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Abstract

An ultimate linac structure is realized by an appropriate crystal lattice (superla.tticé) that
serves as a “soft” irised waveguide for X-rays. High energy (~ 40 keV) X-rays are injected
into the crystal at the Bragg angle to cause the Bormann anomalous transmission, yielding
the slow wave accelerating fields. Particles (e.g., muons) are channeled along the crystal

axis.



A direction to attain ever higher energies by extrapolating the linac to higher acceler-
ating fields, higher frequencies, and finer structures is prompted by several considerations,
including the luminosity requirement which demands the radius of the colliding beam spot
be proportionately small in high energies: ap = 7~/?hc(fN)"Y2Pe~2 with f, NV, P, and
- € are the duty cycle, total number of events, beam power and beam energy respectively.
This direction, however, encounters a physical barrier when the photon énergy becomes
of the order hw ~ hwy, ~ mé2a2 ~ 30eV (a = the fine structure constant), corresponding
to wavelength (scale length) A ~ 500A4: the metallic wall begins to strongly absorb the
photon, where w, is the plasma frequency corresponding to the crystal electron density. In
addition, since the wall becomes not perfectly conducting for Aw > mc2a?, the longitudinal
component of fields becomes small and the photon goes almost straight into the wall (a
soft wall regime). As the photon energy Aw much exceeds mc?a? and becomes 2 mcla,
however, the metal now ceases to be opaque. The mean free path of the photon is given by
Bethe-Bloch as £ = (3/287)ag’a'n"(hw/Z%R,)"/?, where ap is the Bohr radius, n the

electron density, Z.g the effective charge of the lattice ion, and R, the Rydberg energy.
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In the present concept the photon energy is taken at the hard X-ray range of hw ~ mc
and the linac structure is replaced by a crystal structure, e.g., silicon or GaAs-AlAs. (A
similar bold endeavor was apparéntly undertaken by R. Hofstadter already in 1968.1) Here
the crystal axis provides the channel through which accelerated particles propagates with
minimum scattering (channeling?) and the X-rays are transmitted via the Bormann effect

(anomalous transmission®*) when the X-rays (wavelength ) are injected in the zz-plane

with a polarization in their plane into a crystal at the Bragg angle 65

A . :
55 = sin fp (1)

where b is the transverse lattice constant and later a the longitudinal lattice constant

(a ~'b) [see Fig. 1(a)]. The row of lattice ions (perhaps with inner shell electrons) con-



stitutes the “waveguide” wall for X-rays, while they also act as periodic irises to generate
slow waves. A superlattice® such as Ge,Si;—_.S; (in which the relative concentration ¢ ranges
from 0 to 1 over 1004 or longer in the longitudinal z-direction) brings in an additional
freedom in the crystal structure and provides a small Brillouin wavenumber k, = 27/s
with s being the periodicity length. We demand that the X-ray light in the crystal channel
walls becomes a slow wave and satisfies the high energy acceleration condition

otk © 2)

where w and k, are the light frequency and longitudinal wavenumber.
The energy loss of moving particles in matter is due to ionization, bremsstrahlung, and
nuclear collisions. We can show® that a channeled high-energy particle moving fast in the

z-direction oscillates in the zy-plane according to the Hamiltonian

1 2 2
H= % (px_]'py) + V((E,y), (3)

where V is the average of the electrostatic potential ¢ of the crystal. Therefore, the
distance r from the nearest row of atoms is ~ b/2 for positive charge, while it is a fraction
of b for negative charge. The energy loss due to the bremsstrahlung, taking into account

the effect that channeled particles avoid close collisions with nuclei, is given by

OlnFE
0z

= 4Z%r2r 720" ¢ K (277 [b)in (27:;me> , (4)

P
where r, = e;"./mpc2 is the classical radius of a particle with mass m, (re for electron),
¢ = b/ap, and K; is the modified Bessel function of the second kind. We thus pick
muons or protons to accelerate. Previously Neuffer” and Parkhomchuk and Skrinsky® have
considered muon acceleration. As channeled particles are confined to the rows of atoms
by electric fields of the order 1 —’10V/ A (equivalent 0.3-3M Gauss), crystals may be used

to build a collider not only for acceleration sections but also for bending sections.



The present concept may also be looked upon as an outgrowth of the plasma fiber
accelerator.? In the plasma beatwave accelerator'® or the plasma fiber accelerator one uses
a plasma as a medium to accelerate in or as a wall to confine and slow down photons
with. The longitudinal (accelerating) electric field increases with the plasma density. In
our pursuit of ultra-high energies, the ultimate high plasma density thus becomes that of
the solid matter and the fiber ripple ultimately becomes the superlattice periodicity. In
fact, the lattice ions and electrons in the solid behave not too differently from a plasma for
high frequency hard X-ray photons. In what follows we analyze relevant physical processes
of the present concept, particularly that of the crystal as a waveguide.

As the photon frequency w is much greater than the atomic frequencies, the current
~is given by J = (wge/iw) E, where w2 (z) = 4nn(x)e?/m is the local “plasma density”
of the lattice ions and their inner shell electrons; conduction electroms, if any, may be
looked upon as a uniform medium. Using fields of the form A = Re (e™**A(x)) and the
Lorentz guage (A* = divA /iw), we start from the Lagrangian £ = /d?":c(w2 — Wi )|A]P —
VAP = (w2, /w?)|divA [*, whose last term will be subsequently negligible. We seek for
a solutioﬁ of the vector of form A; = a;(z,y)fi(z), where the repeated index ¢ does not

mean summation (i = 1 ~ 3). Variations with respect to a; and f; give rise to two coupled

equations

(02 + 2k2(2)] filz) = 0, (5)

[V2 + @82 (2, )] ai(z,y) =0, (6)

where ?k2(z) = w? — <w§e>_L —c? <|Viai|2>l and c*k3 (z,y) = w?— <“"1§e>, - <Iazfi'2>z; the
average ( ), in the zy-plane is weighted with |a;|*(z,y) and { ), is weighted with |f;[%.
Since *k? ~ w? > w?, Eq. (5) may be solved by the WBK method f; = k;/? exp[it()]
with 8,% = k,.




The general solution of Eq. (6) has the Bloch form:
ai(z,y) = BT EBVy (g, y), (7)

where u(z,y) is periodic on the lattice. For the sake of simplicity we drop y-dependence

hence. We note k% (z) is a periodic function with period b. The Fourier components of a;,

kB t(kpa—Nkp)z

i.e., ap = Uge and ay = uye , are coupled, where N is the mode number in

D N .
the z-direction. When kp, ~ ?kb, they have approximately the same frequency and we

need to include both in a solution. Thus we obtain

(Vo — k3g) uo + Vyu_y =0 }

:
Vo — (kga — Nk)?] uen + Voo =0 (8)

b
where Vy = b_1/ exp(—iNkyz)k? (z)dz. Averaging Eq. (5) over z and y, we obtain the
0

dispersion relation w? = <w§e>lz + c2k2 + ¢*V,, where (), is the average over both L

and z and k, = lim 4(2)/z ~ [<k§(z)>z] Y2y [([8,f¢|2>z]1/2. Solving the determinant

equation for V; in Eq. (8), we obtain

w? — <wf,e>_Lz - c%ﬁ = CZNT2k§ +c? <k3m - %kby -3 c2\/VNV_N + N2k2 (ka — -QJY-kb>2,

(9)
where s = —1 corresponds to a standing wave with node near the atomic planes a;(z) ~
a; sin <%kbw) We choose kg, = %kb for our accelerator because then the group velocity
Ow/0kg, = 0 (the Bormann effect). The slow wave is generated from side bands: E,
(or A,) has the main wavenumber k,, but 9(2) has a slight modulation. When there is a

k-component in the plasma frequency, the phase is given by

V(2) = k.2 +2kk 2cos(lcz)—l—---,

where w2 (k) = 247" / o sin(kz) <w;e>l dz. The amplitude of the ¢-th satellite E,(¢) with
0
ky =k, + Ckis

I AOE Nk”\/_ "’J( pe( )cos <%Abx> £10)

2k, kc?



The amplitude for the carrier wave (£ = 0) is E,(0) = iwazk;*/?sin (J—;r—kb:c> Thus the

coupling ratio of the £-th satellite R, is given by
Ry = E,(0)/E(0) = Nkyk,c*Jy (w2, () /2k.E) /(207).

For the largest satellite £ =1

Bu(ka+ ) _ N ks w(k)

B 4 F W (11)

The phase velocity of this side band is

w o[+ N2k /4t w2 (0]

The condition for high energy acceleration is to choose k, such that v, = ¢ in Eq. (12).

The group velocity, on the other hand, is

c? k

This should be positive and preferably near ¢ for efficacious acceleration.

For k = 0 no possibility of v, = ¢, while for k > -]—;T—kb, vph = ¢ leads to vy < 0. Thus we
consider therange 0 < k < %kb. It is evident that wze has a large component at k = k, ~ k
due to the lattice periodicity. In order to exploit this longitudinal periodicity we need
N > 2: from Eq. (13) for a negative charge (e.g., 4~) confined away from the mid-plane
of atoms IV can be odd or even, while a positive charge (e.g., u*) channeled near the mid-

plane N must be even. For N = 3 we find %, = -Z—kb, W = 18—3k(,c, Ry = 0.56w2, (k) /2K,

and vy, = 0.38¢; for N =4, k, = gkb, w= g—kbc, Ry = 0.4w? (k) /2k3c?, and vy, = 0.6¢c.
Alternatively we may exploit the longitudinal superlattice periodicity & = k&, (i.e.
wZ,(ks) # 0), where k;, S 0.05ks. Introducing the parameter ¢ = ky/2ks, we find the

high energy acceleration conditions:
7 1 2 _ g2
o= (=€) h, (14)
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v = c(N?=€7) /(N +¢77), (15)

Ry = 16n¢® (N%* 4 2N + 1) W, (k,)/2k0c. (16)

For this case we can use the modes N = 1 and 2. For N = 1 and k, = 0.05k, we find
k, = 2.5ky, vy, = 0.98¢, Ry = 1.6w2, (ks)/2kEc?; for N = 2,k, = 10k, vg = 0.996¢, and
Ry = 0.8w2,(k,)/2k}c?, and w = 10kyc (hw = 40keV). The latter example has a decent
longitudinal coupling (modest value of R;) and a good longitudinal group velocity (v,,),
for which reason we focus on this herewith.

We now discuss attainable fields and necessary power to overcome losses. In order for

the Bormann effect to happen we need
L/bR o™, (17)

where L is the transverse dimension of the X-ray beam. The ponderomotive force of intense
X-rays is relatively modest because the crystal needs layers [Eq. (17)] of lattice to diffract

light. The transverse force on an electron is

2 2 2
Fp=mc2V(eE> ~£<6E) : (18)

mew L \mecw

-The electron is bound to the atom with a force Fy & €*Z2%/a%. By demanding F, < Fp,

we obtain a condition

'=(L) <Za (19)

mew aB

If we assume that for » < 1072 the crystal is intact, this corresponds to the transverse
electric field of 10'V/cm for fiw = 40 keV, yielding the acceleration field of ~ 10°V/cm.
The conventional ionization loss is 2.4 MeV/g cm? or 5 MeV/cm. The radiation length for
Z =30, n = 5x 10?2 atoms/cm? for a muon is 10® cm that limits the length of acceleration.
For example, a 10 TeV p~ loses 10 MeV/cm due to bremsstrahlung. On the other hand,
pF channels in between atomic layers and the radiation length given by Eq. (4) amounts

to 109 cm.



In order to overcome losses of u~ energy of ~ 10 MeV/cm with a typical value of
R; ~ 107*, the X-ray field must exceed F, ~ 10" V/cm, corresponding to the power
density of 3 x 10 W/cm?. The required peak power is given at 3 x 10° W, since the
minimal size is L ~ 2 x 10%ag ~ 107% cm. In a uniform crystal the beam size L(z)

increases from the original size Lo due to diffraction in the crystal according to Ref. 11 to

1/2

L(2) = [} + (0%w/0k},) (2/Lo)’] (20)

Since 8*w/0k}, ~ N2ba~2/2m ~ 10=* cm, it is evident that a confining structure of the
X-ray beam (“optical” fiber of crystal) in the transverse direction is necessary. The pulse
narrowing as discussed in optical fibers'?'® may also take place in the present crystal fiber
channels, enhancing the field strength to our favor.

Other questions, such as channeling and dechanneling and associated radiation, re-
main critically important subjects of investigation, treated to an extent in the existing
literature.'*'® The average quantity of dechanneling length may not be relevant to the
high energy component, however. The origins of the kicks in the crystal are the emission
of a bremsstrahlung photon and a channeling radiation photon, ionization of a crystal
electron, and the scattering with a lattice phonon. Bremsstrahlung and synchrotron ra-
diation are emitted along the channeling oscillation motion with power increasing with
beam energy and thus exerts a friction on this motion, while the rest of the processes are
not an increasing function of energy. This also leaves a possibility of using electrons as a
channeling X-ray radiator. Our work on these subjects will be reported.

In conclusion intense X-rays (peak power > 3 x 10°W; hw = 40 keV) shone on a
superlattice crystal at the Bragg angle can accelerate muons (or heavier particles such as
protons) to high energies through the slow wave structure due to the localized periodic
lattice charge distribution. Because of the channeling by the crystal structure the particle

beams are very well collimated, leading to very high luminosity and brightness; the cross-

8



section of accelerated particles is much less than (1}’1)2. Although the analysis of the

presently suggested concept is preliminary, this acceleration scheme seems to merit further

investigations.

The authors thank Professor N. Rostoker for his encouragement. This work is supported
by the National Science Foundation, Texas Accelerator Center, and the U.S. Department

of Energy.



References

1.

2.

10.

11.

12

R. Hofstadter, HEPL Report 560 (1968) (unpublished).

D.S. Gemmell, Rev. Mod. Phys. 46, 129 (1974); D.V. Morgan, ed. “Channeling”
(John Wiley & Sons, London, 1973); Y. Ohtsuki, “Charged Beam Interaction with
Solids” (Taylor and Francis, New York,l1983).

B.W. Batterman and H. Cole, Rev. Mod. Phys. 36, 681 (1964).

P.O. Ewald, “50 Years of X-ray Diffraction” (International Union of Crystallography,
Utrecht, 1962) p. 249.

L. Esaki and R. Tsu, IBM J. Res. Develop. 14, 61 (1970); also L. Esaki and L.L.
Chang, Phys. Rev. Lett. 33, 495 (1974).

. M. Cavenago and T. Tajima, to be published.

D. Neuffer, in Proc. 12th International Conf. High-Energy Accelerators eds. F.T.
Cole and R. Donaldson (Fermi Nat. Acc. Lab., Batavia, 1983) p. 481.

. V.V. Parkhomchuk and A.N. Skrinsky, sb:d. p. 485.

T. Tajima, :bid. p. 470; K. Mima, T. Ohsuga, H. Takabe, K. Nishihara, T. Tajima,
E. Zaidman, W. Horton, Phys. Rev. Lett. 57, 1421 (1986).

T. Tajima and J.M. Dawson, Phys. Rev. Lett. 43, 267 (1979).

J.D. Jackson, Classical Electrodynamics (John Wiley & Soms, New York, 1962)
Chap. 7.

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).

10



13. A. Hasegawa and F. Tappert, Appl. Phys. Lett. 23, 142 (1973).
14. M.A. Kumakhov and C.G. Trikalinos, Phys. Stat. Sol. (b) 99, 449 (1980).

15. R.A. Carrigan, Jr., in Relativistic Channeling (NATO ASI Series, Plenum, New
York, 1987) to be published.

11



Figure Caption

1. The Bormann anomalous transmission. When the X-rays are injected at the Bragg
angle, the Bormann effect takes place. Particle beams are injected along the crystal

axis.
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