IFS #285

Tearing Mode Growth in a Regime of Weak Magnetic Shear
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The nonlinear growth for the m/n > 2 resistive tearing mode is studied in the case when
the rational surface ¢(rg) = m/n falls in a regime of weak magnetic shear, ¢'(ro) ~ 0. The
island width is determined self-consistently from the nonlinear, zero-helicity component of
the perturbed magnetic flux that provides the local shear. It is found that the magnetic
perturbation keeps growing exponentially in the nonlinear regime on a hybrid resistive-
Alfvénic time scale, while the island width and the vorticity grow on a much slower time
scale. Accordingly, much faster release of magnetic energy results for modes growing near

minima of hollow ¢ profiles.
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T Introduction

Resistive magnetohydrodynamic instabilities and the associated changes in the magnetic
topology play an important role in magnefized plasmas.! The growth of tearing modes?
in magnetically confined plasmas has been connected to anomalous transport, sawtooth
| oscillations and tokamak disruptions. Magnetic reconnection® may also occur in magne-
tospheric and astrophysical phenomena such as the formation of earth’s magnetotail and
the solar flares. The linear behavior of the resistive magnetohydrodynamic (MHD) modes,
primarily their growth rates and the parameter regimes of instability, have been studied in
a number of papers.* Of equal theoretical and practical interest have been studies of the
nonlinear growth rates and the saturation levels. The single helicity approach has usually
been involved in analyzing the situation.® Changes in the local ﬁagnetic shear caused by
the perturbation have been traditionally neglected when the zero helicity component:of
the perturbation is retained.® Thus both the width of the island and the growth rates in-
volve only equilibrium magnetic profiles. For the m > 2 modes it has been shown that the
growth of the perturbation slows down to an algebraic time dependence when the island
width exceeds the resistive layer width.®
In some cases of interest the unstable modes may grow in a regime of very weak external
magnetic shear. For example this may occur if the rational surface, around which the
perturbation is localized, falls near the bottom of a hollow ¢ profile. In such cases it seems
inevitable that the shear produced by the nonlinear, zero-helicity piece of the perturbation
alters the local magnetic profile significantly. For sufficiently small external gradients
the shear produced by the growing mode may soon prevail and the island width become
self-determined. In this work we carry out a simplified nonlinear analysis of the mode
evolution including the self-consistent change in the magnetic profile. We find that the
magnetic perturbation keeps growing exponentially on a hybrid resistive Alfvénic time
scale well inside the nonlinear regime. The width of the island is much larger than the
width of the resistive layer and grows on a much slower time scale. Although our results
were obtained in the limit of negligible background magnetic shear they nevertheless imply

that nonlinear growth is accelerated whenever the parallel nonlinear currents are strong



enough to affect the shaping of the magnetic islands.

IT Mathematical Formulation

The vector fields B and v are related to the poloidal flux ¥ and the stream function @
through
B=Br{-(xVU , v=(xVd

with ¢ the unit vector in the toroidal direction. The evolution of the system is described
in the context of resistive incompressible MHD by the following set of coupled nonlinear

equations involving the two scalar potentials ¥ and &

ov
Ty + V“@=77J, (1)
Oow
‘5{ + [@,w]——V”J, (2)
7= vy, | (3)
w = Vi@, (4)

where [®,w] is the Poisson bracket [%g—‘; - %g—‘;’]. The magnetic field is normalized to
the poloidal field Bp, length to the plasma characteristic length L, velocity to the poloidal
Alfvén speed vy = (B%/ 47r,0)1/ ?_ time to the transit time L/v4 and the normalized resis-
tivity n is the inverse magnetic Reynolds number S~ = ngc?/4nrva L. The field-aligned
gradient V)| and the transverse gradient V are defined in terms of the unit vector along

the total magnetic field b =B/B,
Vy=b6-V , Vi=V-5b-V. (5)

Equation (1) is the generalized Ohm’s law combining the conductivity equation with
the magnetoinductive limit of Maxwell’s equations, and Eq. (2), the vorticity equation, is
obtained by taking the b - Vx projection of the momentum equation.

We will consider coherent helically symmetric perturbations with the helical angle «
defined by

a =n( —mb, (6)



where ( is the toroidal and 6 the poloidal angle. Helical symmetry is expressed by

f(r,8,¢) = f(r, o), (M
for any perturbed quantity f. Accordingly, the nonlinear operator V|| is expressed as

__mi(n_,0%\Oof 09¥Of}
V”f__r [(mr Br)aa 30437'}_ [m £, (8)

where Uy is the total helical flux ¥ = ¥ + (n/2m)r?. The unperturbed potentials are
n
V(1) = Wolr) +pr? , Bo=0, Q
while the perturbed flux ¢ and stream function ¢ are given by

P(r,ont) = Po(r,t) + D a(r,t) cosna

n>1

$(rya,t) = Y du(r,t)sinna. (10)

n>1
Substituting Eqgs. (8) and (10) into Egs. (1)-(2) and retaining only the fundamental (n = 1)
one obtains

o _,00

&, AR ;
Evlﬁbl T (_87) ¢ = oo ot (12)
with
m - da
k= gl Y = é;"I’H = W, (r) + to(r, t). (13)

For mathematical tractaEility only the ¥y, terms were kept among the nonlinear products
Ypi¢; with ¢ 4+ j = 1, assuming that existing higher harmonics remain at small amplitude.
We note in passing that, under certain circumstances, nonlinear cascades could be taken
into account by the use of a phenomenological nonlinear resistivity. Similarly we neglect
coherent contribution from nonlinear convection. Equations (11)-(12) are similar to the
usual linearized tearing mode equations with the addition of the zero-helicity piece of the

perturbation 1o(r) in the local magnetic profiles.



We are interested in modes localized near a rational surface ro defined by

_a\IIHO_nt( m)__ _ .
By Va = 5 =, {5 =0 for r=ro, (14)

where ¢ is the safety factor ¢ = rBp/RByz. As in the general case of the m/n > 2 tearing

mode there are two well-separated spatial scales, parametrized by the plasma characteristic
length L and the island width W with L « W. Viewed from the macroscopic scale the
ideal (n = 0) solutions of Eqgs. (1)-(2) develop a singularity in the vicinity of r = ry,
resolved by the inclusion of finite resistivity and asymptotic matching across the magnetic
island. The connection between the inner solutions and the outer plasma layers enters
through the (macroscopic) discontinuity in the logarithmic derivative

. a rot€

We will consider A’ as given and focus on the structure of the solutions inside an island.

r0—€

Since W < L we expand locally perturbed and unperturbed quantities in x = r — g

around the resonant layer

1
\I}Ho (:L') = E\II},“ (0)372,

B@ ) = 0,02 + 3 dalt) cosna, (16)

n>1
d(z,a,t) = > ¢o(z,t)sinna.
n>1

Here 9,(t) is w—indepencient according to the “constant-i)” approximation, while ¢(z,t)
and the merging velocity v, ~ k0¢/0a are odd in z with v, = 0 at the resonant surface
2z = 0. Our primary interest is in the case when the mode rational surface ry falls very close .
to a point of zero shear ¢'(rg) = 0. This situation is relevant to hollow q. profiles associated
with.skin currents. Location of the resonant surface in the neighborhood of weak shear
¢’ ~ 0 also implies ¥g(ro) =~ 0 according to Eq. (14). Then it may occur that the zero-
helicity piece of the perturbed flux to(z,t) becomes much larger than the background
Wo(z) within the island separatrix. To further clarify this statement we consider the
corresponding island half-width,

B ba(t) 1/2
W= 2{lwg<o>+¢g<o,t>l} ! - n




where from now on we drop the subscript H for helical flux. Even for small z,b ~ ¢, the
ratio ¥{/vy may become small if Uj is sufficiently small. The island width in this case
is determined by the shear produced by the perturbation itself. The subsequent analysis
applies to cases of sufficiently small background shear in the above sense. »

One other assumption concerning the expansion is that the perturbed nonlinear piece
Po(z) is an even function of z with (0/0z),=0, implying that the location of the rational
surface is not altered by the growth of the mode. This is justified by noting that the zero-
helicity component of the perturbation evolves from the interaction 1o ~ (ki14}) v~ where
both ¢} and %, are even in = during the initial quasilinear stage. The original symmetry is
preserved through the nonlinear evolution by the similarity transformations used in solving
Egs. (1)-(2). Asymmetric islands and possible motion of the rational surface, although of
some interest, are beyond the scope of this work.

We will show that a class of approximate solutions to Egs. (1)-(2) exists with the
following salient features: (a) The growth of the magnetic flux remains exponential well
inside the nonlinear regime. (b) The kinetic energy and the island width grow on a much
slower time scale. Thus saturation in the ordinary sense® does not occur in this case
and slowing down will eventually start when the mode alters significantly the equilibrium

profile to change A/,

IIT1 Derivation of the Growth Rate

We start out with the generalized Ohm’s law in order to make the connection between inner
and outer regimes. During the nonlinear stage the perturbed energy is mostly magnetic

with w < ¥; thus the right-hand side of (2) must also be small,
B-V)J~0 , J=J(%). (18)

The flux function prescription for the sheet current J implies that the skin time 7, ~ W?2/n
is much shorter than the characteristic time 7, ~ 1/v. The validity of this condition will
be checked a posteriori from the computed values for v and W. Since both w and %
evolve from the original linear stage of equal magnitudes, relative smallness of w at later

times indicates much slower growth for the velocity fields than the magnetic fields. This



separation of time scales has some important consequences in case of weak shear, as will be
soon clear. Consistency among (3), (8) and (18) requires that ¥ be of the form ¥ = ¥ 4§
with ¥ satisfying (b - V)J = k(8%/8r)V2 ¥ = 0. Although ¥ is unknown, it is checked
by substitution that ¥ in Eq. (16) is of the required form as

(b- V)T = WE (0, ~ 0(e?). (19)

This small departure §¥ ~ €? from an exact flux function provides a small driving term
for the vorticity equation to which we will return later on.

To compute the total current inside the magnetic island we first eliminate the vorticity
from Eq. (1) by taking the average over the helical angle a at constant ¥. For simplicity
we consider only one harmonic in the perturbed flux and use the expansion (16) in z
for the zero-helicity piece, keeping for the moment the contribution from the background
magnetic shear. Integrating across the island, by switching variables from (z, ) to (¥, «),
and matching the macroscopic logarithmic singularity with the total current we obtain,

after Rutherford,

O _ A w7 |
—a';l'—' '4— A1 [2111," +l¢ (0 t)l] ":bl(t)’ (20)

with 5
A= / ds<|s—cosa|1/2> -+ <[s—cosa[ >_0.7
where (b, ¢) is (—1,00) or (—o0, 1) for ¥ + 1 positive or negative respectively and (f) =
(1/27) [ do f is the helical angle average. When ¥/ remains much larger than ¢ at all
times the well known algebraic growth in time is obtained for ¥,
0 1/2 _ nl; [2¥5(z = 0)|1/2
ot 84 '

A completely different picture emerges in the case under consideration with ¥g small

(21)

enough to be dominated by v after a short time from the triggering of the instability.

The equation becomes

0 Al
E"/"l(t) = nzt;;;f%bl(t),

B i (t) 1/2
W= 2l|¢ 7o) t)l] ! (22)
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where the island width W is now determined by the shear generated by the perturbation
itself. It will be seen that W evolves on the same slow time scale with the velocity and thus
it can be considered as constant on the fast time scale growth of the magnetic perturbation
g. The solutions of Eq. (22) with constant W grow exponentially well inside the nonlinear

regime with a growth rate given by
_ 18
AW

The gradual transition from algebraic to exponential growth is connected to the relative

(23)

contribution between perturbed and unperturbed flux in Eq. (17), albeit only the two
limiting cases Eqgs. (21) and (23) seem amenable to analytic methods.

The boundary condition needed for the island width in Eq. (23) is obtained by taking
the helical angle average of Eq. (11) at the rational surface # = 0. Noting that v, = 0
there, one finds

S () 22500 _ o, ) (24)
The term (Ovo/0t) has been dropped in the above equation, being much smaller than
the right-hand side, since for arbitrary growth rate of the form v ~ 7"'4 710 , and inside

the magnetic island z < W we have according to Eqgs. (16) and (23): (8%o/0t)/(n¥g) <
YW/ ~ (ta/mr)""¢ < 1 for any {( < 1. According to Eq. (24) nonlinear convection near
the center is balanced mainly by dissipation while the growth of the island width is tied
to the velocity growth through

2, 8 [0¢:(0,8)]7

where o = sgn [%"(0, t)]. Thus the assumption of slow evolution for the vorticity establishes
through (23) and (25) that the island width also grows slowly while both the zero and unit
helicity components of the perturbed flux grow on the same fast time scale. It will be
shown that the remaining vorticity equation, required to close the set of equations, indeed
admits a class of solutions consistent with the perturbed magnetic profile and growing
slowly on time, dlog¢,/dt < . Thus the solutions found agree with the assumption of
time scale separation.

We note that for a flow ¢; similar to the linear flow with d¢;/0z < 0 we have from

(25) that ¢”(0,t) < 0. The nonlinear current flows against the linear current® and creates
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negative shear, opposite to the shear of the background field. A change of sign for %"(0)
.in Eq. (16) converts z-points in the magnetic topology to 0-points and vice versa.
In order to find d¢y/dz we combine Egs. (11) and (12) into
1ol — B i, O 1 = Ry, ) (26)
Equation (26) has the form of a linear tearing mode with time varying coefficients, since
the local magnetic profile is determined by the perturbed flux ¥, that evolves in time. The
small deviation of the current J from an exact flux function provides the driving term on
the right-hand side.

We now introduce the ansatz

hi(e,t) = V() e { [ dtv [0, )}, (27)

for the solutions of Eq. (26). The exponential remains finite for ¥o(z,t) tending to 0 as
|z] — oo (o(z,t) scales as 2 only inside the current layer) and for 1o(z, t) staying finite
as t — oo (implying that 4(7) — 0 on the slow time scale 7 — 00). Solution (27) evolves
on the slow time scale, dlogty/dt ~ v(§)? < 4. Substitution of (27) and use of the
expression (23) for the island width factors the fast time dependence out of (26) yielding

2V k2? V2A\?

Within the island interior ¢ < W and after rescaling to £ = kV/y and X = z/£, Eq. (28)
is recast into the familiar form,
¢ X2 X
— . — —— — 2
ax? Q@ ¢ z (29)

first obtained for the standard linear tearing mode. Here the coefficients are given by

L= (/K Q=qmk)",

_ 1nt (V2
Z = z;z'( ) (30)

The solution of the inhomogeneous Eq. (29) is considerably simplified” by taking the Fourier
transform of £, S(X) = [%,dX {(X) exp(1XX), transforming (29) into

1d%¢
T Qdx?

52800, (31)

+ X% =



The solution of the above equation is expressed in terms of the parabolic cylinder functions

U, solutions of the homogeneous equation® with Z = 0,

Ex) = AU(0,£v2QY%) , x20

inZo
b= Trop 32
from which it follows that
d _ _ydv _ CT ¢ (v3AL)
Ot =Crr = T VRQ vk ( “a )7 (33)

where ' = [3°dX XU(0,X)/U(0,0) ~ 1 and C(7) is the slowly varying factor of Eq. (27).
We may set C(7) equal to a constant Cy ~ 1 over time periods of order 1/v. Equations
(23), (25) and (33) then form a closed set involving v, W and d¢;/dz. Solving, undoing
the normalizations and approximating (CT")%7 ~ 1 we find an exponential hybrid resistive-

Alfvénic nonlinear growth rate

3 TR R DAL (34)
and an island width
OW ~ 24/BLS~*"(kL)~*"(A, L), (35)

much larger than the resistive layer
w ~ LS~3/"(kL)~3"(AL L)/, (36)

Using A} L ~ 102 and kL ~ 1 as typical values in Eq. (35) one obtains 2W ~ 3LS~%/".
Typical large tokamak parameters as for the recent JET discharges® are R ~ 3m, a/R ~
0.4, By ~ 3.4T at the center, nTgT; = 10?°m3.sec.keV with 75 = 0.8sec, T} ~ 12.5 keV,
and T, ~ 5 keV. Assuming that the ¢ = 2 rational surface is at r = a/2 ~ L and employing
the Spitzer parallel resistivity at half the central electron temperature we obtain S ~ 107
and 2W ~ 1.8 cm.

We note that both the island width and the growth rate do evolve on the slow time scale,
as seen by reviving the slow time dependence C(7) in Eq. (34) and (35). Equation (23)
also shows that the growth rate v(7) tends to decrease with increasing island width W (7).
Finally the skin time can be evaluated from (34) and (35). It is found that y7, ~ §~%7 < 1;
thus the requirement for the validity of Eq. (18) is satisfied.
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IV  Conclusions

In this paper we investigated the nonlinear evolution of tearing modes m > 2 localized
in regimes of very weak magnetic shear. Fast growth of the magnetic perturbation was
found to persist well within the nonlinear regime, while the nonlinear velocities and island
width evolve on a siower time scale. The change in the equilibrium profiles away from the
island, caused by the nonlinear current, will change the associated value for A’, eventually
leading to saturation. Few numerical simulations relevant to the discussed situation have
appeared so far, although the situation may change in the future because of the reviving
interest in hollow ¢ profile plasmas. However qualitative agreement appears with the
numerical results of Ref. 10 for runs with large shear length L. Fast evolution deeply
into the nonlinear regime persists in these results for magnetic Reynolds number 5 > 104
becoming almost exponential at S = 106 over a time period of 10* Alfvén transit times.
The magnetic Reynolds number S = Lvg/c?n in these runs was defined in terms of the
plasma characteristic length L at the mode rational surface. The amount of reconnected
flux AV = [?"da |1h1(a)| increased 10? times while the separatrix width increased by a
factor of 10. The final magnetic perturbation energy was 10? times larger than the kinetic
energy starting from an initial state of equipartition. This time scale separation tends to be
stronger with increasing L. It seems however that in these runs L was never large enough
for the background shear to cease being a factor. Our analysis, although strictly valid in
the limit of infinitesimal equilibrium shear, nevertheless implies that acceleration of the
nonlinear evolution occurs whenever the nonlinear current interferes with the shaping of
the magnetic island. If nonlinear effects compare with the effect of the unperturbed profile
the nonlinear evolution is expected to be faster than algebraic and the island width is to
be saturated at much larger width than the resistive layer. Much faster release of magnetic

energy should result from tearing modes growing inside hollow ¢ profiles.
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