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Abstract In area-preserving maps, the area under an invariant set as a
function of frequency is a devil's staircase. We show this staircase is
the derivative of the average action of the invariant set with respect to
frequency. This implies that resonances fill the phase space completely
when there are no invariant curves. -
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The study of transport in low degree-of-freedom Hamiltonian
systems is of considerable importance to various fields of phgsics‘ (eq.
plasma confinement, particle accelerators, celestial mechanics, etc).
Typically, when the system is near the integrable case, there are
invariant tori almost everywhere, and they act as absolute barriers to
transport; therefore, no global transport is observed. However, as the
perturbation increases, some of the tori are broken and become invariant
cantor sets (or "cantori”) which don’t restrict the global transport any
more. The region over which transport can occur is limited by the
remaining tori; as these are successively destroyed, this can become the
entire phase space.2 We call this situation "supercritical.”

Since the phase space is usually a complex mixture of regular and
irregular regions, we need to divide it into different "quasi-local”
states to account for the regular behavior (or stickiness). Recently, it
was shown that such a decomposition is possible: the states are called
“resonances.”3 They are the regions bounded by partial separatrices, and
they never overlap. Transport takes place by transition between
resonances whose turnstiles overlap. Combined with the flux theorg,4
this model gives us a detailed description of global transport as
successive jumps between different resonances. It also successfully
predicts various statistical quantities.

In order that resonances take over the whole phase space in the
supercritical case, the area under an invariant as a function of its
frequency should be a complete devil's staircase (see the following for
details). Indeed, numerical calculation of the area function by MacKay et
al. indicates this.3 We show here that the area staircase is complete in
the supercritical case. In fact it is the same devil’s staircase discovered
by Aubrg5s6 in the study of the commensurate-incommensurate
transition in the classic;al Frenkel-Kontorava model. Additionally, our
results give a formula for the area under an invariant circle. This is
important in the study of adiabatic invariance.’

We will consider an area-preserving twist map T on the torus:




T(x,p) = (x',p") (1)

Sometimes it is convenient to lift this map to the plane RZ, then it can
be written in the action representation in the forms:

p'dx’ - pdx = dF(x,x’") (2a)
or

P = - 9QF(X,x')/9%

p' = OF(X,x')/3x’ (2b)

We assume the generating function F(x,x’) has the form:

F(x,%') = K(x=x") = V(X) (3)
where the potential, V(x), is a periodic function with period 1 and the
kinetic enengy, K(x), a convex function. The twist condition,

3%F(x,x')/3x'3% < 0, is assumed to be satisfied everywhere,

An example of the above model is the much-studied standard map2
where

kcos(27%)
V(®) = = ————— :
(270)2
K(x) = 1/, x2 (4a)
or:
D' = p - k/27 sin(27Tx)

X' =X+ (4b)

An orbit { xj } of the map T is therefore a stationary state of the



action:
W({xi}) = 2 F(%j,%j+1) (5)
1

Equation (5) defines the classical Frenkel-Kontorava model as a one
dimensional harmonic chain in a periodic external potential.

Among various orbits of the map T, those which minimize the action
(5) are the most important ones. Generally, they correspond to the
hyperbolic Poincare-Birkhoff orbits. The map preserves the angular order
of these orbits,® so they have frequencies defined as the average
rotation per iteration. We will say an periodic orbit is of type (m,n) if it
has period n and frequency m/n.

The way to construct the (m,n) resonance is shown in figure 5 We
illustrate the process for a (1,3) resonance of the standard map. Starting
from the minimizing (1,3) orbit, we form the upper partial separatrix by
following the right-going unstable manifold of some point Mo, till this
unstable manifold crosses the stable manifold of its right neighboring
point at some point M+3. In fact there are an infinity of such points and
they form the homoclinic orbits from minimizing (1,3) orbit to itself. A
homoclinic orbit on the right-going stable and unstable manifolds will be
denoted as (1,3), orbit. There are also an infinity of such orbits, we
will be interested in the one with the least action, the minimizing
homoclinic orbit. From the point M"3 we follow the stable manifold of
the minimizing (1,3) orbit till it reaches Mg. This defines the upper
partial separatrix in the largest gap of the (1,3) resonance, the upper
partial separatrix in the other gaps are formed by taking two preimages
of this one. The lower partial separatrix is formed similarly. The region
bounded by the upper and lower partial separatrices is the (1,3)
resonance.

The area under the upper or lower partial separatrix of an (m,n)
resonance gives the upper or lower area of this resonance; the difference
of the two is its area. By integrating eq(2) it is found that these two




areas are given bg=3

A*(m/n) = § {tnI [F(x+m+t,><+m+t+1) - F(xt,xt+1)]}
]:—00 =

A'(m/n) = % {t%] [F(Xt,x’u]) - F(X_in+t,x_in+t+]):|} (6)
]:—'OO =

where { x¥¢ } is the (m,n), minimizing orbit and { x7¢ } the (m,n)-
minimizing orbit.

Obviously the area under an invariant circle is well defined, it turns
out we can also define the area under a hyperbolic cantorus of irrational
frequency », the formula is:3

ADY = = S [FO e ) -Fxlpxlps ] (7)

t==o0

where { xlt } is the orbit of the left endpoints of a gap in the cantorus
and { x"t } the orbit of the right endpoints.

So the area as a function of frequency has a jump at each rational
number and is monotonically increasing; therefore, it is a devil's
staircase.

The average action for all minimizing configurations as a function
of the frequency v is defined as:

N-1
e = 1im { Y Flaxner) } 7 W) (8)
N-N’ -oc  n=N’

It was shown that this average action exists and is a convex function of
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the frequency v; therefore, it has monotonically increasing left and right
derivatives e’~(v) and e'*(v) which are equal almost everywhere.®

Now we show that the derivative of the average action with respect
to frequency gives us the area devil's staircase: '

A(v) = de(v)/dv v irrational

A*(p) = de(v)f’/dv
P rational
AT(®) = de(v)™/dv ’ (9)

According to Aubrg,6 the derivative of the average action with
respect to frequency is a complete devil's staircase when the lower.
bound of the Lyapunov exponents of all the minimizing orbits is positive;
this implies all invariant circles are destroyed and all cantori are
hyperbolic, therefore, resonances fill the entire phase space.

Let us calculate ¢'*(v) and e'~(») for a rational frequency m/n. To
approach the minimizing (m,n) configuration from above and below, we
use the minimizing (mk+m,nk+ny) and (mk+mo,nk+ny) configuration,
respectively, and let the integer k go to infim‘tg.3 The integers my, ny,
Mo, Ny are uniquely determined by:

mn-nm=1, mon-nom=-1, nqnp<n (10)

As k goes to infinity, these two configurations limit to the upper and
lower minimizing orbits homoclinic to the (m,n) orbit, respectively. Let
{ xK*{ } denote the minimizing (mk+my,nk+ny) orbit, then the derivative
of e(v) from above is given by: | ’




1
e’"(») = lim x
K200 (mk+m{)/(nk+n) - m/n

S FxK* e xK¥ ) RACTRID

NK+ny n

= lim [n % F(xK* %K, 1) = (nk+nyp) % F(xt,xt+])]

k= o0
0 Al
= Z {Z [F(X+in+t,><+m+t+]) - F(xt’_xt+1)]}

The sums in the first two equalities are taken over the period of the
orbits. Similar result holds for e~ (v). Since these equations are
identical to eq(6), this implies eq(9) for rational frequency.

In order to prove eq(9) for irrational frequency, we use the following
lemma:8

Lemma: If R is a rotation of the circle [0,1) through an irrational angle,
and f is a Riemann integrable function, then the time average of the
function f is equal to its spatial average, i.e.

N-1 , 1
lim [ 3 fRIG) ] /N = J’ f(0)de (11)
N-ooo ~ {=0 0
For an irrational frequency v, the minimizing configuration is either
an invariant circle or a cantorus. In either case there exists a

monotonically increasing function f such that:

X = T(NP+) | (12)
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Periodicity implies that f(e+1) = f(8) + 1. Besides its explicit

dependence on the frequency v in its argument, the functional form of f
also depends on the frequency v. For a subcritical invariant circle, f is
analytic, and for a hyperbolic cantorus, T can be written as the sum of

step functions:
f(x) = z fiH(X-Xi) (13)
1
where H(x) = 1, x > 1; H(x) = 0, x < 0 is the Heaviside function.

It follows from the above lemma that for an irrational frequency v:

i
o(p) = j F(x(6).%(6+7))d0 (14)
0

Indeed, Percival used this average action to formulate the variational
principle for invariant tori and cantori.®

For a subcritical circle, x(6) is analytic, so we can interchange the
order of differentiation and integration; therefore,

1 AF(x(8),x(6+V)) dx(6+¥)
de(v)/dv = J de +
, 0 ox(6+Vv) de

de

1 OF(x(6),x(6+v)) 3x(6+V) 1 AF(x(0),x(6+1)) 3x(6)
de +
J0 Ix(e+v) v J’0 ax(6) v

éﬁhe partial derivative dx(8)/3v is due to the dependence of the orbit
" tonfiguration x(6) on the frequency v. Using eq(2b), this becomes:



3x(6+v) 1 ax(e)

1 1
= j p(6+1)dx(6+7) J p(6+p) ————— do - [ p(8) —— do
0 0 v 0 av

1
- j p(6)dx(0) = A(P)
0

In fact, the condition that x(©) be analytic can be relaxed. As long as
x(©) is transitive, the above equation holds so that it is applicable to the
critical invariant circle.

For a hyperbolic cantorus, since x(©) is a sum of step functions, the
integrand F(x(©),x(6+v)) in (14) is also a sum of step functions:

F(x(8),x(0+v)) = > FiH(e-64) (15)
t
Ft is nothing but the discontinuity of the generating function at the gap

in the cantorus. Let { xlt } be the orbit of the left endpoints of a gap in
the cantorus, { x"+ } the orbit of the right endpoints, thus:

F(x, % e 1) = FOxlpxbie )
Plrc mod 1 (16)

Ft
01

The function on the right hand side of eq(15) is periodically extended to
the whole real line.

Taking the derivative of the average action e(v) yields:
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] 8F(Xrt, Xrt.;.]) axrt aF(Xrt, Xrt+1) 8><rt+1

de(v)/dv=j > { +
0t oxl't oy x4 av

8F(><1t, Xlt+]) ax‘t aF(Xlt, Xlt+]) 8X1t+1

- - H(e-61) de
oxly av axlis av
d(vt+x)
- Z Ft —_ —
t dv
S CR axlisy
1, % (Pl e o pliyq— ~ ) H(6-61. 1 +¥) dO
n 8><rt axlt
- Z T - pli——) H(e-ey) do - 3 tFy
0t oy av t

where in the last equality, the integrand of the first term is the shift in
the © variable by an angle v of that of the second term. Again these two
terms cancel due to the periodicity of the integrand. Thus:

de(r)/dv = = 3t [F(x"y, ¥ap) = Fxlpxla )]
t

This is exactly the same formula as Eq(7).

Equation (9) gives a convenient formula for computing the area under
an invariant circle. We use periodic orbits whose frequencies are the
successive rational approximants of the irrational frequency of the
invariant circle to obtain the derivative of the average action. The
results for the golden mean invariant circle at two parameter values for
the standard map are shown in table 1. A(#) is the area calculated using
rational approximants at level 4, the convergence rate §(9) is defined as:
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8(8) = (AQ+1) = AM)/(A®) - AR-1)) (17)

Notice this method converges considerably faster than the linear
interpolation method (see table 2). In the latter case, we compute the
area under a periodic orbit by connecting neighboring points with
straight lines. The convergence rate is so slow that it virtually
impossible to find the area without the cost of extremely long
approximating periodic orbits.
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Figure caption

figure 1: (1,3) resonance for the standard map in symmetry coordinates.
Mt are points on the period 3 minimizing orbit, Sy are points on the
period 3 minimax orbit. M+t are points on the minimizing homoclinic
orbit.



13

Table 1

Area under the golden mean KAM curve calculated by the method
mentioned in this paper at different parameter values. Orbits are

calculated to precision 10-12, A(®) is the area calculated from the #(th)

rational approximating periodic orbit of the golden mean curve, §() is
the convergence rate at the level # defined by eq(17).

k =0.9

Level M/N A(D) O

4 5/8 0.6104229 —
S 8/13 0.6164991 -0.39350 -
6 13/21 0.6141081 -0.39701
7 21/34 0.61503573 -0.39712
8 34/55 0.6146804 -0.39303
9 55/89 0.6148285 ~0.38682
10 89/144 0.6147712 -0.38299
11 144/233 0.6147932 -0.38205
12 233/377 0.6147848 -0.38165
13 377/610 0.6147880 -0.38197
14 610/987 0.6147/868 -
k = kc = 0.971635406

Level M/N Al O

4 5/8 0.6103039 —
) 8/13 0.61357395 -0.37235
6 13/21 0.6137281 -0.37417
7 21/34 0.6144882 -0.37174
8 34/55 0.6142056 -0.37373
S 55/89 0.6143112 -0.37233
10 89/144 0.6142719 -0.37326
11 144/233 0.6142866 -0.37266
12 233/377 0.6142811 ~-0.37304
13 377/610 0.6142831 -0.37280
14 610/987 0.6142824 -0.37295
15 987/1597 0.6142827 -0.37286
16 1597/2584 0.6142826 -
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Table 2

Area under the golden mean KAM curve calculated by linearl _
interpolating the nelghborinquomts of the periodic orbits. All Orbits are
calculated to precision 10712, A() is the area calculated from the #(th)
rational approximating periodic orbit of the golden mean curve, §(9) is

the convergence rate at the level # defined by eq(17).

k=0.9

T Lo Yo :RNTe Y N

Level M/N Al 5(9)
4 5/8 0.7081045 —
) 8/13 0.6708096 0.38843
6 13/21 0.6563233 0.9623 1
7 21/34 0.6423830 0.60258
8 34/55 0.6339828 0.78309
S 55/89 0.6274048 0.6/063
10 89/144 0.62293934 0.69026
11 144/233 0.6199483 0.63581
12 233/377 0.6180122 0.63471
13 377/610 0.6167834 0.61881
14 610/987 0.6102303 -
k = ke = 0.971635406 |
Level M/N A(P) §(9)
5/8 0.7038759 N
8/13 0.6688289 0.38648
13/21 0.6545110 0.93595
21/34 0.6411104 0.58039
34/55 0.6333304 0.75352
55/89 0.6274674 0.66256
0 89/144 0.623583 1 0.71357
1 144/233 0.6208036 0.69140
2 233/377 0.6188818 0.70734
3 377/610 0.6175225 0.70114
4 £10/987 0.61656394 0.70601
S 987/1597 0.61583965 0.70456
6 1597/2584 0.6154224 -



