kinetic theory. The unstable wavenumber k; and
frequencies wy are such as to require the full Bessel function description of the ion gyromotion
and the Landau resonance of the V, B-curvature guiding center drift motion with the wave
frequency. The spatially local theory for the full electromagnetic kinetic dispersion relation
is given in Horton et al.? using an algorithm given by Similon et al.? to compute the kinetic
theory response functions called guiding center dispersion functions.

The eigenmodes wy, v of the local 3 x 3 electromagnetic kinetic theory matrix are shéwn
to have important differences from the corresponding modes described Wiffh hydrodynamic

theory.® Detailed comparisons in the dependence of v on B/8., €, and 5; are given' between

the kinetic and hydrodynamic descriptions. Here S, is defined as the local ideal magneto-

hydrodynamic (MHD) pressure limit 8 = 87 (p; + p.)/B? < B. for MHD stability [Eq. (62)
of Ref. 1], €, = rn/R (rn density gradient scale radius and R toroidal major radius), and
m; = dinT;(r)/dlnn;(r). The question addressed in the present work is the change in the
stability boundary and growth rate function with i'eslaect to the change from local modes to
toroidal eigenmodes calculated iﬁ the ballooning ﬁmde approximations.-

The present work is related to the work of Cheng,* Tang et al.,> Andersson and Weiland,®
and Dominguez and Moore.” The present work extends these works by using a more precise
description of the ion kinetic response function valid for all w/wp; and kjp; and giving a
systematic study of the dependence of the growth rate on the five dimensionless parameters
k,¢*B,€n,s and n;. The work of Cheng* used the full kinetic equation, but emphasized the
stabilizing effects of the trapped electrons leading him to conclude that for a typical tokamak
aspect ratio, the critical beta can be improved by 40%.

The work of Tang et al.® uses the Rewoldt code® which includes electron and ion col-



lisional dissipation and the effects of ion transit and bounce frequency resonant effects. In
the Tang et al.® work, because of the complexity of the modal equations, a rather restricted
parametric variation is presented compared with that given in the present work. From stud-
ies of the growth rate for PDX,? Doublet III*° and ISX-B,!! Tang et al.® conclude that the
beta limit of ideal MHD must be viewed as a soft threshold condition with the plasma un-
stable below the ideal critical beta of MHD. Using an improved two fluid theory, Andersson
and Weiland® showed that a necessary and sufficient condition for an i11s1';ability of the MHD
branch below the MHD beta limit is the presence of an ion temperature gradient exceeding a
threshold. We simplify the problem using the standard circular flux surface model of toroidal
equilibrium in contrast to the Dominguez and Moore” study using the ¥, X flux coordinates
of the self-consistent MHD equilibrium. Their study emphasizes the comparisons between
two component fluid theory and MHD theory with their kinetic theory restricted to the small -
kyp; limit. The independent stability parameters arve taken from the ¥ variation of typical
Doublet III equilibria.
| The studies presented here show how the ideal ion kinetic theory plasma gives rise to
instability below the MHD stability threshold, and instability in the region of second stability
due to the presence of 7;. We also show analytically and numerically that the effects of
trapped electrons are weakly stabilizing,* and when 7; 2 1, the instability is still significant
outside of the ideal MHD stable window due to the ion magnetic drift resonances. The
variation of the kinetic theory growth rate with parameters also is significantly different from
the hydrodynamic growth rate. In particular, the kinetic growth rate is not a monotonically
decreasing function of £ as in ideal finite Larmor radius (FLR)-MHD theory. In the dynamics
described here the electron drift wave is a stable oscillation near wiye.
In the local electromagnetic dispersion felation there are five branches of oscillation at a
given k which when well separated in frequency are given by kjva, £kjc, and w,. or wy,

shown, for example, in Fig. 1 of Ref. 3. As the plasma parameters vary the drift modes couple




to the ion-acoustic modes when k| is large (k”cs ~ wy) and to the shear Alfvén wave when k)
is small (kjva ~ wy). Here we assume that f, = 2¢2/v} < 1. The variation of k| is produced
by the connection length ¢R of the magnetic field line and the shear s = r¢'/q = dlng/ dlnr
of the magnetic field. In early studies'>~'* the coupling of the drift modes to the ion-
acoustic modes is examined extensively in the ballooning mode approximation. We restrict
the present stability study to modes with v > v;/¢R so as to neglect the ion transit time and
ion acoustic wave effects. The effects of the ion acoustic coupling are reported elsewhere.*

The shear Alfvén wave-electron drift wave coupling problem®" is already difficult in the
kinetic theory. The present kinetic drift-shear Alfvén mode theory is difficult because of the
interaction of the v, dependence of the ion response with the extended poloidal ballooning
mode coordinate ¥ defined over [—oo,+oo]. Even for small ¥ = kyp, the perpendicular
wavenumber k) p, = k(1 + s?9%)%/2 increases to large values in the toroidal mode eigenfunc-
tion. In addition, the large k,p, = ks variation of the wavefunction couples to the geodesic
curvature to yield a large drift frequency |wp(9)| > wy for se,|?| > 1. Thus, the kinetic
ion response function P(k,w,?¥) = ((w — wu)J¢(kivy/we)/(w — wpi))y_p differs drastically
from either the small |wp/w| limit or the small |kiv, /w,| limit unless the wavefunction is
strongly localized. For typical parameters the eigenfunctions extend to |J| > 7 and the re-
sulting kinetic regime contributions from enhanced wp/w and ki p values appreciably lower
the critical pressure limit from the local value £, given in Ref. 1 (Eq. (62)). Above f. the
growth rate ; function is similar to that given by local kinetic theory with a broad maxi-
mum in k (Ref. 1, Figs. 5,6,8). The P(k,w,?) function is called @ in Dominguez and Moore”
where it is expanded in small & p; including terms of order (ky p;)*.

In Sec. IT the basic kinetic theory ballooning mode equation is given along with approxi-
mate analytic solutions given in two regimes. In Sec. III the results of the eigenvalue stability
analysis are given and compared with a simpler nonlocal, hydrodynamic theory and local

kinetic theory. We discuss the effects of n; and trapped electrons on the eigenmodes and



the stability boundary. In Sec. IV we give the conclusions. In the Appendix, we derive the

eigenmode equation with trapped electrons.

II. Drift-Shear Alfvén Ballooning Mode Equation .

In this work we follow the results and notation of Ref. 1 where possible. The results of
Ref. 1 indicate that for §/8, of order unity the effect of 6B is weak. Here we simplify the

representation of Ee~®* and §Be~™! to
E=-Vé+bb-Vy §B = i—V(E . V) x b. (1)

where iwA|/c = b - V4. Following the calculations of the currents and charge densities in

Refs. 1-3 we obtain from the condition of quasi—neutfa,lity
g+ =0 (2)

and the parallel component of Ampere’s law

b+ dip =0 ‘)
where
a(k,w,V) = —1+T(P_l)_[§§%z§a%1333%
and

2,,2
= _ py 0 0 We
Ak w,d) = g Vies ~ (-2
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The relevant frequencies are assumed to be between the transit frequencies of the ions and

electrons. The ion kinetic response functions P; are given by

/ dvFi(v (w tz> J2 (l”:”*> (4)

i-1 T m,vi A
/dVF w (L() Wi )771 ’U”Jg (kl?}_[_)

w tz)J T;. Wei

where Fi(v) = (27v?)73/2 exp(—v?/20?) with v = (T;/m;)Y/? and W% = wy[l + pi(v?/v? —
3/2)]. The eigeﬁmode equation with trapped electrons is derived in the Appendix.

After neglecting the ion acoustic coupling as discussed in Sec. I, Eq. (2) reduces to

A¢ = By (5)

and by adding Egs. (2) and (3) we obtain

Dy = C¢ | (6)

where

Alk,w,9) = =1 =74+ 7P(k,w, )

B(k,w) = —1+‘”*e (7

Wye

Clk,w,9) = 7[P(k,w,d) —1] —

= /)'UA 0 28 (.__w*pe)_w’i
Dlk,w,9) = w?q? R? 819“‘819 : w /) w’

Substituting Eq. (5) into Eq. (6) leads to the ballooning mode equation

g [ O] 4 gtk 09 =0 ®)
where
Qlk,w, ) = (W — wye) [w —wpe(¥) — T +L:_:L:_’;(19) (9)
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and

wj = vi/¢" R
The ¥ dependence of the functions in Eq. (7) is calculated in the ballooning mode approx-

imation®® where we assumed the circular concentric magnetic flux surfaces,
k3 (9) = k3(1+ s%9?)
wpe(V,8) = 2e,wie(cos? + s sind)
wopi(wd,of) = —wpe(8,9) (52 +of ) /262 (10)
If non-uniform shear model is used (s — o model),
kL (9) = k3 [1 + (89 — ozsinz?)z]

wpe(V,8) = 2enwye [cosV + (s¥ — asind) sin J] (11)

and

26, [+ 7me + (14 m:/7)]
w

In the text of this work we used Eq. (10) for simplicity unless otherwise specified.

To derive the analytic approximations to the eigenvalues we consider the hydrodynamic
limit of the ion kinetic integral P(k,w,d). Taking wp;/w and k, p; as small parameters in

Eq. (4) we obtain the ésymptotic expansion

i bwopi | Twhi
P~y + ay; (%l - b) + o (%bz _ 3bwni + Ztz) (12)

2 w 4 w?
where an; = 1 — (wii/w)(1 + nn;) and b = k% p?. Neglecting the second order terms b2,
bwp;/w and w,/w? and using the local approximation Eqgs. (5) and (6) reduce to Eq. (35) of
Ref. 3. The principal ballooniﬁg mode equation of Dominguez and Moore” [their Eq. (14)]

is obtained by neglecting b? and bwp;/w in Eq. (12). Further expansion of the denominator
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of the potential @ leads to equations of Tang, et al.'® [their Eq. (3.40)] and Hastie and
Hasketh'® (their Eq. (2.6)).
All frequencies are measured in units of ¢,/r, and the wavenumber ky in units of p, =

c(m;T.)"/?/eB. The dimensionless frequencies are then given by

[

Wee = k Wi = ——  wWpe = 2€,k(cos Y + 59 sin 9)
T .

" (2)1/25n L En
A = = — s = -
Be q q

€n = /R and 7 = T,/T;. The dimensionless complex frequency w [¢;/r,] is a function of
the six dimensionless parameters k, 8.q?, €5, s, 7; and 7 = T, /T;. |
The kinetic eigenvalue problem is given by Egs. (8)—(9) with the boundary condition

+oc0
that ¥(¥) — 0 as [J] — oo sufficiently rapidly for / [h|*d9 < co. In demanding finite
—00

/ :o [ [2d¥ we rule out the modes higlﬂy localized to the rational surface associated with
the Mercier criterion. Localized Mercier modes have ¥(9) — M + N/9 and thus (k2) =
k?s? (9%) — co. We would not expect such localized modes to be associated with drift wave
like anomalous transport since the linear value of v/ (k2) is negligible. The finite square
integrable condition on ¥(|¥] — o0) also ensures that the kinetic energy of the mode is finite.

The shear Alfvén drift mode wave functions extend into regions of large k; = k(1 +
32192)1/2 where the local ion density fluctuation becomes adiabatic 7i; = —ned/T; since
|P(kL > 1)| < 1. This adiabatic ion response gives a lower hybrid electromagnetic drift:
wave-like contribution to the dispersion relation. Since the bulk of [4(9)[? is typically in the
region |9 S 7 the adiabatic ion contribution is subdominant compared with the hydrody-

namic ion response. In the region of small k2 = £?(1+s%9?) and w # w,. the parallel electric

field is small; however, the parallel electric field is of order unity in the region of small |P|.




A. Analytic Ballooning Modes

Here we give approximate analytic formulas that explain several features of the numerical
results. The analytic results are obtained from the fluid limit of Eq. (9). Using Eq. (12),

Eq. (8) reduces to

d d
K (1 + 507 2+ Qo =0 (13)
where
/2, o
Q(k,w,9) = wpe[wse — wsi(1 4+ 1:)] + arw? B2 (1 4 s%9%) — wh, (1 31;*_6 + 7::2) .

In the limit of w,/w — 0, Eq. (13) reduces to the ideal MHD equation, Quhq = wpe[wse —
Wyi(L+m:)] + w?k?(1 + 29%) —wh, (l + {;) which is valid for w > w, and k£ < 1. The terms

proportional to wd, arise from the plasma compressibility and the FLR heat flux in fluid

equations, and provide additional stability compared with the low-frequency regime (valid:

for w < w,). We study Eq. (13) with the finite €,, w,; and the ion temperature gradient

effects.
With s = z and (9) = (1 + 22)~*/?¢(z), Eq. (13) transforms to
. Q(2) L
" _ —
v [k%i(l ey Sl o o R (14)
where

Qz) = K [26n (1 + ! '1;77i> (cos(z/s) + zsin(z/s))

1 i 2; Tevg
( + (1 + 22w <_C.Lﬁ i ) 4e {cos(z/s) + zsin(z/s)} ) ]
CQloe 4T
and we put &% = w?s?. Equation (14) is useful when s is not too small.
We first consider the ideal MED equation in low-frequency regime (w < w;).'® At marginal

stability the MHD eigenvalue depends on the combination of B.¢%, €, and 7 given by
2en(1+1/7) _ Be(1+ 1/7)¢*

w - En

(0%




The eigenvalue Eq. (14) reduces to .

—n - |afcos(z/s) + zsin(z/s)] 1 -
ot [ 1427 0+ zz)Z] o = 0. (15)

If s — @ model is employed,

. [[3 — “(;ff(z/sm _ aco;(gZ/S)} Jo=0, (16)

where
z\? -
=1+ <z — asin —-) and g = fibg.
3
The solutions of Eq. (16) for o = a(s) are the well known MHD ballooning beta limits
and given® as a; & s'/2 and ap 2 2.55Y2 for s ~a? <1 and a5 ~ 195 for s ~a R 1.
We approximate the effective potential

! Q(2)
Ver(2) = (1+22)?  R25(1+ 22)

as a well which has a local minimum at z = 2y, i.e.,

(2 —20)? d? |

(Z) eﬂ‘(Zo) + ) d 2 eﬂ‘(Z)

?
Z=20

then Eq. (14) becomes
- 1 : -
"~ [Via(zo) + 5V (20)(z = 20| = 0. (a7

Solution of Eq. (17) is ¥n(€) ~ H, exp(—£?/2) and eigenvalue condition is

W=

Vir(z0) = [v”( )] (2n +1) (18)

where zp is a solution of dVeg(z0)/dz = 0.
Using Eq. (14), we obtain

. Q(Zo) . 1
Ver(#0) = R203(1+28) (1+2)°

and

10



_ 20(0) = Q") +4) _ 40— )
I T (e

Vi (0)
The width of the mode is given by

sA) = Az = (VP () "

€,

and we require |k)c; /w‘ = ¢g,/(¢jw|AY) < 1 for consistency.
We divide the parameter space with the two regimes by &% < 0.2 and @4 > 0.2.
In the first regime @% < 0.2, the minimum is at 2o ~ 0 and the condition of Re [K(ﬂz)(O)] >

0 gives €, < 0.2, so that w%, terms are not important. Neglecting the right-hand side of

Eq. (18), we obtain from V.g(0) = 0, the eigenvalue as

wﬁo) = —(1+mn)k/2r ' ' (19)
and
1 ; Y 1 ; 2k.2 1/2 )
0 = [ (14 1E0) gy - ] -

The growth rate 71(50) is the same as given by local theory with &k = s/¢R and ¥ = 0.
Eq. (20) shows that the finite Larmor radius effects are stabilizing. Following our earlier
local theory analysis we define the local MHD critical beta 8. below which the hydrodynamic
growth rate vanishes in the £ — 0 limit. Including the temperature gradient parameters the

general result (Eq. (43) of Ref. 3) is

GMHD _ el +1/r) a:25” (1'{"775"'#) — B/ gMHD
’ 1 + e + =] wi ¢

In the present work we consider only 7, = 0 for simplicity. Solution (19)-(20) shows that the
growth rate increases as ./, for given values of § and s and that increasing shear weakly
reduces the growth rate for given values of # and €,. Equation (20) also shows that to have

an unstable root ¢, should have a small but finite value.
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In the second case of &% > 0.2, the minimum of V,g(z) occurs at zo ~ ws/2 where
En, $ have larger values compared with the first case, so that the w}, terms cannot be
neglected. For these parameter values, the condition Re [K(f?)(zo)] > 0 is well satisfied up
to &, ~ 0.5. We solve the eigenvalue equation by treating the w?, terms as a perturbation.

With w = w® + Aw and from Vig(2) = 0, we obtain

T 27
~y 1/2
14 o w
PO R R S o
k 1+ %sz ' 472
and )
2 _92 9 w + 1+77ik. 2 .
Aw= 2T (o L> +—7—(wO+l+ %)
2 (1 + T) wg wp — 4T T

The sign of Aw is negative when |w.,;/w| < 1 and gives a stabilizing effect: when |wpi/w] >1,
the wd, terms change sign from stabilizing to destabilizing. In this regime ®3 > 0.2 or
B S 1062 /¢ the geodesic component of the toroidal curvature is the dominant driviné
mechanism. The line bending stabilization from ©% is reduced to @4 — ®%/(1 + 72s%/4) by
the broader spread Av of the wave function. When |w.i/w| < 1, Eq. (21) shows that there
is an upper boundary for &,, above which the plasma is stable. The critical €, for stability is
a function of s. For s ~ 1, the upper boundary for &, is 0.25, and for s ~ 0.5 it is 0.3. From
this we can see that the role of shear is stabilizing by making the stabilizing perpendicular
compression of the plasma dominant over the interchange energy release in the parameter

range &, > €,(3).
B. Numerical Analysis of the Ballooning Modes

The ballooning mode Eqgs. (8)-(9) and Eq. (A13) in the Appendix with trapped electrons are
solved numerically using the standard shooting method. The boundary condition is that the

+oo
wave function vanish sufficiently rapidly as |J| — oo so that / [%|?d¥ < co. In solving
—oo

12



the complete eigenmode equation given in Eq. (A13), we take into account the energy and

the velocity space pitch angle dependence of the bounce averaged electron drift frequency
9o
/ T WDe
_ J=% oy
De — /190 g
—do |'U“|

where —Jp and 9y are the nearest turning points. The details of the derivations are given in

the Appendix.

ITI. Stability Properties

First we show the spectrum of unstable oscillations as a function of kgps = k for typical
MHD unstable tokamak parameters in Fig. 1. We choose ¢, = .25, s =1, ¢ = 2,7 = 1,
a = /B, = 1.0 and 2.0 where 8, = €,/¢* = 0.0625 which are the same parameters used:in
Ref. 1 (note 7; = 5. = 0 only in Fig. 5b of Ref. 1). For direct comparison we repeat here
the local kinetic theory growth rate computed with &y = 1/¢R (= s/qR for s = 1) for the
B/B. = 2.0 case given by the dashed line.

Considering the /8. = 2 mode in Fig. 1 we observe that the frequency is almost disper-
sionless with a speed w/k & —0.3[c,p, /7] in the ion diamagnetic direction. Thus, the mode
resonates wy = wp;(v?) with ions near one-half the thermal energy since E, /T; = —w/2ke, =
0.6. Only for &, — 0 is the resonance restricted to the high energy ions. The growth rate
increases linearly for k£ S 0.25 and has a broad maximum at & 2~ 0.5.

In Fig. 2 we sliovv the n; = 2 spectrum of oscillations for o = /8, = 1 and 2, which
is to be compared with the 7; = 0 spectrum in Fig. 1. At 8 = B, the maximum growth
rate increases by a factor of 3 in going from 7; = 0 to 7; = 2, but at small k the growth
rate still vanishes linearly with k. For f = 28; and 7; = 2 the growth rate finally shows
the FLR-MHD behavior of v(k = 0) — 4, = const. This same condition that n; > n&* (of

order one) be satisfied before the £ — 0 growth rate approaches a constant was found in

13



local kinetic theory Ref. 1, Fig. 5.

Now we fix the wavenumber k in the region of maximum growth rate and vary the plasma
pressure. In Fig.. 3(a) we give the growth rate from ballooning kinetic theory Eq. (8) and the
ideal MHD ballooning mode Eq. (15). The kinetic threshold beta is given by fx = 0.0374
or a, = 0.6. Thus, the ballooning mode has a substantially lower threshold than the local
approximation due to the destabilizing geodesic component of the toroidal drift frequency
wp(¥). In Fig. 3(b) we did the same calculation with so-called “s — o model”.?! The second
stability region appears for large a, =~ 2.65 values. The stabilizing effect of trapped electrons
is also shown by solving Eq. (A13) derived in the Appendix with the pitch angle dependence
correctly treating. The relative shift in dc is 33% for the first stability boundary and 14%
for the second stability boundary.

For analytic analysis of the effects of trapped electrons, we use G (k) + sGa (&) ~ 0.5, for
®pe in Eq. (A5) which is a good approximation for s ~ 1 or deeply trapped particles, and

use a fluid expansion, then we obtain

wy d 2 d b+ Wpe(Wapi — Wape) B ki (1 B w*pi) 4 ﬁ (i oy - Cl'liCUle)
w

w2 dY L dd w? w? \4r Qe
2
Whe [Q1e , 15 .
+ B 2 | 2 (s —B0na) + 7 ane| (b =0, (22)

The last term of Eq. (22) is from the trapped electron effects and it is relatively weak; i.e.,
of order © ( 2€0 %%‘2) It is interesting to note that, up to order O ( 2€0 ‘%) there is no
contribution from the trapped electrons to MHD ballooning mode. Terms of this order arise
" from both electrostatic and electromagnetic components, but they cancel each other. In the
limit of |w./w| < 1, the effects of trapped electrons are weakly stabilizing. When |w./w] is
finite we must solve Eq. (22) to determine the effects of the trapped electrons. But for a
more accurate description of the effect of trapped electrons we rely on the numerical solution

of Eq. (A13) which does not use the expansion in |wpe/w|.
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Both the kinetic mode and the MHD mode have the same threshold beta at n; = 0
although the rate of increase of the kinetic growth rate above Bx is appreciably slower than
the MHD growth rate. To understand why the threshold beta is the same for the kinetic and
MHD theory we need to compare the eigenmode equations at the threshold frequency. The
kinetic mode marginal frequency is w = w,; where Im(P) = Re(P) = 0. The MHD marginal
frequency is w? = 0. Reducing Eq. (8) at w = w,; one readily shows that it is the same
equation as the w? = 0 ideal MHD Eq. (15). This conclusion also holds for more general
cases, Eqgs. (2) and (3), in which P = 0 and P; = 0 at w = w,;. The ion acoustic couplings
do not change the marginal stability for n; = 0.

For n; # 0, the kinetic response function does not vanish at the MHD marginal stability
frequency. For w & w,;, the n; response adds to the Veg(z) through the function

(v?/v} — 3/2)J3(kw¢/wci)>
1 —wpi(vL, vy, 2) [wa

AP(w*i)kaz) = “"mP<

~1/2 v
. o~ o~ Wz ’U2/2—az 2 (1. N 0y2
+ “72\/27sz‘f(wz)/o dojje’l Jg (L_U /2(@, v”) )
3 1 ~
where &, = —22i. and H is the heaviside step function. The second term in the right

wpi(z,s)

hand side of Eq. (23) is from the ion magnetic resonance contribution. In the neighborhood
of small n; we expand Eq. (8) using the s — o model about the MHD marginal stability
frequency with w = w(© 4+ Aw®, and we obtain

w) fwyi)[1— s 4 Y]
T (s —acosz[s)? « [cos z/s+ W/ Z)E[i(lffgu)] AP] -
P - AT = F=0, (2

where ¥ = f1 as defined in Eq. (16).
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Perturbation theory for the complex frequency shift Aw® dué to 7; gives

/ RN

1) _ 7

Aw® = o, — . (25)
Solution of Eq. (16) for marginal stability with s ~ & > 1 is g ~ e™*%*/% and

) V2r\ _ 1 /3 1
o 1.2 ) e | — — — .
AP ~ —ni(26n — k1) + in; ( )¢ (2 25,)

We obtain Aw® as

: 26,7 . e~1/2en 13 ]
1 n'ft
Aw® ~ Wy (m- - 52 > + Z%Wi@m (‘2- - E) ) (26)

with ¢; = 0.1573 - ¢ - /7 and ¢y = v/27c;. Equation (26) shows the instability outside the

ideal MHD stable windows exist when 7; # 0 and €, < 1/3. For €, > 1/3 the resonance
gives damping of the marginal MHD mode.

For fixed wavenumber k = 0.5 and the system parameters used in Fig. 3 except for
n; = 2.0 we obtain the beta dependence of the growth rate shown in Fig. 4(a). With 7; = 2.0
the system is unstable for 8 > Bx(n; = 2) =~ 0.006 (o, = 0.144) and the growth rate increases
to v, = 0.287 at the local MHD beta critical § = B, = 0.04. Thus, we find that 5, = 2.0
reduces the critical plasma pressure by Bx (7 = 2)/Br(n: = 0) ~ 0.16. For § ~ fr(7:) the
growth rate is vanishing by deﬁﬁition of marginal stability and the effects of finite wy; = v;/¢R
may be important. The marginal mode frequency approaches wyy; = wii(1 + 7).

In Fig. 4(b) the growth rate and frequency using s — o model are presented. With
n; = 2, instability is significant outside of the ideal MHD stable window. The small but
finite instability of the MHD second stability region is important in view of transport since
the wave functions are localized in 0, implying small (k2). With the inclusion of trapped
electrons, the growth rate is still significant outside the MHD stable window due to the
thermal ion magnetic resonance effect when n; 2 1. In this case the trapped electrons give

relatively weak stabilizing effect compared with the n; = 0 case.
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Next we study the variation of the growth rate with toroidicity e,. For small €, the
growth rate increases with (5 —5%“) s as given by Eq. (20) and shown in Fig. 5. At
small €, the growth rate is insensitive to the variation in s. As &, increases well above the
threshold value e the growth rate reaches a maximum value and then slowly decreases for
large values of s. The stabilizing effect for larg'c—:r €y, arises from the compressional effects and
FLR heat flux described by the w, terms in the fluid expansion in Eq. (13). The analytic
approximation for this stabilization is described by formula (21) valid for &% > 0.2. Formula
(21) predicts sfability for me,s R 1 where the kinetic ballooning shows a strong decreasé in
the growth rate.

Now we consider the dependence of the growth rate on shear s = r¢’/¢q. Both the small
and large aspect ratio systems are shown in Fig. 6 at § = 0.09375. Here the growth rate for
€n = 0.25 decreases faster than the €, = 0.1 growth rate due to the stabilizing &2 termsin.
Eq. (21) arising from compressibility. The variation of the growth rate with shear is weak
for the small aspect ratio €, = 0.1. Both growth rates show a maximum near s = 0.3.

Some stability properties of the system can be understood from the constraint imposed
by multiplying Eq. (8) by ¥*(J) and integrating over . Evaluating the equation for real w

we obtain the condition for a marginally stable mode

+o0 2 '
-0 |14 7 —7P(k,w,?)]
and
o0 dop [*
k* (1 + s*9%) |—
qzﬂe _ /—oo ( ) dd (28)
2e2 (w—wee)(14+7—7PF,)

oo
(o =) [ @O o =g, - 2 EE T

where P, = ReP(k,w,¥). Equation (27) determines the marginal frequency w,, and Eq. (28)
gives the critical B, above which the system is unstable. |

The only case for which Eqs. (27)-(28) may be solved analytically is for 7; = 0 where
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W = W 18 the exact marginal stability frequency, and Eq. (28) reduces to

+o0 dip|?
2,02\ | 4P
3 PR (1+1) /_oo WA+ |59 29)
c = = T
En / d9 |(9) | (cos ¥ + s sin 9)
where we use P, = Re P(wp,) =0 and wy, — wpe — (wm —wse)/(1 + 7) = —wpe in Eq. (28).

For n; # 0 we have no exact results from Eqgs. (27)-(28). For fixed or local value of 9 the

condition Im P = 0 yields the marginal stability frequency

wai(1 — 2n;
cn B (30
wni

and the value of P, = ReP(wp) = cmfiwsi/wpi = 0.TR/rp; where 1; = rp/rp; and ¢y, is a

constant. This leads to the instability condition of

o= T 0T
6T2~R 147

for electrostatic n; mode. We study the local electromagnetic dispersion relation,

(31)

DM — 12,2 — (w —w,,) [w — Wpe — lflu-—;%

in three n; regimes: 7 < 2e,, 26, < 7; < 2/3 and n; > 2/3 using the Nyquist analysis
shown in Fig. 7 for the n; > £ regime. For n; < 26n, the Nyquist analysis shows the MHD
ballooning mode is unstable when 8 > ¢,/¢? = BMHDP, For 2¢, < n; < 2/ 3; ImP = 0 has
no root and Nyquist analysis gives one unstable root for all beta values, which means that

in this range of n; values the MHD ballooning mode is threshold-free. When 7; > 2/3, two

unstable roots are possible for
En

@ (1+75)
In this range of n;-values, the MHD ballooning branch is unstable for all beta values and the

Be <

unstable electrostatic n; branch is stabilized by finite beta effects for ¢28. > €,/(1 +2/77n;).
The change of stability properties at ¢?8, ~ €,/[1+ (2/77n;)] for n; > 2/3 is shown in Fig. 7.
When S, changes from B, = 0.01 (Fig. 7c) to 8. = 0.02 (Fig. 7d), then D,(wn) becomes

negative and the Nyquist analysis shows one unstable root, the MHD ballooning mode.
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A. Marginal Stability

From the shooting code analysis we observe that the wave functions near marginal stability
extend to large ¥ so that the integrals in Egs. (27)-(28) average P(k,w,d) and wp.(?9) over
many oscillations. We find that the results in this regime are sensitive to the decay rate of
the asymptotic wave function (¢ ~ J7#). In ipa,rticular, the critical plasma pressure depends
on the value of . In this subsection we briefly discuss this dependence and argue that the
inclusion of additional physics makes the choice of .

For large ¥ the ion response function vanishes as |P(29)| ~ 1/9? so that the ion response

is adiabatic. In this large ¥ region only the electrons are magnetized and contribute to the

bad curvature drive of the instability according to

i,ﬁ?@ 4 (L(J — w*e)

W Wye ~
572+ S | —ana0) - 52 2 (32

147
obtained from Eq. (8) for 92 > (1 + 1/k?)/s? and wpe(¥) =~ 2ke,s9sind. The asymptotic

wave function 9. () decays as

o) = A 07H + A_9H-

with
1+ (1 —4D,)/?
) = LE=4D
where
_ (w—k) [w+k/T N
Do = o [T3rs TP (33)

In the éritical MHD regime 8 ~ f, where w’} ~ 2e, the function D, reduces to D, =~
(w—Fk)(w+k/7)/(k*wis?(1+1/7)). Thus, in the high frequency regime |w| > k, D,, exceeds
1/4 giving slowly oscillating wave functions at infinity. For the low frequency MHD-like
modes near marginal stability D, ~ —1/w%s*(1 + 7) and only the branch p4 is allowed by

the boundary condition at |J]| — oo.
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The kinetic theoi‘y result for the asymptotic wave functions is in contrast to the MHD
result where Dyup ~ 2€2[1 + (1 + n;)/7]?/w?. This is less than 1/4 for small B and the
system is stable (Mercier criterion). The diﬂ?ereiit result for D, in Eq. (33) arises from the
different asymptotic behavior of P in the kinetic and MHD theories. In the MHD model the
small k high frequency expansion of P in'Eq. (12) is extended to k1 — oo in the asymptotic
analysis. In kinetic theory the k) ~ ks — oo limit gives P — 1/92 due to the JZ(kivy [we;)
and the wp; functions in P in Eq. (4).

Alternatively, we note that for eigenmodes with small growth rates (yr,/c, < .04 ~ .05)
the wave functions extend to ¥yay > (m:/me)*/?/ks. In this regime we modify Eq. (32) to
include the effects of the finite electron gyroradius to absorb the outgoing wave energy. The
asymptotic wave function decays as 1o, ~ 1/¥ without oscillations. We argue that this is
the proper physical boundary condition in the case of highly extended wave functions.

Our numerical tests indicate that the Mercier-like boundary condition gives a growth rate
that lies everywhere below the MHD growth rate. The critical plasma pressure is found to be
very close to the MHD value when Mercier-like boundary conditions are used. However, the
inclusion of the kinetic theory energy absorption mechanism at large ¥ leads to the growth
rate shown in Fig. 4. Thus, the system remains unstable for beta well below the MHD

critical beta in kinetic theory.

IV. Conclusions

Fully kinetic local stability studies for pressure gradient driven modes in a tokamak are
reported in Ref. 1 shbwing the substantial modification of local fluid theory modes. Due to
these kinetic theory modifications from the predictions of fluid theory the question arises if
the ballooning modes, which require large k; response functions even for a mode with small
kgps, are given adequately by the hydrodynamic approximation to the ion response functions.

The hydrodynamic approximation to the response functions has been used extensively by
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Hastie et al. ' Tang et al.,'® Itoh et al.,'” and others.

Here we report the ballooning mode eigenvalues with the full kinetic response function
for the ions. We keep both v, and v integrals in the V| B-curvature guiding center response
function and the full Bessel function response function.

Our stability analysis shows that there are two regimes for the eigenvalues. In the first
regime &4 < 0.2 or B > 20e2s?/q? the behavior is similar to magnetohydrodynamic theory
in Eq. (20) with the growth rate increasing as £1/2 and decreasing with shear. In the second
regime &3 > 0.2 or B < 20&2s?/4? the growth rate behaves differently from the classical result
due to the importance of shear and the shifted minimum of V.g(z). As shown in Figs. 5 and
6 and indicated by Eq. (21) the growth rate reaches a maximum for 0.1 < e, < 0.2 and 0.3 <
s < 0.5. The maximum growth rate is v, < 0.66%/?(c,/7,), and is reached for modes with
kop R 0.3. At small kyp the growth rate is smaller and increases vz = kgp [26,(1 — Bx/ ,3)]1/ 2
which is very different from FLR-MHD theory where (k) is monotonically decreasing with
increasing k. |

For n; = 0 we show that the kinetic theory threshold Bx is the same as the MH_D
threshold beta. This result is clearly shown in Fig. 3 and. arises from the fact that at
the marginal stability frequency w = w,; the entire ion kinetic response function P(k,w,d)
vanishes identically. Inclusion of the ion acoustic coupling does not change the marginal
stability. Egs. (2) and (3) at w = w,; reduce to the ideal MHD Eq. (15) with w = 0. For
n; # 0 there is no frequency for Wilich P(k,w,d) vanishes identically and there is appreciable
destabilization from the n; contribution of P(k,w.,¥). The result is that the critical beta
value for instability £ K(m) is found to be considerably smaller than the corresponding ideal
MHD ballooning mode value. An example for n; = 2 is studied in detail.

For the effects of trapped electrons we showed both analytically and numerically that
their effect is weakly stabilizing. The trapped electron contribution reduces the growth

rate but the kinetic instability instability outside the ideal MHD stable window remains
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significant when n; 2 1.

Finally, we note that the simple MHD theorem of a sufficient condition for instability for
modes with asymptotic wave functions () ~ A/9* having u = 1/2 +i(D — 1/4)'/? when
D > 1/4 (Mercier criterion) is lost in the kinetic eigenvalue equation Eqs. (8)—(9) since the
instability proof follows from adding the k% (¥)w(w — wy) < 0 kinetic energy contribution in
the MHD equation (13). In kinetic theory the asymptotic form of the potential Q(k,w,?) is
altogether different [Eq. (32)] with the ions giving an adiabatic response 7; o~ —n,(e;¢/T;) in
contrast to the classical hydrodynamic response in Eq. (12). The asymptotic analysis of the
kinetic Eq. (8) yields the critical exponents puy = 1/2+i(D, —1/4)"/? with D, & (w—k)(w+
k/7)/k*w}s?. In kinetic theory D > 1/4 requires |w| > k and ¢*8 > e}5?/4. The oscillatory
wave functions for D > 1/4 describe the propagation of wave energy to || — oo where
absorption by microscopic processes such as electron Landau damping occurs. Explicitly
including such processes in the boundary condition leads to a kinetic theory instability which
increases gradually with beta, obtaining a substantial value at the ideal MHD threshold
plasma pressure.

Thus, we conclude that the dynamicé of the unstable plasma is considerably different in
the kinetic description than in the ideal FLR-MHD theory. The only exception, where the
kinetic theory behavior reduces to the fluid theory, is where e, < 0.1. In this large aspect

ratio regime the number of resonant ions is exponentially small and the growth rate follows

the FLR-MHD theory.
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Appendix — Role of the Trapped Electrons

In this Appendix we derive the generalization of eigenmode Eq. (8) that includes the effect
of the trapped electrons.

The solution of the gyrokinetic equation f; is written as
fi = —(&;/T;)¢F; + g; exp(iL;), (A1)
with L; = k - v x b/Q; and Q; = ¢;B/mjc. The nonadiabatic part g; satisfies
(vn@a—s —i(w - ij)) g9 = —?Fj(w — Wat;) [%W - vnAn)Jo} ; (A2)

where iwA)| = B~V¢. The frequencies of the modes we are interested in are assumed bounded
between the transit frequencies of the electrons and ions and to be smaller than the electron
bounce frequency

Wie > Whe > W > Wy,

For passing electrons the solution of Eq. (A2) is

]- Wate

= P=—Fi{l— A

S99 = =Fo (1= 222, (A3)
and for the trapped electrons

S(os +9)= ~F [(1 )y g B (Y _wDezb)} : (A4)

W — Wpe

The overbar denotes the bounce average defined as

~ ds ds \ 7
asfla(f)
[on] [onl
and the bounce average electron drift frequency depends on the energy and the velocity space

pitch angle parameter £ which is defined as
v2 By’
/{,2 — .]_-. (_].-____ﬂ _I. 1) .
2 €
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For B = By(1 — ecos ) with € = r/ R, the bounce averaged drift frequency reduces to

G (k) + sGa(K)]. (A5)

Wpe = 2577.(")*6

Te [
where G; = —1 + E(s)/K(k), and G3 = 2 (G1 -1+ fzz). Here, F(x) and K(x) are the
complete elliptic integral of the first and second kind.

For ions we have all passing particles, we obtain

1 — Wiy 2\ — J 2 82
§(§+ +9-)i=F (w ~ ) (1-0*)7" (’”]5-]0 + ;@%@745) ) (A6)

w — Wp;

where o = (w#”[— 0
wD,) ds"
Using Eqgs. (A3)-(A6) we obtain the quasi-neutrality equation

¢ 9 _ 0

c 3
}¢+[PSI+ 5 2R289P 3«9]¢ 0 (A7)

l:—].—T—}-TP-}-TRl 22R259 557

and the parallel Ampere’s law

2
[PSHTRH 9 p, a]qﬁ

T B 06" 290
pvy 9 _, 0 N
Lﬂ 90 156 o TP gy iag | V=0 (43)

In obtaining Eqs. (A7)-(A8) we used the local approximation, i.e., X & X. The ion kinetic

integrals are given in Eq. (4) and the electron velocity integrals are given as

. 3 _w*te
PS1 = /pd v Fy (1 B ) (A9)
= [ FoR (1 - e o
PS2 = /pdvFo (1 b ) - (A10)
TRL = [ d% Py Pt (A11)
w — De
and
TR2 = [ &% Fo (1 - “’*te> (“’De __“’DC). (A12)
ir w W — Wpe
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The velocity space integrations are
/d3v = > ﬂ'/oodv'uz/hcl./\————l—l.
o=t1 Y0 0 h (1 - %) r
For passing electrons, 0 < A < h,, = 1 — ¢ and for trapped electrons, h, < A < A(§) =
1+ ecosf at given .

Neglecting the ion acoustic couplings Eq. (A7) and (A8) reduce to

wid _, d B PS1(PSL + TR2)
g Viap TS Pl T gy

R

which is the generalization of Eq. (8) in the presence of trapped electrons. Solutions of

Eq. (A13) are shown in Figs. 3(b) and 4(b).
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Figure Captions

. Eigenmode spectrum -y, wy, from kinetic ballooning mode Eq. (9). Parameters g, =

0.25,s =1,¢g=2,7= 1,7, =0 and o = /B, = 1 and 2. The dashed line shows the

growth rate calculated from local kinetic theory with o = /8. = 2.0.

. Growth rate and frequency dependence on k = kgp, for the same parameters as in

Fig. 1 except n; = 2.0.

. (a) Kinetic ballooning mode growth rate dependence on beta at fixed £ = 0.5. Pa-

rameters ¢, = 0.25,s = 1.0,¢ = 2,7 = 1 and n; = 0. Threshold at fx = 0.0374 or

a1 = 0.60. (b) Same as (a) using “s — &” model.

. (a) Growth rate dependence on beta for the same parameters as in Fig. 3 except

n; = 2.0. Threshold at fx = 0.006 or o = 0.144. (b) Same as (a) using “s —a” model.

. Growth rate dependence on ¢, for k= 0.3, f. = 0.046875,¢ = 2,7 = 1 and n; = 2 with

s =0.5 and 1.0.

. Growth rate dependence on shear s = r¢’/q for k = 0.3, 5. = 0.046875,¢ = 2,7 = 1

and 7; = 2 with &, = 0.1 and 0.25.

. Nyquist diagrams for the local electromagnetic component of the dispersion relation

shown for n; = 1.0. The contour in (a) encircles the origin twice in parts (b) and (c)

and only once in part (d).
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