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Abstract

The problem of energy conservation for the renormalization
of the drift wave instability in a sheared magnetic field is
considered. It has been suggested previously that there is
a connection betWeen a certain constraint on the nonlinear
term in the drift kinetic equation and energy conservation.
Argumenté are presented to dissolve this connection; and in
turn, energy conservation is formulated in the physically.
meaningful statistically averaged sense. Finally, energy
conservation is proVen for the system of nonlinear equations,
renormalized by the Normal Stochastic Approximation, describing

the drift wave instability.
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I. Introduction

There has been much interest in the energy conservation

and related constraint properties for the renormalization of

1,2,3

the nonlinear drift wave instability In particular, it

has been suggested that energy conservation arguments lead

to a constraint on the nonlinear term in the drift kinetic

equation

b
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such that its ¢ moment vanishes
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Here, FN is the Klimontovich function for electrons. This
e

constraint has been called "energy conservation", since it

- -

mcan_bemrewrittenﬁasmilLEl;O,WMActuallyTpthiswterminology_iswAwurm~—~~A»w-

misleading, as will be shown in the following. Furthermore,

a proper definition and proof of energy conservation for the
Normal Stochastic-Approximatioﬁ%’spreviously thought3‘to

violate energy conservation, will be given. This proof will

be carried out in detail for the case of electrostatic drift
wave turbulence in a sheared magnetic field. The model con-
sidéreé is a slabvmodel Where fhershear and the electron density

gradient are in the inhomogeneous x direction, while the system

is taken to be homogeneous in the y and z coordinates. Our




3
analysis is also restricted to the case of stationary
turbulence.
Any ‘theory starting:from the drift'kinetic.equatibn is

apprOXimate at the outset, such that it_dées not properly

" congerve the’perpéndicular energy. In‘this approximation the

’ - N [ . 3’_ N
perpendicular velocity (vl) is dominantly E>K§ . in nature.

‘Thus - Gl'“E==O, so that the power into the perpendicular

~

velocity is zero. On the other hand,. E can change dynam-

iqally as the waves grow or damp enabling the perpendicular
energy to change. Thié inconsistency is an artifact of the
drift'kinetic’equation'approximation, while in an exact theory
the change in $l is accounted for by the polarization drift.
Consequently, consistent with this drift kinetic equation ap-
pfoximation, the perpendicular energy is to'be taken as small
chpared to the parallel energy. In fact, the perpendicular
energy (mvf/Z) and thus the ¢  moment ¢onstraint, being. the
perpendicular‘interaction energy, should not be included in

an energy conservation'érgument; rather, particle kinetic energy
must be limited to the parallel energy,,(mvﬁ/Z). ‘Whether the
¢ moment constraint should be conserved under renormalization

is still an open question. However, to.refer to this constraint

as "energy conservation" greatly overstates its importance.

Physically observable energies are statistically averaged
quantities. Therefore, the most fundamental and applicable

form of energy conservation in this context is - that the change

“in particle energy in a statistically. averaged sense must be




equal to negative the change in fluctuation energy. In par-
ticular, energy conservation will be determined by a parallél
“energy. moment of the statistically averagéd one point equation.

The equation which propagates the average. distribution has

”,,ﬁ;,ﬁWm?fﬁbeen*derivedﬁby;SwartzﬁandeolvigE;uéing,ihe;NQrmalﬁsthhastic

Approximation (NSA)5 renonmalization scheme. This ié essen-
tially the approximation used by Hirshman and Molvig4 in the
somewhat simpler problem of nonlinéar,stabiiity df-the uni-
versa; mode.-fThe NSA does not satiéfy the ¢  moment con-
straint for the fluctuation dynamics; hbwever,’for“the'aver-u
age disﬁfibution it conserves energy in the>statistically

averagedvsense. The result of this paper will be the usual

" statement of energy=conservatioh, that the change in particle

enefgy'density is equal to negativé the change in wave energy

density plus negative the divergence of the power flux. .
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II. Energy Conservation Proof

Our starting point for the analysis of the drift wave

problem is the Drift Kinetic Klimontovich Eguation (DKKE)

for electrons

X
-ﬁ:— u

Wi |
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In order to proceed with an energy coﬁservation proof in a
statistically averaged sense, a closed system of equations
for the one point distribution function and for the two point
&orrelation function must be derived. We consider here the
system which results from the application of the NSA to the
statistical hierarchy.6 This approximation includes the
effect of stochastic orbit scattering on the correlations.
Statistically averaging the DKKE Eq. (1) yields an exact

equation for the averaged one point distribution function

3 B a} <[c By 5 e B a] _
= tuz = £ = [2(VeRD) = - =V - [F \EC (£) . (2)
[at B pd7e ‘B(A- B) 3% Mo B dul N, e

Here, feE<?N >,is the average distribution function. The
e .

__collision operator in Eg. (2) has been computed within the =

NSA by Swartz and Molvig6 and is
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"3 eLn dw d.k + “

+t 5z fT;— 2T (zﬂ)f 'dx'w;(x)ReHEb(x,u,x-)fe(u)[ 12ImE*- (x x )+ T [w-w¥ (x Iy, (/% ﬂ} ‘

,;;; +f;%{ii_e Aw o 2fdx k”(x)R (xux)f (u)E—‘ (xx )} , (3’) !
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oT_ §-§x§-
wg(x) = eB L 7
n

is the electron drift frequency, L, is the density scale

length, Lg is the shear scale length,

K
= ! = Y
K = dx = gox

is the parallel wave number,

—_ N

S (x,x'") = S(X,x',y—y‘,z—z',t—t') = <¢(;)¢(;')> ,

is the potential correlation function,

km(x u)r= ~[dx HA'(X u,x ) =J;drexp{i[w—k”(g)u]T D(k u) T3}

“co

is the resonance function, and E*'(x x') is the Green's

function of the drift wave eigenmode equation.

~moment of -the average Eq. (2) e
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Jax 5%;;8 = fdx fdu % meuzn C(£.) (4)

where
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2
‘ = i
(ﬁp = fdu % mu"nf_ ,

is the parallel particle energy density. Using Eg. (3) for
the collision operator, the second term is annihilated when
integrated over x, and the third term is highervorder in the
discreteness parameter, Eg. (4) becomes

i
|
i

de-gggﬁp = [fdx fdu & menu2

.

Certain relevant features of the following functions

are pictorially presented in Fig. 1l: the two point resonance

function, R, k (x;u,x"), has width |x-x'|Sx_ for |x+x'[/2<x_;

the spectrum, Sk (x,x'), has width |x-x'|<x, for |x+x'|/2%x

is the approximate eigenmode structure.

T;
and ¢(x)~e ~iux /2

T g —y e L 2.=1/3
Since. X (LS/L )_pi, XC—(ZDT\) , and T —[2D(kﬁv )71 =,

typically x /x <<1l. In this llmlt, after 1ntegratlon by parts

w1th respect to u, the energy equatlon becomes

2

2}jlﬁl£%—{(k”(X)Urw)+w][w—w*(x)]R.h“(x u) (u)S (x,x)
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Since (k”(x)u—m)RehE'(x,u) is odd in k”(x)u—m, and vanishes

on integration over x, the energy equation is finally

_ . Imu i
de == J'd d‘”‘ dk 2w 2 & o= (3)
27 ) k’ AD ’
where
‘1 |
Ly N 2.2, N AN
8—* _<E (X)>kw _ k<o (X)>kw ) k Skw(x)
(x) = 8T - am 8m '
and

= fdu ilw- w*(x)]Reh (x u)f (u) .

In order to convert the energy Eq. (5) into a familiar
energy conservation relation, the response of the plasma to
a small external current source is examined. The following
is a many wave statistical generalization of the well known
fesult from one wave small signal theory. The external current
is 3} and the self consistent field is'Ei 'Using the electro-
static approximation,yg;—§¢; aﬁd the continuity equation,
8/8tp+€13;0; the equation for the current interaction is

~[dx <T'E>= [dx<JT:V¢>= -fdx <(V-T)¢> = fax<io> (6)

Rewriting p and ¢ in terms of their inverse Fourier transforms

~in t, .y, 2z, while leaving the inhomogeneous x dependence




. .

explicit, Eg. (6) becomes

' - . : —_ ;~‘ v -~ R |
1= == d7 =1 : e -
—de <JE> = .jgdx fi—ﬁ ak . J(zi—ﬁ dk .

| (2m) - (2m)

I
|

|

x [~io <op, (047, (1) > exp{il (tk') - (whu ") €

]}h U ) IR

Poisson's equation in eigenmode form is

‘ 5
24 -1 T4 2.2 R N _ N
k { :[5;7‘- (A=-uTx +aeﬂ}_ e (X)) = 4mop (x) | (8)

N
N

e
where A?vl—wg/w, and u}%an;/st. Using a W.K.B. expansion

for ¢E@(X),

(0) (1) , .
0, (X) = Do+ o, + ...]elkadx = o7, SISk dx ’

. with notation such that

(0) (0) .
by (1) = b, o ExE

;e .
The ordering of terms is due to slow spatial and time wvariation;
where Ogr Yr source pkw’ and d4/dx of kx or ¢kw are all first
order. The slow time scale beingvrepreseﬁted by v, w=wr+iy,

where

9 - — =
55',8kw(x) = 2y akw(x)
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The necessary derivatives of ¢£@(x) are

d - — ‘- -~ dq)];\w". i k d
dx ¢kw(x) - <;kx¢kw + dx € g X !

and
SR , X 2 |
4 5 ) dk a%o= .
= (%) = [-k2p= 4 kw . X . kw ) ifk_dx
) ¢kw ) < xPkot 12 Ix "l %t a2 ) %

Collecting zeroeth order terms in the eigenmode Eg. (8), it

follows that
el =0 (9)
=W
r
where
K, 2, poni 2,2 k 2
e€==2 - . _x + e
kZADz k% 2 ’
e De
and
a2
2. 2 i
k7 . ?
e :.’

- Collecting first order terms and using Eq. (9), it is found

that - R f
(0) e S F“-*“f.,wm B
4L 7\ & dx‘Pkw v, q)kw 2 2 Yy J°© ke X
k )‘LD . |- k }\ i ) - e - _.._..._=
B | e (10)
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Substituting DEQ from Eq. (10) into Eg. (7), while keeping

lowest order terms, results in

L ;; ,;;ﬂ S dw A o
~fax<J-E> = fdx ‘ ( iw)
SEIEIER
(0) : o
/ 2 d¢>  ifk,dx
(-i 52— & TS S (0)
X'< 1 kz}\ 2 81T [ka dxw e’ . ¢k ! (x) + dx q) ( )¢k ! (X):I
. 5 De
| e . % \ ©O e -
\\,+ ’ %ﬁ (ws‘% i k2>\e 2>¢ ke () P30y (X)>exp{l[(k+k'> 'X—(Q+w')t]} .
Pe S o R
Spatial homogeneity in Y-Z and stationarity in t implies that
k2 ~ .
é-TT <¢EUJ (X) ¢Eyw| (X)> = 8_‘ (X) (2'”') 6(w+w')6(k+k') . (12)

Using Egq. (12) and the consistent approximation that

Q)+ (0)
s (0 ~ o5, (0 = et T

- it follows from Eg. (11) that

(11)

|

dw ak de ', o T Imog N\, kN
[ax <J E > _/d / o) 5 ‘[ZYQ) 3 _8: ki (x) + 2w (—7—>8kw (X):l?

dw dk {dw - dk -2 k= e km R A
dx }— 2k /= s, ()
/ / 2 ZWI_/(Z,”_) (k 2 2) 8T < x ax A \

\-‘72iki¢§w(X) Py (XD + —dyxcpng(x)q;;,w, (x)>exp{ il (k+k ! ) x—(w+w )t] Fo
' ' | ' <. (13)

~—- From-the-parity— of—-ek _and & -—"-r-e—k-&,—e—k —and-e =g itis——
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clear that wéei&(x) is odd in w-k so that
,":

fau fak we€l (x) = 0 . (14)

Equation (14) can be rewritten using Eq. (9),

kx
€ = ~
2, 2
k AD )
e
resulting in
A,wk 2'

fdw [dk 8—* (x) =0 . (15)

Using Egq. (15), Eg. (13) beéomes
{ 'Im

R ?fdwfdkfdw'fdk'w k (w' k ) < - qb_f'w' (x)>exp{1[(k+k') -x-_(w+<b") tl}_ i

fdx< [dx du dkz (2 ——18P G+ 20— 8@ (x):’
g R “’/“.'“" - e .
| dw 1 dk! =20 k2<: ¢kw X X . )
L+ ax ‘” | ==k ——— V(X)) + == 07 (%) (=) Y
} j. (2 ) | (2ﬂ)2 kZAD 5 8T X% - dX k w dx Tkw' ﬁ:w] }
| e‘5~- ' / -
" ! . . f:
x exp{i[(k+k') - x—(w+w t]\}i
The following idéntity is obtained by interchanging w with ' '
— and .']{_, W_j-Nth E.' ;_ — e i e e — — ~ PR . e e e m i e
b S paen el G 0

B S R S N R T G - . (17)

/}exp{1[}k+k ). x—(w+w Jt1}

hi
§
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Using spatial homogenelty in y-% ang statlonarlty in t to

replace w' with ~w and k' with —k) Eqg. (l7lwggqgm§§w"w,

T Cr (%)
’_,/fdwfdkfdw'fdk'wk (w k) <<p]*<“w(x) % 1exp{1[(k+k')x (w+u) £] } o

i ST e

o =,fd@fdk}dw'/dk'(—‘w)'kg'(“w,—k)v < ]fii Py (X)>eXp{i[(k+k')°x—(w+w') 1y .

(18) i
The reality of ¢ (x) 1mplles that k*( -w, —k)——k (w, k), Since
kX is real k (~w, —k)—-k (w, k), SO that Eqg. (18) becomes
A Gon | |
fdwfdkfdw'fdk wk (w,k) %, (%) ———753———Jlexp{1[(k+k )x (w+w?t]} f_
| | = . N ' N d(p];\w(x) [l o T \\,\‘\_-
= ;ffi“.)f,»d;}?f@'fd,k 'Awkx(w'_k)< ax Yy (X)>[ xp{l[(k+k %= (w+w') t]}

Integrating the homogeneity broperty Eqg. (12) by

%ﬁr_[ dk {exp{l[(k+kw x= (w+w5t]} '

(2m) 2
yields
o (%) [ Dl kP (00> expli [ (Rek D ne (wra £}
x : ) 2 8T ¢kw X ¢k'w' X (eg?;?w1W,_;,X T
‘ So’thaﬁ S , .‘F__h__ -
—fd}? [Su [ d;ﬂ if x "}8“ x)-, = JdXJ Mw] d; S \dk"\\gg"
TEn? T3, o™ 2T (2m) 2 (27 >Zf

dx S ¢kw(x) ¢k' ' (X)>

- © G M o e
2w .\ k w N o u
(R e

x exp{l[(k+k0 . x= (w+w0t]}

e o ‘ B e e
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Using Eq. (19) in Eg. (20), it follows that

I - |
—de/ / dk _i_ X UJE j / dk dwlf dkl : ’! “r
- (2m) % 9% |
, p? | (2m) 2 |
o \ \ 2 = ) e a, G ‘
o 24 \ K o e
,_,,,_; ‘ W__\(k )\ 2) o <2kx i CPE. (%) + == ¢kw(x) d)k, (x)>’exp{1[ (k+k"Nex= (w+wﬂ:ﬂ]} - f’
Pe T
o (21) ;
Substituting Eg. (21) into Eg. (16) results in @
Lfdx <T-E> = / dk I2 3‘5 8—». () - & x_ 48~ ol
{ Cy T 1 ) dx 2 T kw 1 |
! k. }\. 2 L i
| ., 1 o | D, T |
+ 20 —5 ‘18?Ew(x) . IR ;
\\\;\k'KDZgQ“ - e T (22)
e e e i e T . .
Regarding Eg. (9) as ?[x,kx(w),w]=0, the total differential is
— 9k .= Y
_oa= [ 9€ X Q€ | o€ X O0€
0 = de = dx "?(ax+ 5% 9K ) o+ d‘*’(aw LT W) . (23)
X \ X
The last term in Eg. (23) results in
J0€E  _ _ _Ow o€
ok ok, oW ! -
w1th the group velocity defined as Vv —Bw/ak , 1t follows that
_9E _ . 9%
3k~ Vg Jw
X N .
1 —
— —Using the—definitions—in—Fg+—(9)7—5 /akx kaX/k_ADEﬁand” S ——
e
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96 /3w = d€/dw, the last expression results in

—2kX

2
k“Ap2
e

=y Oe | (24)

Finally, the equation for the external current source is found

by substituting Eg. (24) into Eg. (22),

—fax <T-E> = f\d gﬁf '—t | ‘U (]

(2m)
| S ; (25)
Ima
. g o€ N e -~ —
¥ ai[vg‘*"%" e\kw(x)], R T € kw(x)§ =
e R D° L] .
.. e " .

The left hand side (LHS) of this equation is the external
source; while the first term on the right hand side (RHS) is
the wave energy density, the second term the power flux, and

the third term the power dissipation. Setting the external

source, J, to zero in Eg. (25) and substituting this result

into the energy moment Eg. (5), results in

e | oo e S —

i 5, - - 198 Lot o] + [ B ]

(26)

The LHS is the partlcle energy density, the first term on the

RHS is the wave energy den31ty, and the second term 1s”thé“§é&é£”'“

flux. This is the final energy conservation relation. The

rate of change of the particle energy is equal to negative

IT!n

the»ratemef~ehange~o£¢thewwaveuenergy_plus_negative“themmdiyerz_m__“mmﬂ“_

gence—of—the—power—flux- The—physical interpretation of the
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energy conservation process is that the unstable electrons
near the mode rational surface are feeding energy into the
waves which are in turn convecting energy out to the ion
layer where ion Landau damping occurs and thus the waves

are absorbed.
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IiI. Conclusion
The ¢ moment constraint on the nonlinear drift wave term
has been shown to be separate from the energy conservation
issue. Moreover, the terminology "energy conservation" applied

to this constraint would be misleading. The physically relevant

fbrmuiatioh df éhergyhcbhsérQatidﬁrinré sﬁatisticailyravefagédr
sense is utilized throughout this paper. 1In particular, energy
conservation is determined by a parallel energy moment of the
average equation. The resultant energy consérvation equation,
being of well known form,_proves energy cohéervation for the

NSA renormalization of the drift wave problem.
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Figures

Figure 1 (a) The eigenmode structuré; ¢ (x), and
(b) the spectrum, S;&(X,X'), are shown slowly

varying up to the turning point, Zmi while

(c) the resonance quCt,i.Ql’l,,.,,vReH;{'L'ET(.X,,-XL)ﬁ—iS*CIIt

off at the correlation distance, X
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