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Abstract

The ultimate acceleration structure for a very high energy accelerator may be provided by
the solid state crystal lattice. We evaluate the interaction between high-energy particles
and lattice particles. The mean free path of electrons due to bremsstrahlung is less severe
when they are channeled. Even when particles are channeled, however, the bremsstrahlung
losses are proportional to the energy of the particle. For a muon or heavier particles this

may be tolerable in practical application.
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I. Introduction: the crystal X-ray accelerator

In the pursuit of ultra-high energies, higher accelerating fields and frequency, and thus a
finer structure, have to be considered.! In the parficular case of plasma accelerators, this
means also higher densities of the accelerating medium. One may say that an ultimate step
in pursuit of finer structure and higher densities is to use an ordinary condensed matter
(n ~ 1022 / cm3) as an accelerating medium. This is the main focus of the present paper. .

Indeed it is well known that a beam of positively charged particles can propagate be-
tween the rows of atoms of an ordinary crystal with reduced losses for ionization and
bremsstrahlung. (This is particularly important for positrons.) Similarly, negatively
charged particles may be trapped around any single row of atoms, but with higher losses.

The crystal lattice is a natural iris structure for X-rays propagating along the rows
of atoms—X-rays develop a longitudinal field component, which may be used to accel-
erate particles. This idea was proposed and analyzed in detail in Ref. 2. Regardless of
the acceleration mechanism, there are general features in the processes of bremsstrahlung
losses, focalization, and possible emittance increase that are due to the channeled parti-
cle interaction with the crystal lattice. The ionization losses are simply proportional to
the electronic density of the medium in which high energy particles travel. For ordinary
solid matter (say, two or three times the density of water) the ionization losses are about
5 MeV/cm. |

The luminosity attainable with this acceleration scheme? is unclear at present. On the
one hand, the channeling particles are confined by a very strong (> 1V/ A) electrostatic
field. Thus the beam is well collimated in microscopic areas and can be focused into a
very tiny interacting region. On the other hand, incoherent scattering due to the lattice
thermal vibrations could increase the emittance and leads to beam losses.

The inverse of this accelerator, an electron beam injected into a crystal to lase X-rays,®

may be the power source for this and other accelerators.




II. Channeling of high energy particles

There are well-documented studies, both theoretical and experimental, of channeling of
low energy particles (ions and electrons of a few MeV) in a crystal.* Here we discuss the
features for high energy particles (v > 1). In our simple idealization, the crystal is a static
and fixed distribution of charge, producing an electrostatic field which perturbs the motion
of high energy particles. |

To make it concrete, we consider an hexagonal lattice, where 25 is the distance of two
atoms lying in the same z —y plane, and a is the distance between planes (see Fig. 1). Let

us normalize @, b to the Bohr radius ap:
a = dap; b= bap; ap = a 2re, (2-1)

where a ~ 1/137 is the fine structure constant and r. is the classical radius of an electron
re = €% /mec?. Typical values of & and 2b are around 5.
As a model for the charge density, we assume that Z.g electrons per atom are uniformly

distributed in a sphere of radius d around the nucleus g; of atom number 2:

n(Z) (— - eff - Z Z6(%— 7)) + Z ZMdZ;ff (- (@-3)). (2-2)

The electrostatic potential ¢, measured in unit of m.c?/e to make it nondimensional,

satisfies the Poisson equation

V2 = —dnr.n(7), (2-3)

while the vector potential is zero. It is convenient to measure the particle momenta in
units of mec also to make them nondimensional.

Classical mechanics is suitable enough for discussing the' motion of channeled particles.
This is true even for the transverse motion, except for the case of electrons. Indeed the
order of magnitude of the electrostatic field ¢ (difference) is Z.ga? over a length scale
£ ~ ap. To apply classical mechanics to the longitudinal motion, we need p > /£ / Ae ~ @,
where A, = / mec is electron Compton length and p is a normalized momentum (by mass
times ¢). As p, is about 7%: with m, being the mass of the channeled particle, this

criterion becomes ya ™1 7. > 1. This is well satisfied.
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For the transverse degrees of freedom, the transverse momenta p, is bounded by the

channel acceptance:

m
Pﬁm—e < O(p) ~ a*Zeg. (2-4)

The applicability criterion of classical mechanics is

1{;::6 = ” %Zeﬂ' > 1. (2-5)

This is well satisfied for a proton m, = 1840m.. On the other hand, if the channeled parti-

cle is an electron, we expect a few bounded levels (\/ZT ~ 5), whose detailed description
requires quantum mechanics.

Now we will prove that a particle moving almost parallel to the z-axis has average
trajectory determined by an effective potential which is uniform but represented approxi-

mately by
_ 1 [*
pey) =3 [ deplan,2)
a Jo

The non-uniform components of the eiectrostatic potential ¢ = ¢ — ¢ oscillates with
frequency 27 %y and its harmonics in the rest frame of the particles. This is too high
a frequency to change the average motion of the particle; its only effect is to make the
particle radiate.

We start from the covariant Hamiltonian equation of motion®

dé
= =h8) (2-6)

where ¢ is any function of ¥, p¥, A is the proper time, and the Hamiltonian is given by
1 -
h=—-2-[(p4+90+90)2—pi—p§—p§]- (2-7)
h and p, are exact invariants of the motion and
1 /e |
I ={(p,) = —/ dzp, (2-8)
aJo

is an adiabatic invariant of the motion. Recovering p, from (2-6) and expanding it in

powers of @ in the integral (2-8), we get



I=1I- <S02> (% + P} — 2h) (2-9)

with

f=/oh+ (ot 2)" — (52 +25). (2-10)

Solving for & up to second power in the fields gives

1 I?
h=htr_§p42=+'2—'7

where the transverse covariant Hamiltonian is

1 +px+p
htr=5(pi+py) paB + @ + ($°) — (2-11)

It is now evident that only ¢ matters for relativistic particles (py > 1; I > 1).
The “velocity” da* / d) is not a constant; however, we can compute the ratio of the

time elapsed A\ during one period:®-

Az* % _ %(m}k@) _ 1 <1+ (") (_QI_>_1)
= — 2 — — n
A 'a'(?_' I_2___h) % — %’T} Pat+ @ _2I3 or12
L (.8
pst+ @ I?

We can change the parameter of the motion from X to the real time average t;, defined

(2-12)

4
S (2-13)

The Hamiltonian equation (2-6) changes into

d
& =, (214
where the noncovariant Hamiltonian Hy, is defined as
| Az
Hy = hiy SR (2-15)

Because real laboratory time and real time average are almost the same, we drop the index

herewith.




We obtain the final form

dé
= = Hun ], (2-16)

where £ is any function of p,, py, z, y and from (2-15) and (2-12) the transverse Hamilto-
nian, with the desired accuracy, is

_mepﬁ-i-pz - _2 /2
H—ET—SO‘FO(SD,(S" ) - (2-17)

Here we recover the explicit mass dependency. When needed, the quantization of (2-16),
(2-17) is trivial.

A negatively charged channeled particle is attracted in the region near a row of atoms
P = \/W < b. In this region we can neglect the asymmetric contribution of 6 nearby

rows of atoms; setting the boundary condition @(b) = 0 we get
B Te b2 — 2 b
(,O(T‘) =; |:Zeff (6—2 —21n ;)

r -|—2cl2

(2-18)
-(z-zeﬁ){ V@ =2l s }G(d—r)]

for the model (2-2).
Appropriate values of angular momentum L = zp, — yp, and the transverse energy
& = Hy, are required to channel the negative particle. Indeed, from (2-16, 17, 18), enforcing

the conditions

aHtr 2 _
S| >0 and  pl(r=10)<0,
we get
me L? o
28 < —— <bz-l _, (2-19)

A positively charged particle may be channeled near the center of every triangle, whose

vertices are atoms in a z — y plane. Let us call r; the distance of the particle from this

center
b \2
w3
(z—b) 7
from Fig. 1.
For r; < b the potential may be approximated as
Te (Ti\2
o) =27 ()" 20




II1I. Bremsstrahlung

We compute bremsstrahlung losses based on what is called the virtual photon method.
The virtual photon method offers the advantage of being directly applicable to a high
energy classical particle moving with r = \/W being constant or slowly changing.
As discussed earlier, this is a perfectly legitimate description of a muon or a proton. For
an electron the resulting bremsstrahlung must be weighted with |4 (r.)|?, where ¢ is the
electron eigenstate of (2-17).

We expand the computation in Ref. 7, looking for whether the periodicity of the
crystal may eliminate the typical y-dependence of bremsstrahlung losses, which makes the
bremsstrahlung losses so intolerable for a high energy electron in ordinary matter. Consider
a particle moving parallel to the z-axis with velocity fe¢, with f ~ 1 and v = (1 — ,32)_1/ 2
as usual. The method is based on the fact that in the rest frame of this electron, the
crystal electi‘omagnetic fields may be written as

4 (w“fi’"’) = vo (z,y,7(z' + Bet')),

(3-1)
Al = BA,.

Near the electron these fields are almost equal to the fields of a plane wave that propagates

in the opposite direction in 2:

2 =Ye (re,0,7(2" + ct')),
(3-2)

A= AL
Let us compute the spectral density of this plane wave. We need to know ¢. Let us

make a Fourier series expansion of ¢:

. 1 /%,
bala) = 7 | dzemop(a, 2

+o0 (3'3)
o(z,y,2) = ), € **gu(z,y),
where k, = 2nn/a. The Poisson equation (2-3) becomes
((82 4 83) — k2) ¢n = —4nrofin. (3-4)
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To make the calculation easier, we take the limit d — 0 in the density expression (2-2),

_ng,
1

fn = — 56(2)6(y) for ny # 0. (3-5)

obtaining

This yields

Imposing the approximate boundary condition ¢, — 0 for r — oo, we obtain
7o
p = Z;Zeﬂ‘ffo (knr) y (3-6)

where K is the modified Bessel function® diverging like —Inr for 7 — 0 and damping as

\/Fe"r/\/Z_r for r — oo.

In the comoving frame the power flux is S = cE' X B'/4w, where the (dimensional)

field is given by

2 ! !
[ _me? 04, 3 :
Br = e Or’ By = —me or (3-1)
Therefore,
“+co
> s,
=
with
2 aAl 2
Sum ST Oun Ot _ € pn T PR (k) (3-8)

47 7, 37“ (97'

The frequency of the nth component is w' = ¢k, = 2mweyn/a.
We can now use the formulae for the scattering of a photon on a rest particle.’ The

parameter f,, expresses the hardness of the photon

hw' Ae Me
fn= i 2myn (—;) (m—c> : (3-9)

When f; > 1, the full Klein-Nishima formula must be used.!® This ultrarelativistic regime

corresponds to ¢ > 60 MeV for electrons, and € > 2400 GeV for muons. Calling w'
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the scattered photon frequency, ¥ the angle of scattering of the photon, we express the

differential cross section as®

n\ 2 " W'
do = %r? (w_) <w + — —sin 19) s, (3-10)

—_— = (1 — cos?). (3-11)

From (3-11)

w 1 '
Yoo ' =1 —cos®. 112
il g with 2=1-—cos?d (3-12)

The force F,, exerted on the electron is the sum of the photon scattered momenta

Ap, = l(hw' — hw' cos V)
c

on all the photons belonging to the nth component scattered in the unit time

hw' w' hw' z

= [aots, D7

where the first summation is over photons scattered in one second and the second summa-

(3-13)

tion is over photons incoming in a second in one cm?. In order to obtain the expression in
the leading power in f,, corresponding to the ultrarelativistic electron case, we approxi-

mate the differential cross section as

do 1 1 1 N1, 1 _
o =0T ey (Ea TR E G w D
so that
Fo = 22ar? / do (fn—l)m:%iwzg(fn), (3-15)
where
o) = L2 (1m0 +29) + - )= 2oy




The total drag force acting on the particle in its rest frame is F' = >, F},, parallel to
) n
2. The magnitude of this force is invariant, i.e., it is the same as in the laboratory frame.
The energy loss (stopping power d€/dz) is simply due to the work done by this force
d€

—=—-F=—-F'r~- . -
- F 2F,, | (3-16)
In the last step in (3-16) we kept only the two terms n = 1,—1, because g (fn) ~ 1/n and

4w

S o (kKb (kpr))” o e

Finally, collecting all y-dependencies, we find that energy losses due to bremsstrahlung in

the channel are roughly proportional to the energy:

£. (3-17)
The radiation length Ar(r) depends on the distance r between the particle and nearest
rows of atoms in a dramatic way:

2
AR () = 42% LR (2_) In (27%) , (5-18)
€ c

where K is the derivative of the modified Bessel function, @ is the distance between two
adjacent ¢ — y planes, r. the classical radius of channeled particle, and r. the classical
electron radius. Equation (3-18) is a crude result, which may be modified when different
lattices, or thermal effect, or imperfection are considered. We see that the bremsstrahlung
losses are increasingly severe as the energy of the particle goes up and still unsustainable
for high energy electrons. This is the case in spite of the fact that the bremsstrahlung

losses have been reduced for channeled electrons.
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IV. Conclusions

We considered bremsstrahlung losses from charged particles passing through the periodic
lattice structure of a crystal. To understand this process accurately is of importance for
many reasons, one of which is that this process heavily influences the choice of particles
and method of acceleration for the crystal X-ray accelerator. We obtained the Hamiltonian
(2-17) which governs the channeling process in a rigorous way. The quadratic term <g7>2>
in (2-17) repels electrons away from nuclei, limiting bremsstrahlung. We employed the
virtual photon method to evaluate the lattice electrostatic fields interacting with high
energy particles: In the frame of the particle the electrostatic fields behave almost as if
they are electromagnetic fields of a photon in the very high energy regime.

The resultant bremsstrahlung power off the particle by the lattice fields is roughly
proportional to the energy of the particle, which is consistent with the usual result. How-
ever, the constant of proportionality is reduced in our calculation. Thus the channeling
bremsstrahlung is somewhat more reduced than the nonchanneling case but it is still an in-
creasing function of the energy. The sign of charge also affects the power losses drastically
through the size of the distance from the lattice row r—the negatively charged particles
radiate much more severely. (For a given energy, the more massive the particle is, the
longer the radiation length is.) The bremsstrahlung losses are intolerably high for elec-
trons in ultra-high energies for the purpose of the crystal X-ray accelerator. For muons or
heavier particles they are tolerable. For this reason the electron is in fact a good candidate
for channeling radiator instead of a candiate to be accelerated to very high energies in a
crystal.

For a negatively charged muon, the typical distance from the nucleus of a lattice site

b

5~ %; therefore taking Zeg ~ 20 we find the ionization length

Lr (g) ~ 100km.

For example, if we put bremsstrahlung losses comparable with the ionization losses, the

may be r =

energy for this corresponds to a 50 TeV beam. The same requirement sets an electron

beam at 1.25 GeV.
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Figure Captions

Fig. 1 Crystal lattice and channels.
a) Coordinate system and the beam in the longitudinal direction.
b) Coordinate system and channels for positively and negatively charged

particles.
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