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The distribution of energetic charged particles generated by thermonuclear fusion re-
actions in a field reversed configuration (FRC) are studied analytically and numerically.
A fraction of the charged fusion products escapes directly while the others are trapped
to form a directed particle flow parallel to the plasma current. It is shown that the re-

sultant current density produced by these fusion charged particles can be comparable to

background plasma current density that produces the original field reversed configuration

in a D-3He reactor. Self-consistent equilibria arising from the currents of the background
plasma and proton fusion products are constructed where the Larmor radius of the fusion
product is of arbitrary size. Reactor relevant parameters are examined, such as how the
fusion reactivity rate varies as a result of supporting the pressuré associated with the fusion
products. A model for synchrotron emission from various pressure profiles is developed
and it is shown quantitatively how synchrotron losses vary with different pressure profiles

in an FRC configuration.
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I Introduction

Energetic particle beams in a magnetized plasma have been studied as a means of sus-
taining current!~® or for stabilizing various instabilities in a plasma.>"=° Often, the use
of externally imposed neutral beams is assumed. However, a large amount of energetic
fusion charged particles can be present in a burning plasma. In these situations, studies on
the favorable or unfavorable effects of fusion charged particles are of interest and of great
importance.

In order to provide a distinct model, we will analyze the behavior of fusion charged
products in an axisymmetric field reversed configuration (FRC). One important character-
istic of this configuration is that the typical Larmor radius of the fusion product is quite
large and sometimes comparable to the separatrix radius. This brings in a number of
significant consequences, including the possibility that a significant fraction of the current
can be sustained by the fusion products. -

We will choose the z-axis of the cylindrical coordinates as the axis of symmetry. The flux
function of a field reversed configuration is taken as zero on the separatrix and without loss
of generality it is assumed that it is positive inside the separatrix. Thus, the flux function
has its maximum value at the field null and decreases monotonically away from the null
point.

The fusion products move in dynamical orbits in accordance with the equations of
motion and Coulomb collisions. We assume that at birth Coulomb drag dominates the
collision processes. Only at lower energies, where the effect on current flow is small, is the
Coulomb scattering process important. This assumption is satisfied for protons that are
produced from the reaction of D-*He in the plasma of density of interest (~ 10°cm™3).
Thus we are justified in only accounting for drag when considering the effect of collisions.

We shall investigate the structure of the currents formed by fusion products by two
methods. One is a semi-analytical one in which an ergodicity assumption is made that
a particle with a fixed speed and canonical angular momentum can reach every point
of its accessible region of phase space with equal probability. This assumption was also

invoked by Lovelace,® who investigated a somewhat similar problem but with emphasis




of the structure of systems whose high energy particles have Larmor radii the size of the
plasma radius. We are able to derive the steady-state distribution function which evolves
according to the Fokker-Planck drag equation. From this distribution we calculate the
current that arises from the charged fusion products. '

The rigorous justification of this method depends on the accuracy of the ergodic as-
sumption. In an alternate approach, we develop a particle simulation method for con-
structing the current profile. The orbits of a group of particles that are distributed with
an initial weight proportional to the local rate of fusion production and which slow down
according to the classical drag equation, are integrated in time. We then calculate the
current produced by such a distribution and show that the time integrated current of this
distribution function is, to within the accuracy of the statistical fluctuations, exactly the
steady-state distribution one would calculate when one has a continuous source given by
the fusion production rate.

An analysis of the exact particle orbits indicates that the ergodic assumption is not
fulfilled. Nonetheless, the current profiles obtained by the particle simulation method are
qualitatively similar to the semi-analytic method that uses the ergodic hypothesis. We
discuss the reason for the close agreement of the two methods as well as compare the
discrepancies.

The investigation of the currents produced by the slowing down distribution shows that
it produces similar current profiles as prompt fusion products that last about a slowing
down time, and are then lost. The distribution of currents for such a mechanism is easily
obtained, and as a result the self-consistent magnetic field is readily calculated. With
this calculation one can quantitatively assess various fusion parameters such as the reac-
tivity, synchrotron radiation, plasma size, required magnetic field, etc. Examples of such
parameters will be presented.

An important point that one needs to consider is whether fusion products actually carry
current, or whether they are just a source of momentum, and their current is cancelled
by the plasma background current, or alternatively the fusion products induce current via
the Ohkawa effect? which arises if the fusion product has a different atomic number than
the effective atomic number of the plasma. In this paper we assume that the charged

fusion product carries a current. We note that Sudan and Reimann® and Hammer and




Berk® have pointed out that a significant plasma back-current can only arise if the plasma
obtains a significant rotational velocity that is driven by E x B drifts of a radial electric
field. If a mechanism for electron viscosity exists, these electric fields are shorted out and
the currents induced by the fusion products will not be be cancelled by the background
plasma. In Ref. 5, it is pointed out that the instabilities that can arise from the induced
electric fields, is a mechanism for maintaining the needed electron viscosity which enables
the flow of the charged energetic species to be a current. Alternatively, externally imposed
§-symmetry violations can induce the need electron viscosity.®

Section II discusses the semi-analytical method of treating the velocity and spatial
distribution of the fusion produced particles. The particle simulation method and results
are presented in Sec. IIL. Section IV deals with the self-consistent magnetic field calculation.
Section V discusses various reactor relevant physical quantities and their relative merits

for a fusion reactor and draws conclusions.

II Semi-Analytical Method

Particles moving in a magnetic field without an electric field have two exact constants of
motion: its speed v and the canonical angular momentum per unit mass p = rvg + U(r,z),
where U is the magnetic flux function ¢ multiplied by ¢/Mc with g the charge and M the
mass of the particle. Particles with given p and v are confined within an accessible domain

D, of the phase space with Dy, defined by:
Dy = {(r;v) s rv>|p=U(r,2)]} (1)

(i.e., the domain of accessible r, v is determined by the conditions rv > Ilp — U(r, z)| with
p and v constant). Examples of the domains D, D,, Ds,... for canonical momenta p;, ps,
p3,... with p; > p, > ps > ..., are shown in Fig. 1. One can readily show that, if p; < px
and p; > 0, the outer boundary surface of D; surrounds the other boundary surface of Dy,
while the inner boundary surface (if it exists) of D; surrounds the inner boundary surface
of Dy (if it exists). For a given v, the maximum value of p = p; (for which D is 2 single

point.in our diagram) is determined by the betatron condition

Ty = pb—U(Tb,O)




v = —diZ;U(rb,O), (2)

where z = 0 is the mirror symmetry point in the z-direction. For values of p > p., D does
not have an inner boundary, while for p < p., D has an inner boundary, with p, determined

from the conditions

rev = U(re,0) — p.
d
vo= E"U(Tc, 0). (3)

We note that at p = av, the domain D grazes the separatrix and for p < av, the domain
D intersects the separatrix, where a is the radius of the separatrix at z = 0.

The motion of the particle does not have another exact invariant although an additional
adiabatic invariant or dynamical accessibility constraints may exist. As a first approxima-
tion or as a model, it is assumed that particles can reach on a collision time scale, every
point of the accessible phase space domain with equal probability (maximum ergodicity).
This assumption has also been made by Lovelace in related studies of ion rings.’®!* The
accuracy of the stochasticity assumption has also been studied in Refs. 12 and 13.

We will also assume that if a particle penetrafes the separatrix, it is lost quickly com-
pared to a characteristic collision rate of the plasma, through such processes as edge
cooling, charge exchange, orbit instabilities, due to the relatively sharp magnetic field at
the separatrix, etc. This assumption may be somewhat controversial, as in some concepts
an important role is played by particles confined on open field lines. Nevertheless, if energy
confinement on closed lines is appreciably greater than on open field lines, our assumption
is valid as long as the confined plasma is isothermal up to the separatrix. Thus, we define
a particle to be confined if its accessible domain does not penetrate the separatrix. It fol-
lows from the above considerations that the condition for a fusion charged particle being

confined within the separatrix can be described by the inequality:
p > av. (4)

We will see later this selective particle confinement gives rise to a directed particle flow in
a plasma.
In order to analyze the directed flows, we shall evaluate the distribution function of the

fusion charged particles. A certain amount of fusion charged particles will be lost directly




through the separatrix and the other particles satisfying condition (4) are trapped within
the separatrix. Since the initial speed vo of these trapped particles is much higher than
the thermal speed of plasma ions and much lower than the electron thermal speed under
consideration, collisions primarily cause a drag force due to the b&ckground electrons.
When pitch angle diffusion becomes appreciable, the speeds of fusion products are low,
and thus will not greatly influence the expressions we obtain for the particle flow. Thus

the equation for the distribution f(r,z,6,p,v,v,) of the charged fusion products takes the

form:
vr%; + (pZZU)%g+vzg- %ﬁ%%gi
+ S(TaZ)i%%G(p—avo)e[pb(vo)_p], (5)

where v(r,z), ve(r,z) and S(r,z) are respectively: the frequency of the slowing down
collisions due to the electron drag with

4(27) %t In A 2.9x10°InA
V/n = 372 ~ =372
3 e M A € .

(e is the electronic charge, M the fusion product mass, A the atomic number, and T,

and T are the electron temperature in ergs and in eV'), the critical speed where angular
scattering becomes appreciable, and the generation rate of fusion particles per unit volume.
The function §(r) is Dirac’s delta function and 6(z) is Heaviside’s step function.

For weak collisions and sources, the left-hand side of Eq. (5), is denoted as Lof and
it describes the evolution on a dynamical time scale. Lof is normally large compared to
the right-hand side of Eq. (5), which we denote as —L,f + A. The left-hand side describes
collisions and the fusion production rate. Thus, we take f = fo + fi, with fo > f1, and

using perturbation theory, we have for the first two orders,

Lofo=0
Lofi = —L1fo + A. (6)

The form fo(p,v) certainly solves Lofo = 0. A more general solution for fo can arise

if the particle motion possesses adiabatic invariants or if the collisionless flow has KAM
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(Kolmogorov-Arnold-Mozer) surface barriers that prevents all of the region D(,) from
being reached. However, if we assume that neither adiabatic invariants or KAM barriers
exist for the configuration we are studying, then fo = fo(p,v) is the solution of the first
equation in (6). In the second equation of (6) we can eliminate f; by integrating the volume
element drdfdv,dz/ |v,(v, p, U, p,)| over its accessible domain. One can show that the left-
hand side vanishes by assuming regular boundary conditions, using vg0U/0z = rovl/0z
and performing suitable parts integrations. We then obtain the following equation which

describes the evolution of fy(p,v),

;% [((u) o3+ <uv§>) f(p,v)] + %[(1/) p— (vU)] ;% [(,,) 0?4 <yvg>] f

) 50 — v0)8(p — avo)8 [s(v0) ~ 71, )

U

where the volumetric mean of a quantity Q(r, 2) is defined as:

1
Qe = /D(M) mQ(T, z)dv,drdz - /;v>|p—UlQ(r’ z)drdz.

(pv) = -
g / Ldvzdralz / drdz
D(p’,,) IUTI rv>|p=U]|

(8)

Note that the subscript (p, v) was suppressed in Eq. (7) as well as the subscript 0 in fo. If
for simplicity we neglect the space dependence of v., we can rewrite Eq. (7) as,

0 1/3. 3 1 vU 3 3\ 0
216+ 1+ 5 [p- G| (0 +0) 3

= _—4:7(r_5(’21;76(v — v0)8(p — avo)8 [ps(vo) — P .- (9)

The solution to Eq. (9) obtained by the use of the method of characteristics is

_ ($ )[po(p,v)»vo] _ _w
f(p,v) = Tn(o° + v3) (V)[po(m)ml“)[po(p,v)—avo]9[pb(vo) po(p,v)] 6(v —vo).  (10)

Here, the quantity po is to be defined as a function of p and v through the solution

p(u) = p(u; po(vo)) of the characteristic equation defined from Eq. (9),
4 [oa] L 012 o

du | u (v) u?
with the initial condition: p(u = vp) = po and final endpoint condition p(u =v) =p. The
integral of Eq. (11) is
Pov w . (vU)
v)=—+v / du——. 12
p) =22 4o [l (12)
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It then follows that a fusion product, whose accessible domain just grazes the separatrix
(i.e., po = avy), will as it slows down have a domain that always lies inside the separatrix.
This follows from Eq. (12) because if p = av, we see that p(v) > av for v < vo. Further,
from the property that the solutions to Eq. (11) with different inifial po values cannot
cross, it readily follows that particles born with py > avo will likewise always be trapped
as they slow down. '

It can also be shown that the solution for p(u) with p(ve) = py(vo) is ps(u), so that a
particle born in a betatron orbit remains in a betatron orbit as it slows down. Thus the
Heaviside function 8(p;(ve)—po(p,v)) in Eq. (10) can be suppressed. As py(v) 2 ro-U(r, 2),
p in Eq. (10) can take on all values in the physical domain rv <-|p— U(r, 2)|.

We now use Eq. (10) for the distribution function, to evaluate the fusion product current

flow J; in the §-direction. We use

3 2dv,dpdvv
d*v = 172
r[v? = (p—U)?/r? —v?]
where the factor of 2 accounts for positive and negative vy, .

o= [p=Ur,z)]

and we integrate over the accessible region of v, to find,

— g [v dvv
Jy = q/d%vef = 2?/0 (v® + v2) (13)
ro+U(r,z) (S)
d -U T,z P00 g ,v) — av
Jreyon ol =T 23226 () — v

We also note that if the background plasma is isothermal and if the relative concentration
of the reacting ion mixture is homogeneous (we shall now assume the fusion product results

from the interaction of two species with densities n; and n, with a reaction rate ov;) then

<S>po,vo <n2)po,vo gv;

= ; (14)
(V>P01'U0 (n>p01'UO V/n

with ¢ = nyongo/né with nyg, noo, no the density at the field null for the two ion species and

the electrons respectively. For an axially extended MHD equilibrium with 8P/8U = const,

with P the background plasma pressure the magnetic field at the mid-plane is of the form!*

Bl _, (1 - 2-) | (15)




where w, = ¢Bg(a)/Mec, with M the mass of the fusion product. The background plasma

current, J,, is given by

OBy —4Muw.r
or =~ qa?

Then the ratio J¢(r,z)/Jp(a) can be written as

']f(r’z) _ ﬂeEF Nng0v;
7,(a,0) Y 4T, 1 aln(r,2) - (17)

where @ = aw./vo, T. = electron temperature, fo = 8mnoT, /B%(a) = electron beta for

dnJ,(r) = (16)

Hill’s extended vortex solution,'® Er = Mv2/2, and the renormalized current is defined as

2 r1
) = 35 [

2r2 Jo &3+ s
y [U(r,z)+x8 dy[y _ U(T, Z)]me(po - avo) (18)
U(r,z)~xs o (n>p°’”°

with s = v/vo, y = p/ave, T = r/a, U(r,z) = U(r,2)/ave = az?(1 — z?) with z = 0 and
S. = v./vo. We have assumed that the background temperature is constant in space.

To evaluate these integrals we need to know how po(y, s) is to be determined. This is
obtained by evaluating Eq. (12) numerically. Results are shown in Fig. 2 for & = 5 and
15. These curves need to be used in determining the density functions (n?),, , and (1) po o
in the integrand of Eq. (18). For example, in Fig. 2, there is a curve that links the point
(s,7) to an initial value point s = 1 and y = yo. Thus from the curve that intersects at
a given (s,y), we can determine the value of yo of the curve at s = 1, and thereby obtain
Py = avpyp, which one needs to know in evaluating the volumetric means (nz)po’vo and
< 1> o 00

It is interesting to evaluate Iy assuming k = (n?), . /(n), ., is independent of p and

v. In this case the y integration in Eq. (18) can be performed and yields,
1
Iu(r,2) = %/ ds—— G (19)
0

s34+ 82

where i,
y=U(rz)+zs

G= [112_2 - U(r, z)y] 6 [ﬁ(r,z) + zs — y(s; 1)] )

y=ﬁ(r,z)—zs
y(s;yo = 1) = p(v;avy)/ave, and y(s) = y(s;yo = 1) satisfies the differential equation

obtained from Eq. (11) i
4 (2) = _@ (20)

(v) s




with the initial condition y = 1 when s = 1. The numerical solution of Eq. (20) (with
v « U) is the lowest curve of Fig. 2 for an arbitrarily long equilibrium. Observe that if
U(az,z) — s > y(s;1) then G = 0, while if U(az,z) + zs > y(s;1) > U(az,2) — s, we
find '

1 y(s;1)

=z [2%s® = T%(r, 2)] — y(s;1) [T - ﬁ(r,z)l - (21)

The remaining s integral has to be performed numerically.

It is important to have an insight into these solutions for G. If U(r,2) —zs < y(s;1) <
U(r,z) + zs, particles can reach the point (az, z), but part of the phase space accessible
to (az,z) is unoccupied because of direct losses. The imbalance in the occupation of
phase space allows a flow. The mechanism is quite similar to an array of equal strength
diamagnetic loops that suddenly terminate (as shown in Fig. 3). In the region of the
last Larmor diameter, such as point “b” in Fig. 3, the downward vertical flux of particles
whose guiding centers are on the left of the observation point, is larger than the upward
flux of particles whose guiding centers are on the right side of the observation point where
guiding centers are depleted. However, if U(zs,2) — zs > y(s;1), all the particles that
can dynamically reach the point (az,z) are all part of a phase space region with no direct
losses. Then, the model of treating (n?) / (n) as a constant, produces a birth source that
is independent of phase space. As a result, there is no preferred direction of the flow and
one obtains complete cancellation of the current, in a manner quite analogous to the flux

»

cancellation at point “a” in Fig. 3.

We have evaluated Eq. (18) numerically with v o U. The results are shown in Fig. 4
for = 5, 10 and 15. Note that 1/« is the ratio of the gyroradius in the vacuum field to
the plasma radius. For small o we obtain a smooth profile of the current density. At larger
ala = 10) a dip develops, which becomes a very pronounced minimum as « increases
further (o = 15). We note that the zeros of the current Iy at small z arises because none
of the fusion products born at small z are contained. The small values of Iy in the central
region arises because of the cancellation that arises from particles with oppositely directed
velocities.

It is interesting to compute the current profiles obtained if we assume (n?), . /{10) 4 .,

is a fixed number and the contained fusion products exist for a time A/vp without slowing
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down. For this model the current profile factor in Eq. (18), Ix(z, 2) = Ip is found to be

IM=%{1—- [ﬁ(x,z)—1]2/x2}9[x2—(z7'-1)2]. | (22)

Plots of this function are shown in Fig. 5 with A = 1. We note that the current profiles
of this model are very similar to the slowing down model. The amplitudes are slightly
different but choosing A &~ 0.6 synchronizes the amplitudes of the currént from the two
models quite closely. When there is no slowing down and no bias in the initial production
of fusion products, there is an exact cancellation of the current in the region of good
containment. This explains exact zeros of the @ = 15 case between 0.55 < z < 0.8 in
Fig. 5(c). Since the model distribution gives current profiles similar to the slowing down
distribution function, we can study the self-consistent magnetic field generated with fusion
products, using the model distribution. The results of this study will be given in Sec. IV.

We further note that the model given by Eq. (22) can be expected to be accurate
if & S 16, and fail for larger values of @. This estimate arises by observing that for
large o, the peak of the fusion product current density arises from roughly fusion particle
production two Larmor radii within the separatrix. In the large o approximation, this
point is at £ = z7, = 1 — 2/a, and the approximate value of U(zr) = UL at this‘point
is Uy = 2, while the maximum value of U is Umax = /8. When Ur/Umax < 1, the
edge fusion product currents are driven by a source n2ov;/v o n(z = z1). At smaller
a-values, the point 1 approaches the null of the configuration (indeed the approximation
zr ~ 1 —2/a is incorrect), and then the source of fusion products is roughly independent
of o and proportional to ng. The transitions of these two regions is at Ur/Umax = 1, which
we see is at & = 16.

Another parameter of interest is the fraction, h, of fusion products trapped. This

parameter is given by

/d3rd3v€(po - avo)nf,?ﬂ')fe(po — avg)é(v — vp)
h =
/d3rd3vng'aT;5(v — vp)

~ /01 dmxni(m) max { [max (Ij(m) + :L‘,ymax) — min ([7(93) -z, ymin)] ) 0}

T (23)
/0 dzan’(z)
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where n,(z) is the background plasma density when it is assumed the background plasma,
is isothermal and we have taken an elongated equilibrium so that we can neglect the 2-
dependence. If 8P/8U = constant, then ny(z) U(z). We also note that ymn = 1, and
Ymax 18 determined from the solution of the equations |

~

Ymax = U(z)+
_dU
dz’

The results are shown in solid curve of Fig. 6. Note that over half the fusion products are

1 =

retained if a > 9.

We have also examined cases where we have modelled nZE"DT x n, and v is constant. We
find that the current profile has a very similar structure and amplitude. Also the fraction
of retained fusion particles is quite similar as seen in the dotted curve in Fig. 6. It is this
latter model that was primarily used in our particle simulation studies which are discussed
in the next section.

Other pressure profiles can also be considered. For example one can choose

angia® OP(D)

IME 30 = 4a exp(—0U [Upax) (24)
and hence ) s (~) . .
' ~ drg*a*P(U 4alUpax ocU
= = - —= . 2

For o = 0 we recover the results for the constant pressure P/9U profile discussed earlier.
However, with finite o, one obtains equilibria that shields out a larger fraction of the

external magnetic field. The solution to the normalized MHD equilibrium equation

1818U  0oP (_ 0U>’ (26)

with (0 < z < 1) is found to be

I{(z) =1—-0"'ln {1 + tan? [4 tan™(e? —1)1/2

max

)

with the following equilibrium relations holding as well,

3 _ oaen exp(—o/2)
™" 8 tan" (exp(0) — 7] [1 = exp(—o)]
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O‘eﬂ', o<1
{8
oaegexp(—c/2)/4r, o> 1

R ’6U(x =1)|_ aexp(z9/2)[1 = exp(—a)]”? 8)
Oz tan~! (exp(a) — 1)1/2
Q, okl
- 29—6—0/27 okl .
s

Note that a.g is the ratio of the separatrix radius to the maximum fusion product Larmor
radius. In Fig. 7 we plot Upax as a function of o for fixed ae.q. Note that Unayx decreases
at fixed a.g with increasing o.

We can also comstruct h, the fraction of retained fusion products if we take
ny(z) [1 — exp (——ﬁizi- ] The results will be discussed in Sec. IV when we present

max

results that self-consistently account for currents arising from fusion products. For now
we note that h decreases with increasing o for fixed a.g, because with increasing o less
magnetic flux is trapped and magnetic flux is needed to contain a charged particle. We
note, however, that h as a function of Upax is quite insensitive to o, as is seen in Fig. 8,
where h is plotted as a function of Uy for o = 0.0, 1.0, 2.0. Other interesting parameters

relevant to a fusion reactor, such as synchrotron emission, will be discussed in Sec. IV.

TIII Particle Simulation Method

Before describing the particle simulation method we note that there is a fundamental
identity between the time integrated solution of an initial value problem and a steady-

state problem. Consider the following dynamical kinetic equation

of _
SpTLf=0 (29)

where L is a kinetic operator independent of time that includes phase space flow (the
Vlasov equation), collisions (Fokker-Planck equation) and sinks through the boundary
conditions on L. Suppose at t = 0 the distribution function is determined by an initial
condition f = So(r,v) and at t = oo, f = 0, i.e., all particles lost at the position (r,v).

Then integrating this equation from t = 0 to infinity, yields,

Lg = So(r,v) (30)
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where g = / - fdt. Note that this time averaged equation is the steady state kinetic
equation for (;, source Sy(r,v). This observation allows us to calculate by a dynamical
simulation method steady-state quantities from an initial set of data. In particular, if
So(r,v) is an initial distribution f(r,v,¢ = 0) which then evolves in time, the time integral
of f(r,v,t) (or any moment) at fixed (r,v) yields the steady state distribution for a steady
source Sp(r,v).

The particle simulation is performed with a toroidal particle code.!® The particle dy-
namics is evaluated in r, 8, 2, p,, ps, p, coordinates. An equilibrium for an axially extended
constant pressure gradient (8P/8y = pressure, ¢ = magnetic flux) is chosen which is of

the form*

=b_;i 1- 72— —————61 " [-;—(W—l)(F2—2)—6§2(f2~—1>+424] ,  (31)
1+e_2+€—4

and the magnetic field B is given by
B=Vyx8/r

where 7 = r/a, # = z/z, € = a/z, b is the axially magnetic field at the separatrix, and
a is the radius of the separatrix at z = 0. The poloidal flux ¢ is defined such that 1 = 0
on the separatrix. Note that with € small, ¢ is the same as U (to within a scale factor)
which was studied in the previous section. We assume the plasma is isothermal, so that

the pressure is of the form,

n max
P($) = no()To = “Pmdyr, = o, (52)
The equation of motion for individual particles are
dv ¢
S — 33
— = 37V % B(r) —vv, (33)

where v is the slowing down rate due to collisions. Electric field effects are neglected. In
the simulation we remove particles if they reach the separatrix where 1) becomes negative.
Two types of simulations were performed; one with v constant-and the other v pro-

portional to the density n of the plasma. When v is taken independent of n, the source
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S is taken to be proportional to n, while when v is proportional to n, S is taken to be
proportional to n?, since S = n?,a_v,-. The results of the two methods are similar. Most of
the simulations are with the former method, which will be shown here.

The steady-state current is obtained by accumulating in time

1 /T 1 /T
Jg(’l‘, Z) = -fZ_" A dtz 'Ugj(t) = 5.,‘/(; dtvef(va, PV, Ty 2, t)a (34)
J

where T is the length of simulation. We typically run the code with 8192 particles for at
least 4 x 10% time steps, which correspond to approximate 10? axial bounce periods.

Figure 9 shows the flux contours of Eq. (31). Here 22y = 160, a = 8.5 in the normalized
code units. Then the magnetic field is relatively weak so that a (defined as aw./vo) is
approximately 5, particle orbits are largely of the betatron type. An example of such an
orbit is shown in Fig. 10(a), where dots indicate particle position at regular time intervals
in (r,z) coordinates. As discussed in Sec. II, with an increased magnetic field so that o is
somewhat greater than 10, particle orbits bifurcate into two radial regions surrounding an
inaccessible region. In the three dimensional problem of the present simulation we typically
observe a figure shown in Fig. 10(b). The figures in Figs. 10(a) and 10(b) are obtained
in runs with v = 0. Figure 9(c) shows the same particle under the same conditions as in
Fig. 10(b) except for the collision frequency vT = 4.

We would like to address the following issues:

(i) Current profile: As discussed in the previous section, the radial current profile has
a double peak in strong field cases (@ R 10). In this section we study the two-dimensional
(r, z) profile of the current formed with or without collisional drag effects.

(ii) Particle density profile: Although the current may cancel near the middle, the
density is high in the central region.

(iii)‘ Particle orbits: We shall study orbits that are bifurcated in the strong field case
vs. orbits that are not. We shall investigate the extent in which particles with p —av <0
can be contained, as this condition violates the ergodic assumption of the previous section.

(iv) Properties of confined particles. Do confined particles satisfy the conditions

p—avg > 0(v=0)
p(t) — av(t) < O(v # 0).
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(v) Ergodicity: We shall investigate whether orbits are regular, chaotic, or somewhat
in between. For a completely chaotic orbit, one obtains a constant density (xr) profile
in the accessible region of phase space, while if KAM barriers exists, even chaotic orbits
do not fill in the r — z density space uniformly. Only regular orbits give rise to curves.on
surface of section plots.

We shall shortly present some detailed results of the simulations. A summary of our
conclusions to the above issues are as follows:

(i) Current profile. A hollow distribution begins to appear when « 2 10. Then in
the r,z space the high current region encircles the low current (or zero) current region.
The peak of the fusion produced current density Jj is 0.68J,, where J, is the peak of the
plasma current (at the separatrix) for a = 5 case and Jy = 1.14J, for @ = 16. These cases
were computed assuming 50-50 D-3He background plasma at 100 keV ion temperature.

(ii) Particle density profile. The particle density does not have a hollow structure (even
though the current density can be hollow). For smaller values of o the density profile is
more peaked than for larger values of a.

(i) Typical particle orbits are shown in Fig. 10.

(iv) Confinement properties. Particles with p < 0 are immediately lost from the
system. Less than a quarter of the particles are directly lost for & = 16. As a becomes
smaller, the fraction of confined fusion protons decreases.

All unconfined particles (for case v # 0, vT = 1) satisfied p(t) — av(t) < 0 as they
must from dynamical considerations. Not all confined particles satisfy p — avy > 0 (in the
v = 0 case). For example, about 17% of confined particles did not satisfy this condition
for a ~ 9. However, all confined particles satisfy p(t) — av(t) > 0 for the v # 0, vT =1
case. The stochasticity properties of the orbits of confined particles is characterized as:
the larger «, the larger the fraction of the orbits of confined chaotic particles. In case of
« = 16 a majority of particles are chaotic. However, most particles do not exhibit complete
ergodicity as the phase space density is not uniformly filled even for the large a cases.

The fraction of particles that are confined is determined at the end of the run. As
we generate particles uniformly within 1 > 0, we assign different weights w; to different
particles j according to density n(x;), where x; is the j-th particles original position. The

density n is given according to Eq. (32). In the early time (~ 10° steps) we run the code
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without the slowing down due to collisions so that we can quickly eliminate particles that
contact the separatrix which leads to direct loss. Then we turn on the collisional drag.
After 10° steps, until the end of the run we lose a very small fraction of particles. Therefore,
it is reasonable to assume that by the end of the run most of the particles that remain
confined would be confined indefinitely. In Fig. 6 we have inserted crosses to indicate
the fraction of particles that remain confined at the end of the run with the appropriate
weighting according to the initial equilibrium density. These are for a = 5, 10, and 16
cases. While the theoretical curve is obtained based on the ergodicity assumption and the
one dimensional model, the simulation points are generated by the code in an elongated
equilibrium with a finite aspect ratio as given by Eq. (31). Both theory and simulation
agree qualitatively with each other.

Possible reasons for slight errors are as follows: (i) while theory assumes ergodicity,
simulation shows that this assumption does not hold well, as we shall see below. This tends
to have the simulation points above the theoretical curve. (ii) the finite aspect ratio two
dimensional equilibrium has a larger relative area to the low density region than the one
dimensional code. Thus, the two dimensional codes predict more relative fusion production
in the low density region than the 1-d code, leading to more losses than the 1-d code. This
tends to make the simulation points fall below the theory curve. The actual results in
Fig. 6 indicate that the second factor is apparently stronger than the first.

Figure 11 shows the comparison of the theoretical fusion current calculation of the
previous section and the corresponding simulation result for a = 5 and 16 cases. What is
shown is the nondimensionalized integral Iy(r) defined in Eq. (18) and the corresponding
fusion current is given by Eq. (17). For smaller values of a the current profile has a single
peak toward 60-70% of the separatrix radius (a). For a large value (@ ~ 16) it has a double
peak with one at r < a/2 and the other near r ~ 0.9a. Both theory and simulation exhibit
qualitative agreement but a quantitative disparity. In Fig. 11(a) the simulation result is
larger than the theory result. We shall discuss possible reasons below. In Fig. 11(b) there
appears more ragged structure in the simulation than in the theory, which might possibly
arise from statistical fluctuations or because the finite drag to axial bounce time of the
simulation is too large. The radial structure is hardly seen in cases with v = 0, perhaps

because in this case particles do not slow down. It may be that the slow particles, which
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have a low bounce frequency do not exhibit the phase cancellation that they would at
smaller slowing down rates.

Figures 12, 13 and 14 corresponding to @ = 5, 9, and 16 respectively, show: the radial
profile of fusion particle density in panel (a); the (r, z) contours of fusion current in panel
(b); and the radial profile of the fusion current Jy in panel (c). For the a = 5 case the
current has a single peaked radial structure. For the o = 16 case, confined particles exist
in larger radial positions and there appears a complete encirclement of a low (current)
region by a high current. The ao = 9 case is on the verge of establishing the hollow current
profiles that are typical of the larger a cases, as in o = 16.

We studied the stochastic nature of the orbits of fusion produced particles with two
distinct statistical approaches. In the first method the surface of section of particle orbits
at z = 0 is constructed and the structure of the surface of section appearing in this plot
is studied. For a given confined particle, the orbit intersects with the z = 0 surface many
times during a computational run. Our runs have typically 102 intersections through z = 0.
The fadial position of the n-th section r, and its associated velocity ry, or alternatively, r,
and r,,; provide phase space of the orbit at the z = 0 section [The Poincare return map
or Lorentz plot*® (r,,741)]. The map (rn, rnt1) or the phase space plot (rn, ) for various
n’s provides the map. From these maps one can study the regularity or diffusive structure
of the orbits. Figure 15 shows an example of the Lorentz map and the phase space map
for the same and is an example of a relatively regular orbit. An example of a surface of
section plot of an ergodic orbit is shown in Fig. 15(d).

In principle, precise criteria can be used to give a quantitative measure to the degree

16 or

of stochasticity of an orbit, for example the determination of the Hausdorff dimension
alternative definitions for an attractor dimension.”*® In our investigation the stochasticity
criterion is only qualitatively determined from visual inspection of the surface of section

plot. For this purpose the Hausdorff dimension, which is defined as
Dy = lingﬁn N(e)/tn(1/e) (35)

with & being the width of phase space “cube” and N(e) is the number of “cubes” covering
the “volume”, is what is inferred from intuitive inspection. From visual inspection we infer

if the orbit on the surface of section is a curve, whereupon Dy = 1, while if the orbit fills
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an area in the phase space, then we infer Dy = 2. In the former case the orbit is. regular
and in the latter case the orbit is chaotic. Thus , if the attractor is diffuse, the orbit is
chaotic, while if the attractor is on or almost on a curve, the orbit is regular. For the

Poincare map, let

Tnt+1 = f('rn)7 . (36)

then
Tngs = fs(rn)- (37)

We note that the larger s, the more sensitive our surface of section technique is for exhibit-
ing chaotic behavior. For example weak stochasticity may appear regular with the s =1
test because the area being filled is small while the s = 4 case clearly exhibits stochasticity.

Table 1, which classifies whether the contained particles are regular or chaotic, is de-
termined using s = 1 or s = 4. For the « = 5(B = 2.8 Tesla, a = (1 meter)), all
confined particles in the simulation are regular regardless of choice of s (s =1 or 4). For
o = 9(B = 5 Tesla, a = 1m) Dy(f*) and Dg(f*) are different for a fair number of particles
as it is for o = 16 (9 Tesla, a = 1m) case. This result illustrates the greater sensitivity of
the s = 4 test. Overall, less particles are regular, as a increases.

The second approach is to study the phase space density of a given orbit. If the particle
follows an ergodic orbit as postulated in the previous section, the number of particles, dN,

in the phase space volume element dpvdv is

dBrdiv dfdrdzdv,

dpvdv = F(p,v) [v2 1 (38)

dN(8,r,z,v,) = F(p,v)

[ 212’
r2(p )* = v

where F(p,v) is a function of only p and v. After integrating Eq. (38) over 6 and v;, we

obtain

dN(r,z) = 2m*F(p,v)drdz. (39)

This is independent of » and z for a given particle orbit. Our simulation examines the
validity of the completely ergodic assumption by checking if Eq. (39) is indeed obtained.
Figure 16 shows density contours for three representative particle orbits in r, z for a = 5, 9
and 16 cases, respectively. As is clear for all these figures, the density is not uniform, and

thus inconsistent with Eq. (39). In particular the densities near the turning points of the
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orbit are very much higher than other areas. We note that a regular orbit would give rise
to a divergent density at the turning point. Thus, we have another indication that some
orbits appear closer to regular orbits.

If an orbit is completely ergodic, the relative occupation number; N, at a given (r, 2)
point would be independent of position if (r, z) is an accessible point. However, if orbits are
not ergodic, then for a given initial condition, the relative occupation number generated
by the trajectory of the motion varies with different points (r,z). One can then define the
area in the (r, z) plane covered per unit occupation number. For a fully chaotic system all
the area is covered for one occupation number. With partial ergodicity, the covered area is
a broader function of occupation number, with less ergodicity corresponding to a broader
function of M. This function can be examined numerically by dividing (7, z) into square
bins, and then plotting the number of bins, f(A), that have a given relative occupation
number (to within a specified uncertainty AN. Figure 17 shows that f(A) has a peak
near N =3 for & = 16, and N = 4 for o = 9 and 5 cases. As a decreases, the distribution
of f(N) is more spread. This indicates that the smaller «, the less the ergodicity..

We have noted that the complete ergodicity assumption is not strictly valid, yet the
general comparison of the currents calculated in the semi-analytic theory and the particle
simulation method compare favorably with each other. Part of the reason is that currents
are integrals, which smooth over the discrepancies between different results in the orbit
calculations. It even appears that specifying the energy and angular momentum of an
orbit puts a sufficient restriction of the phase space of the orbit, that currents produced
by different possible distributions of a third variable (e.g., an additional action variable)

do not qualitatively change the mean current density profile that can be produced.

IV Self-Consistent Magnetic Field and Reactor Pa-
rameter

To calculate the self-consistent magnetic field with a given background pressure profile and

a given fusion product current profile, we need to solve the equation

2
oY + 219 = 4w (J, + Jy)

(V x B) = rfz2  Orr Or
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where B = Vi x V6, and J, and J; are the fusion product currents which are in the

f-direction. The plasma current is determined from the pressure P(%),

dP(¢)
I

and the fusion product current is determined from Eq. (13),

J0=T‘

Jy = q/dsvvgf.

We rescale variables so that U = g1 /Mcavy, ¢ = r/a with a the separatrix radius and v

the birth speed of the fusion product. We use Eqs. (24) and (25) for the pressure profile

P. Rather than solving the exact slowing down distribution, we use the model distribution

given by Egs. (17) and (22), as then the explicit dependence of J; on U is known and we

have observed that this model is accurate. We then find we need to solve the equation
a?0’U 19100

22022  zd0zz Oz

— —taforn (<o) L

(1 - exp(—a))} (40)

with .
In(0) = [ - (_D_’;—#] 6 [«* — (U - 1) (41)

.Mr—‘

and
Ag EF ner_’U,‘ nOeTe

f - T Te g Z nojTj
' i

where ng; and T} are the density and temperature of background species j consisting of

(42)

electrons of ion constituents, ¢ = nopnosy./nZ, and the subscript “0” refers to quantities
at the magnetic null. All the other quantities have been defined in Sec. II. In particular
a, which is proportional to the pressure gradient, is determined from Eqs. (24) and (25).

Equation (40) is a nonlinear equation that is solved in the highly elongated limit by

iteration (we neglect the 8?0 /82? term). Then, for a given @, o, and f we guess Upnax

ol

and —(z = 1), and integrate the equation from = = 1, where U =0, toz =0, where we

demand U = 0. After several iterations, solutions are found.
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. . U .
The physical solutions relate 8—(3: = 1) to Upax- To convert to the actual external
z

magnetic field, By, we note that

¢Bo _ wga |00 '
Mv((:c = - —é;(x - 1)‘ (43)
g—%ai = v9aUpax : (44)

where ¢ and M are the charge and mass of a proton, and v, the speed of a 15 MeV proton.

We note that at fixed temperature the primary parameter in establishing f is g, the facztor
. . NHND THeND .

determ the ture 3He —D(g = = < = when 2nT, = =2
ining mixtur e (g 2 G Lo = 6 when 2noT, = = is

held fixed). If for the example we choose T, = T; = 100 keV and Er = 15 MeV, then

77; = 1.5 x 10~%%cm®/ sec, no/vo = 10*¥cm™3 sec, we find

_ gAEpneov; nole
4 Te L) ZnojTj
J

f ~ 2.81\g.

Thus, for T = 100 keV and A = 0.6, f is physically limited to f < 0.28 but higher values
of f are possible at higher plasma temperatures, to about T' = 300 keV. We note that for
a = 15, that the peak fusion particle current density is comparable to the peak background
plasma current density. | ’

In Figs. 18 we present the results of equilibrium studies. We choose three background
pressure profiles 0 = 0.1,1,2, and examine the effect of the equilibrium. In Fig. 18(a) and
(b) we show Upmax vs. laﬁ(z = 1)/63:! = aeq for different values of f(f = 0.0, 0.1, 0.2,
0.4). For the same pressure profile, we observe that for small normalized magnetic fields
where there is only one spatial region of confinement for the fusion products the normalized
magnetic flux increases with increasing f. However, at higher fields where there are two
spatial regions of confinement, the magnetic flux decreases, with incréasing I

We also plot the fraction of trapped fusion products, h, as a function of normalized
magnetic field in Figs. 19 and normalized magnetic flux in Figs. 20. One observes that the
trapping function depends primarily on the enclosed magnetic flux almost independent of
any other parameter. At low fields, finite f improves fusion product confinement slightly,
while finite f at higher relative magnetic fields decreases the fusion product confinement

slightly.
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In Figure 21 we plot the relative reactivity defined as
= 2
Rr = B4w_1)/P(xda::z:

= [an(iiaj%%m]“/o de [1_eXp( I;,Z)] ' (49)

The relative reactivity would be unity if ¢ — oo and f = 0. The Rr is a measure of fusion

power density for a given magnetic field. We see that the Rr improves with increasing o,
but that there is a substantial decrease in the Rr factor with increasing f. This decrease
must be accounted for in design assessment if fusion products are retained. The reason for
the decrease in reactivity is that if f increases for fixed plasma radius and external magnetic
field, the plasma pressure must decrease in order to accommodate added pressure of the
fusion component. This is reflected in Fig. 22 where '
8aUmay (1 — exp(—0))

|2 (2 = 1)

B=8rP(U = Upax)/B*(z =1) =

~

Oz

. . 0
is plotted for different values of ¢, f and ‘—[-J—(:t: =1)|.
Finally, we plot in a single particle synchrotron parameter which measures the relative

rate of single particle synchrotron emission (without reabsorption taken into account). We

define
2

SYN = mosire /0 dzzP(z)B*(z)

) - exp(—U)]Z(aﬁ(m - 1)>2 A i_m (ag()) [1 — (ivf;(_))] (46
Oz

and note that SYN = 1 for a uniform low beta plasma in a constant magnetic field. We

see that the relative single particle synchrotron radiation is substantially suppressed from
this uniform estimate for all profiles. In Fig. 23 we show SYN for various values of f
(f = 0.0, 0.1, 0.2, and 0.4) for different pressure profiles designated by o(oc = 0.1 and 2.0).
We see that the presence of fusion products produce moderate changes in the bare particle
synchrotron emission.

To take into account radiative reabsorption we evaluate an interpolation formula (ob-

tained from an analysis of J. Dawson'®) that attempts to take into account radiative
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reabsorption in an inhomogeneous medium. The formula is correct in the extreme limits
of black-body and optically thin single particle emission. The radiated power per unit

length (cgs units) is given by,

Po(4bs) = 2ma(1 1) [ dolis(w) [1 — exp [ (li“r) / 1 d:z::cn@,w)” (47)

where
K(z,w) = E‘('L‘T)Tfa';—)' ,  Ip(w) = 4:7rf1",3(.u2/c2
1 M2 .
e(z) = =T —-szeowl/zwggzn(x)bl/z(w)
o dy[y—1 ol wect() 2w (1—v)M.c?
X ./o v [ 1] P weeb(z) + T,
r = reflectivity factor
2 dmrnge? eBrax T = el .
Wheo = M Wee = Mo . = electron temperature 1n ergs
aU (z)
bz) = B(z) Oz
By |0U(z=1)
Oz

a(z) = %(% = [1 _exp (-O—ZI(:)

)| /1= emi-on.

The power radiated per unit axial length in a uniform field By by a homogeneous

plasma of density ng and radius a is

ap2 2
Ps(bare) = de l;ﬁ’gzgwa (1 + Te/Mecz) .

Hence, the relative power emitted relative single power emitted of a homogeneous plasma

of radius a, Ps(rel), is
Ps(rel) = Ps(Abs)/Ps(bare).

We show our results for Pg(rel) in Table II when g = 1/6. For simplicity we have only
examined the f = 0 case. Our results are much more optimistic than that published
by Dawson,'® who apparently made a numerical error in presenting his final results. For

example we find for T = 100keV, no = 0.6 x 10®cm™3, B = 50kg, that Ps(rel) = .05 for
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a = 100cm, whereas in Ref. 19 Pg(rel) =~ 1 is inferred. We also gain from the exclusion of
magnetic field in the interior of the plasma as Table II shows even lower values of Ps(rel)

are obtained. Only the f = 0 case has been investigated.

V Conclusions

We have investigated the effect of charged fusion products on the current flow of an FRC.
This investigation is complicated by the fact that particle orbits are complex as the par-
ticle motion does not in general satisfy the limiting assumptions used in developing small
Larmor radius theory or betatron orbit theory. As a result in our investigation, we have
integrated particle orbits exactly, and compared the result with the assumption that par-
ticles reach all regions of accessible space at constant energy and angular momentum with
equal probability. We have found that in detail most particles do not fulfill the ergodicity
assumption. Nonetheless, the resulting charged fusion product current and other global
quantities calculated by the two methods give qualitatively similar results. Hence, mean-
ingful results will be obtained by invoking the assumption of maximum ergodicity of the
charged particle orbit.

We have developed a new method of solution of the Fokker-Planck drag equation when
pitch angle and energy scattering of particles is unimportant, which is applicable to fusion
protons of the D-3He reaction during most of its slowing down time. Under the assumption
of maximum ergodicity, this combined numerical and analytic method can be implemented
to take into account exact geometry. We have explicitly performed calculations for highly
elongated FRC geometries.

We find that the results of the detailed slowing down model for the current and the
fusion product trapping fraction is closely reproduced by a monoergetic fusion product
‘model that is otherwise self-consistent. This simpler current model enables one to readily
calculate the self-consistent arbitrary Larmor radius (of the fusion product) equilibrium
in the highly elongated limit. Of course one assumes a given pressure profile for the
background plasma whose current is given by the ideal MHD equations.

As one traps fusion products, the characteristics of the system must change and this

aspect needs to be taken into account in applying the curves we have obtained. If we assume
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that the radial size of the plasma and the external magnetic field do not change, then Fig. 18
shows that the enclosed magnetic flux changes by as much as 25% as fusion products build
up. The size remains constant if there is a physical limiter (or divertor) present that
determines the radius. However, it is more difficult to justify that the magnetic field will
remain constant. One should note that as the fusion-product containment increases, the

plasma will swell radially, unless a larger external magnetic field is imposed to keep the

same dimensions. The surrounding inductive and resistive characteristics will also affect the

magnetic field evolution. Stabilizing considerations may also be an important factor that
determines the flexibility on how much radial dimensions can change during the evolution
of a discharge. This is because wall stabilization, which may require fixed boundaries,
can be an important component in establishing a stable discharge. Thus, the details of
how parameters specifically evolve from the onset of ignition to steady state operation, is
a problem that needs careful further study. Nonetheless, despite these complications, we
compare systems with the same external magnetic field and the same separatrix radius.

The enclosed magnetic flux is the single most important parameter in determining
what fraction of the charged fusion products are retained. The parameter almost uniquely
determines the trapping fraction as we have shown (see Fig. 8) that the trapped fraction
is insensitive to the shape of the pressure profile. Thus, profiles that contain less magnetic
flux, trap a smaller fraction of the charged fusion products. In smaller systems, where the
trapped fusion products are in betatron orbits, the magnetic flux in the plasma increases
as the number of contained fusion products increase, at constant external magnetic field
and constant separatrix radius. On the other hand, in large systems, where the topology of
the orbits of charged fusion products begin to resemble the orbits of small Larmor radius
theory, the magnetic flux in the plasma decreases with increasing trapped charged-fusion
products at constant magnetic field and constant separatrix radius. Thus a small system,
with a given radial size and external magnetic field, exhibits a larger fraction of fusion
product containment if the fusion-product fraction is taken into account, than would be
predicted if the fusion-products were ignored in the equilibrium. For large systems, the
trapping fraction for the fusion products decrease relative to what would be calculated
without accounting for the current derived from fusion product containment.

With the charged fusion products taking up part of the pressure, the beta of the
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background decreases (at constant temperature and external magnetic field this means a
decrease of the background density), and a substantial decrease in the fusion produced
power results. .

To illustrate a specific case we consider a pressure profile characterized by ¢ = 0.1 and
a rise of the trapped fraction of fusion products from f = 0 to f = 0.2. The reactivity,
Rp, at larger a.q then decreases from 0.55 to 0.25 (from Fig. 20) while the central density
(from Fig. 21) decreases a factor 0.65 of the value when fusion products are not retained.
To consider this affect on the fusion power per unit volume produced, we choose as an
example T' = 100 keV where 7; = 1.5 x 10~ ¥cm®sec. The fusion power, Pr, produced

per unit volume is then
Pr = nDo’I’L%IEOE_’U—,'EFRF = 450ND0(15)NH60(15)RF Watts/cm3 (48)

where Er = 19 MeV = energy of proton and alpha fusion products, npe and nsges are the
densities of deuterium and Helium-3 at the magnetic null in units of cm™2 and Npo(15) and
Ni.0(15) the corresponding densities in units of 10¥%cm™2, and Rp is the fusion reactivity
defined in Eq. (45). Let us consider density parameters that optimize the power produced.

For f = 0 we have from equilibrium and charge neutrality,

BZ
8_71' =2neT = (neO + npo + TLSHe) T) Nep = Npo + 2N K.

Then maximizing nponsg. with ng constant, gives

Neo = T/6ng, MNage = No/2, Tpo="no/2 Mmax npgnsge = ng/6.
The equilibrium condition give ng = 1.25 x 10¥cm™3. Thus, the optimal average power
per unit volume produced, with R = 0.55 is

P; = 64 watts/cm®  (no fusion product containment).

Now, with f = 0.2, Rr = 0.25 as indicated in Fig. 20. The decreased value of Rr takes
into account that the absolute density at the center has changed. However, maximum
power will still require the same density mixture as the f = 0 case. Thus substituting
into Eq. (48) the same values of Nyp(15) and Ng.(15) as the f = 0 case, but using the

appropriate value of Rg, we obtain,

P; = 25 watts/cm®  (with fusion product containment).
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For a reasonable sized fusion reactor burning D->He, we find that the fusion power
generated is substantially more than the synchrotron emission, even without wall reflection
and for a relatively diffuse profile (¢ = 0.1). Specifically, the synchrotron power radiated
per unit volume, P,, is given by (in cgs units)

4 2
de*ngoB;

3 M
T. T, watts
3.17 x 10°B3(5) No(15) (1 + Mecz) Po(rel)

P, T.(1 + T./M.c?) Ps(rel)

where By(5) is the edge magnetic field in units of 10° gauss, and Ps(rel) is defined in

Eq. (47). Now choosing Neo(15) = 1.45, Bo(5) = 1, M:c2

a = 100 cm, the plasma profile parameter ¢ = 0.1, and the wall reflectivity r = 0, we have

= 0.2, the separatrix radius

from Table I that Ps(rel) = 3.4 x 1072, Hence, for this use the average synchrotron power

radiated per unit volume is
P, = 3.2watt/cm’,

which is an order of magnitude less than the fusion power produced. When fusion particles
are retained, self-consistent equilibrium conditions demands that the central density for the
o = 0.2 profile with f = 0.2, lowers to N.o(15) = 0.812 (see Fig. 21 where the central beta
is given, so that the central density is found when using T = 100 keV and By = 10° kg).
To evaluate Ps(rel) we have assumed that the magnetic field profile does not change from
the f = 0, 0 = 0.1 case (so that we can use analytic magnetic fields) and we find for

a=100 cm
Ps(rel) = 4.5 x 1072,

Thus, the estimate of the radiated synchrotron power per unit volume, when fusion prod-

ucts are retained, is
P, =28 watt/cma.

This radiated power is still ~ 0.1 of the fusion power produced.

We also observe from Table II that synchrotron losses can be further reduced when
wall reflectivity is taken into account and if the background pressure profiles can be made
steeper corresponding to larger 0. Thus, synchrotron radiation loss should not be an

important factor of a D-*He FRC, at least in operation in mixtures that maximizes the
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fusion power output. Synchrotron radiation may be a factor in mixtures lean in deuterium
(this is of interest in cycles that suppress neutrons from D-D reactions). However, even in
this case, moderate improvements from wall reflectivity and steeper profiles, should make
such operation feasible with respect to the parasitic losses from syncﬁrotron radiation.

We now consider the advantages of retaining or losing the charged fusion products. We
first of all note that the loss of all charged fusion products, together with efficient direct
conversion and plasma heating can have some significant advantages. These include:

(1) Configurational Stability: It is known that an FRC is theoretically MHD unstable
and the observed experimental stability may be due to finite Larmor radius effects. As
a result it ﬁlay be difficult to scale-up an FRC, so it may be difficult for a;, the ratio
of the plasma radius to the Larmor radius (of the background plasma) at the separatrix,
to be as large as what is needed in a reactor that retains charged fusion products. For
example, in present-day experiment, a; &~ 15, while in a reactor we need oy = 175 (or
Qeq = plasma radius/fusion product Larmor radius at separatrix = 15). This is a large
extrapolation and MHD stability problems may be severe in such large devices. However,
a smaller FRC, where most of the fusion products are rapidly lost, with say, a; &~ 50, (or
aeg = 3.5) may be large enough for good plasma confinement and small enough to allow
for MHD instability.

(2) Efficient Direct Conversion: If the fusion products are promptly lost, they will
emerge from the plasma with a sharply peaked energy. Hence, with expansion of the
magnetic field, a peaked energetic ion beam can be produced, allowing for energy conversion
efficiencies of perhaps 85%. We note however that the fusion products may indeed have
a significant energy spread if the edge losses are due to rapid slowing down of fusion
products on the cooler edge plasma. In this case, direct conversion, though possible, will
be significantly less efficient. It is possible that means can be devised (e.g., through rf
scattering?) to cause preferential loss of the fusion products out of the plasma, before
their birth energy is significantly changed.

(3) Lack of Beam Microinstability: Retaining charged fusion products could make
the system susceptible to microinstabilities driven by radial spatial gradients of the stored
fusion products, particularly due to the excitation of Alfvén waves. Thus the prompt loss

fusion products removes one significant instability drive.
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(4) As we have observed, the partial pressure of the fusion products can reduce the
reactivity of the plasma. By the direct loss of the fusion products, the reactivity of the
plasma can be maintained at constant value.

The advantages of retaining the fusion products are as follows:

(1) Current drive: We have observed that an appreciable fraction of the plasma current
can be supported by the charged fusion products if a viscosity mechanism arises to prevent
radial electric fields from arising.

(2) Stability: There is experimental evidence and theoretical calculations that indicate
that appreciable configuration stability can be achieved by using energetic current carriers.
As the fusion products should respond in a manner appreciably different from an MHD
fluid, some of the favorable stability properties of energetic particles may be achieved by
retaining fusion products.

(3) Internal heating: Confined charged fusion products will allow self-sustaining igni-
tion conditions without the complications of continuous external heating.

Much of the above factors need further study and successful implementation will depend
on future results of experiments and more detailed theoretical studies. In the present paper,
we have attempted a preliminary study of some of the issues in establishing a steady state
FRC advanced fuel (D-2He) reactor, particularly in regard to the role of the current from
the charged fusion products in supporting the plasma and the importance of synchrotron

radiation.
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Stochastic Nature of Particle Orbits

(Confined Population)

Case Regular | Chaotic | Short-lived
2.8T 100% 0 0
5T
(Pog1,mn) | 67% 27% %
(TrgasTn) | 28% 68% 4%
9T
(rrsarn) | 25% 59% 16%
(rptarms) | 5% 9% 16%
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Table I: Classification of orbits for weak, moderate, and strong magnetic fields.
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Figure Captions

Fig. 1 Domain of D;, D; and Dj for p; > p, > ps. The interior area to the solid curve

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

bounds the accessible domain of p;, the area between the two dotted curves is the
accessible domain of p,, while the area between the two dashed curves is the accessible

domain of p3. The outer most curve represents the separatrix.

2 Solution of the equation

d(% ) 4 )/ () =0

with initial conditions s =1, y = yo with U = %mz(l —z?)and v x U, for @ = 5 and

15.

3 An example of flow arising from the removal of guiding centers that are other-
wise uniformly distributed. The dotted curve represents an orbit on which there is
zero particle occupation probability, while orbits (1) and (2) have equal occupation
probability. Then at point (a) the opposing vertical fluxes cancel, while at point (b)

there is a downward flux because of the absence of particle occupation to the right.

4 Evaluation of Iy(az,z = 0) in the highly elongated limit. Figures (a)-(c) are for
a =5, 10, and 15 respectively.

5 Evaluation of Ips(az,z = 0) in the highly elongated limit. Figures (a), (b) and
(c) are for o = 5,10, 15 respectively.

6 Fraction of retained fusion proton product produced by an isothermal plasma in
an elongated Hill’s vortex equilibrium as a function of plasma size as measured by the
parameter @, where a = Ty, /7L, With e, the separatrix radius, and rz the Larmor
radius of the charged fusion product at the plasma separatrix. The crosses are the

retained fraction as observed in the numerical simulation calculation.

7 Plot of 8Umax/aeg vs. o for equilibrium with pressure gradient 0P/0U
exp [—aﬁ/ffmx].
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Fig

Fig

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

. 8 Fraction of retained fusion products, h, as a function of Upnax, for o = 0.0,1.0 and

2.0 for curves 1, 2 and 3 respectively.

. 9 Equilibrium flux t(r,2) used in simulation. The broken lines are for ¢ < 0.
The scale of z is 1/20 the scale of r. The figure r,z in the following are similarly

compressed in the z-direction.

10 Typical particle orbit in: (a) weak field (a = 5), and (b) strong field (o = 16)
without collisions. The orbit in (a) corresponds to a betatron orbit, while the orbit
in (b) corresponds to a bifurcated orbit. The particle orbit in (c) corresponds in an

orbit with the same initial condition as the one in (b), but now with collisions.

11 The normalized fusion current profile I(r) as a function of the radius for (a) o = 5
and (b) o = 16. The thick curves are the simulation, while the thin ones are from
theory. For the case (a) viiena = 4, Where tenq is the end of the simulation run. For
the case (b) we averaged over two samples: the first run with collisions present all the
time and vte,q = 4, while the second run has the collisions turned on after v¢ > 0.05

and vieq = 2.

12 The density and current of fusion products for weak field (a = 5); (a) the density
n as a function of r; (b) the current equicontour lines in r, z plane; (c) the azimuithal

current as a function of r.

13 The density and current of fusion products for moderate field (a = 10). (a), (b)
and (c) are as in Fig. 12. '

14 The density and current of fusion products for strong field (o = 16). (a), (b)
and (c) are as in Fig. 12.

15 Typical surface of section plots of fusion particles at the mid-plane of z. (a) and
(b) are the Lorentz plot and the phase space plot of the same particle, which shows
a regular orbit. (c) shows another Lorentz plot of a regular orbit, while (d) shows

the Lorentz plot of an irregular orbit.
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Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

16 Phase space density contours (weighted average) of typical confined particles for:

(a) =5, (b) a=9, (c) a =16.

17 The statistics f(N) of the phase space normalized densities of fusion particles at
various accessible phase space points (bins). The solid line is for 9T(a = 6), dotted

line 5T (o = 9), broked line 2.8T(a = 5).

18 Effect of trapped proton fusion products on the maximum contained magnetic
flux Upax. Figures (a) and (b) are for different pressure profiles measured by o = 0.1
and 2 respectively. The z-axis is @eg = Tsep/TL, the separatrix radius and rz the
Larmor radius of a 15 MeV proton. Curves 1, 2, 3 and 4 are for f = 0.0, 0.1, 0.2,
and 0.4 respectively.

19 Fraction of trapped proton fusion products, h, for various values of o, and f as
a function of a.g. Figures 18(a) and 18(b) correspond to o=.1 and 2 respectively.

Curves 1-4 correspond to f=0.0, 0.1, 0.2 and 0.4 respectively.

20 TFraction of retained fusion products, k, as a function of Upay. Figures (a) and

(b) are for o = 0.1 and 2 respectively. The four curves for f = 0.0, 0.1, 0.2, and 0.4

can not be readily resolved.

21 Relative fusion product reactivity (Rr) as function of a.q for different values of
o and f. Figures (a) and (b) are for o = 0.1 and 2 respectively. Curves 1-4 are for

f=0.0,0.1, 0.2 and 0.4 respectively.

22 Background plasma beta (plasma pressure at null/magnetic pressure at separa-
trix) as a function of aq. Figures (a) and (b) are for o = 0.1, and 2 respectively.

Curves 1-4 are for f =0, 0.1, 0.2, and 0.4 respectively.

23 The effect of pressure profiles and fusion products on the bare synchrotron emis-
sion. The pressure profiles are characterized by o = 0.1 and 2.0, and the curves 1-4

are for f = 0.0, 0.1, 0.2, and 0.4 respectively.
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Table Captions

Table I Classification of orbits for weak, moderate and strong magnetic fields.

Table II List of the relative synchrotron loss rate Pg(rel) for plasmas of various radii a,
wall reflectivity r, pressure profile parameters o, temperature T' (in units of M,c?)

edge magnetic field B, and various central densities no.
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