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Abstract

The Rayleigh-Taylor instability of a plane ablative heat wave is investigated. A
local incompressible stability analysis with self-consistent steady-state and instabil-
ity dynamics is described. Growth rates are obtained as eigenvalues of the instability
boundary-value problem and the structure of the eigenmodes is discussed. The ab-
lative instability cutoff is evaluated over a wide parameter range and representative
conditions for laser-driven ablation are identified. For comparable profiles excellent

agreement with both previous compressible and sharp-boundary results is found.

(@) Permanent address: Technische Hochschule Darmstadt, Institut fiir Ange-
wandte Physik, D-6100 Darmstadt, FRG
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I. Introduction

In most laser fusion concepts one attempts to achieve fusion conditions by
ablative acceleration of high-aspect-ratio shells. One of the crucial issues in this
context is the hydrodynamical stability of the ablation process. Rayleigh-Taylor
(RT) instabilities, arising from inverted density gradients, are likely to occur and

have been reported in a number of investigations.!=*

In the present study we examine a reduced description of the ablation front
instability. The purpose is to include in a simplified but self-consistent manner the
effects of mass ablation and heat flow into the classical treatment of Rayleigh-Taylor
instability. Our main assumption is that the instability evolution can be under-
stood on the basis of incompressible theory. Evidently, this limits our discussion to
subsonic ablation fronts, which are widely enough separated from the sonic-point.
region. The incompressible fluid approach has been discussed in detail recently and
applied to idealized ablation fronts with infinitely sharp boundaries.® In the present
study the latter restriction is removed and the treatment is generalized to diffuse
boundary layers. Numerical calculations for self-consistent steady-state flows are

presented, which can confirm the validity of a local incompressible stability analysis.

Our procedure of calculating the instability growth rates is described in Sec. II.
We consider an eigenmode analysis and determine the growth rates as eigenvalues
of the instability boundary-value problem. The corresponding solubility condition
is expressed in close analogy to our previous result and reduces to this case for
the sharp boundary model. Some important simplifications for the numerical work
have been gained by (i) using analytic solutions for the asymptotic boundary regions,
(ii) smooth variables in the boundary layer, and (iii) by integrating from the ablation
front towards lower densities, where only two independent numerical solutions are
required.

The computational results are discussed in detail in Sec. III. For an incompress-
ible model in slab geometry the solutions can be distinguished by a single parameter

T', which denotes a dimensionless acceleration. The instability dispersion relations
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are given for a wide range of parameter values. While ablative effects are small
for long wavelengths, they tend to dominate and even stabilize the flow for short
wavelengths. The cutoff wave number for marginal stability is therefore of special
theoretical and practical interest. We determine the stability boundary as a func-
tion of the instability I;arameter. It indicates improved stability behavior both for
very small and very large parameter values. Similar observations have been made
previously for the idealized sharp boundary model. We also discuss the spatial
structure of the unstable eigenmodes both in the classical and ablative instability
regime. Typical mode structures are explained by considering the mass, momentum
and energy flows as well as the density in the unstable region.

The mathematical sharp boundary model depends crucially on the choice of
boundary conditions. To confirm conditions used previously,” we make a detailed
comparison with the present numerical method. For a class of finite-thickness layers
the convergence towards the step-profile limit can be explicitly demonstrated. The
maximum thickness consistent with the sharp-boundary limit, however, is found
rather small and actuglly comparable with the minimum scale length at the ablation
front. This shows clearly the need for a diffuse boundary treatment. Although the
sharp boundary model is not rigorously valid for consistent profiles, we explain
how these results may be applied to model diffuse boundary layers. Introducing
the profile-step near the perturbation maximum is shown to lead to satisfactory
agreement both for the growth rates and the mode structures.

Next we discuss to some extent the occurrence of subsonic fronts and the re-
spective values of I' in the laser fusion context. For this purpose we consider more
global steady ablation models extending up to the sonic point region.® From this
analysis it follows that ablation front conditions can vary appreciably, depending on
a parameter u, which is the ratio of the typical penetration depth of the heat wave
over the typical scale height of the slab. For steep fronts, p1 < 1, the values of I' can
become very small, corresponding to the more favorable instability regime. In this
case it is however likely that the instability zone overlaps the sonic point region, so

that our analysis here can only be considered preliminary. For more extended heat
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waves, u ~ 1, the ablation front is usually well separated from the sonic-point and
the typical values of I' are found in the interval 0.1 — 0.3.

Finally, we compare the present model with previous computations, solving the
complete set of compressible fluid equations.®~7 In the parameter range I' = 0.1 — 0.2,
where such results are available, we find excellent agreement for the growth rates
in the ablative regime. This strongly supports that the incompressible description

yields actually accurate predictions.

IT. Growth Rate Calculations

To investigate the RT instability with ablation, we first consider steady abla-
tion in the incompressible flow regime. A plane heat wave is assumed propagating
in the y-direction such that in an accelerated coordinate frame the flow becomes
steady and subject to an effective gravitational acceleration g = (0, —g,0). The flow
variables are the velocity v = (0, —v,0), density p, pressure p, and temperature T
Following previous work® we neglect compressibility effects, by using an isobaric

" approximation to the energy equation,
V- (v+xVp/p) =0. (1)

The coefficient of thermal diffusivity x is assumed as a power law, ¥ = const 771!
of temperature. If not stated differently we use v = 2.5, corresponding to classical
electronic heat conduction. It is convenient to introduce dimensionless variables
X = X/X;, where X; denotes the asymptotic value approached by the variable
X inside the cold slab, and a dimensionless coordinate { = yv;/x1. Then we have
=T =1/p and Eq. (1) can be written in the form,

%ﬁ =" (1 - p). (2)
The density profiles obtained from Eq. (2) depend only on the heat conductivity
exponent v and increase with £ up to the asymptotic value p = 1 (Fig. 1). Note that
the density gradient is opposed to the gravitational acceleration, corresponding to

a Rayleigh-Taylor unstable configuration.
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To analyze the stability of the steady-state we consider now a normal mode
ansatz with perturbations 6.X = §X(y) exp(nt+ ikz) for each flow variable X. The
linearized equations for mass, momentum and energy conservation yield,

d .
d—(p&vy —vép) +nép + tkpév, =0 ,
Y

%(pvévz) —npbvy —ikép=10 ,

3)
d (
—(v?6p — 2pvévy + 6p) + n(pbvy — v8p) — ikpvév, + gbp = 0

dy

d { d < 6p>] . s 6p

— vy + — | x— )| +tkév, — k*x— =0 .
dy 7Y dy \"p p

For studying the transition to a sharp boundary it is convenient to use variables

which stay continuous across a boundary layer of zero thickness. In our model such

variables are,

Y = pév, — v6p

Y, = 160,

Y = 5285 — 265, + 6p/(p10?) (4)
Y, = x6p/8

, _d

Y’s = 5vy + zl—é.'Y;l

where we used the notation of Eq. (2). Note that Y; represents the mass flow,
—1Y5 the z-momentum flow, Y3 the y-momentum flow, while %Y‘; is proportional
to the heat and Y to the energy flow. Transforming Eq. (3) to the variables (4) and

defining o = ny1 /vi, & = kx1/v1, I' = gx1/v? one obtains the first order system,

d
EY =M(o,%,T,v,p)- Y (5)
with
( 0 —kp 0 —op”t? 0\
n —2klp op —k —kp¥ 0
Y;
Y=|Y; M= —o K 0 Tpt? 0
Y, — v
Ys -1/p 0 0 —p 1
0 -k 0 K2 0



The unstable perturbations tend to be localized near the maximum density gradi-
ent. We are therefore looking for solutions of Eq. (5), which become evanescent at
the boundaries [{| — oo. The growth rate o is obtained as an eigenvalue of this
boundary value problem. Generally it will depend on the wave number & as well
as on the parameters I' and v. We also remark that our definition of I" agrees with

that of F' in Ref. 5.

To impose the boundary conditions more specifically, we assume boundary
regions for £ > 0 and £ < —d. In these regions the flow is considered locally
homogeneous and the flow variables are denoted by an index 1 and 2, respectively.
For the profile (2) the origin ¢ = 0 has been chosen such, that 5(0) = 0.999, which
is nearly the asymptotic value p = 1 approached at £ = +oo. We therefore set
p(0) = py = 03 = 1 = 1. The layer thickness d should satisfy the requirement that
the growth rates do not change significantly when d is further increased. We find~
that this criterion is well satisfied for kd 2 1.5 and have chosen xd = 2.5 for most
calculations. The solutions Y; of Eq. (5) tending to zero in region 1 satisfy at { =0

the initial conditions,

1 -1 - 1
1 —81
Y;0)=|o/c—1 fa+ 1y b (6a)
0 1
1 fizhl
Likewise solutions Y5, tending to zero in region 2 satisfy at ¢ = —d the initial
conditions,
1 1 AT
—1/p2 —o/k — P32
Yo(—-d)= | —o/c—1/p2 e+ | —2/p2 | d+ pyts e. (6b)
0 0 1
1/p2 1/p2 K% hy



Here a, b, ¢, d, e represent arbitrary constants and,
r=(¢—x*h)/p"
s =—k(l —qh)/p"
t=142r+(s/)(qg - po)
h=T/(c—4q/p)?
a=-%—(G+o+)"?
02 = —57; + (355 + Py o + )2
To obtain solutions which satisfy both Eq. (6a) and Eq. (6b) we calculate Y (—d),
by integrating Eq. (5) with the initial conditions Y;(0). The jump of Y; across the
layer, —d < € < 0, is generally written in the form,
Y1(0) = Yy(~d) = aK + bJ ,
where K and J denote the jumps of the particular solutions a =1, b= 0 and a = 0,
b = 1, respectively. Matching now Y; to Y, at { = —d yields
Y1(0) — Yy(—d) = aK + b . (7)
This is a homogeneous vector system for the unknown constants a, b, ¢, d, e. Setting

the determinant of the coefficient matrix equal to zero, there follows the solubility

condition,
(4=52D) [B=7+ (24 R Z8)| — (a—76) [B-C+ (24 m=D)| =0 (8)
with the substitutions,
A=—1+r)+5 7 1 +r)1=Jo) = Ty
B = —s1+ pysa(l — Ju) — J2
C=—t1+p3ta(1—Jg)+ Js
D = &%k — k2ha(1 — J0) — Js
a=1—Ky — 51 +ry) Ky
B=1-K,;— sy Ky
y=1- %+ K3 — Bt K,
§=1—Ks+ r’hy Ky .
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Equation (8) determines the possible growth rates c. We used a standard numerical
algorithm to calculate the zeros in Eq. (8), iteratively. For each estimate of o one
has to evaluate the jumps K and J, by integrating Eq. (5). For a sharp boundary
model one has K = J = 0 and Eq. (8) reduces to the solubility condition discussed

previously.®

ITI. Discussion of Results

The numerical procedures described in the preceding section now can be applied
to calculate the instabili'ty growth rates for given density profiles p = p(¢) and given
values of the instability parameter I' and the heat conductivity exponent v. In this
section we discuss the results obtained for different profile models. Furthermore the
instability parameter I' is evaluated for some representative steady-flow conditions

and the results of the present reduced fluid model are compared with previous work.

A. Diffuse Boundary Model

Let us first consider a diffuse boundary, with the density profile given self-
consistently by Eq. (2). Detailed numerical results for this case are presented in
Figs. 2-4. The growth rate curves ¢ = o(x) are shown in Fig. 2 for different values
of I' and v. The qualitative behavior can be understood by noticing that ablative
modifications become negligible at small wave numbers. The asymptotic behavior
for x — 0 is therefore described by the well known RT result o « (I'x)'/2. With
increasing wave numbers both the convection rate £ and the thermal diffusion rate
k%p” increase faster than the instability growth rate. Ultimately, at large wave
numbers this gives rise to the instability cutoff, observed in Fig. 2. The cutoff
wave number k. as a function of I' is presented in Fig. 3. Wave numbers above
the stability boundary x = k(I') are stable, while those below are unstable. The
observed increase of k. with I' is due to the I'-dependence of the RT growth rate.
We remark that s, grows slightly faster than T' for I' S 1 and slightly slower than
VT for ' 2 1.

According to the present model favorable regimes for ablative acceleration may

be found both for small and large I values. Let us compare configurations with given
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ablation pressure pi, slab density p; and velocity vi. Estimating the foil thickness
ds by the hydrostatic relation p1 = p1gds yields kedy = (k¢/T)p1/(p1v3). The
major stability constraint k.ds S 1 scales with the ratio k./T'. The latter reaches
a maximum of about 0.18 at T’ ~ 0.5 but can be less than 1072 for I' $ 1072 and
T 2102,

Let us finally discuss the typical spatial structure of the eigenmodes. The vari-
ables Y; as defined by Eq. (4) are shown in Fig. 4 as a function of ky. Three widely
separated wave numbers have been selected to demonstrate the conditions in the
classical instability regime (a), near maximum growth (b), and near the cutoff (c).
Note that the solutions are well localized near the ablation front at y = 0, reaching
their maximum generally above ky = —1. The density perturbation Yy has been
chosen negative, corresponding to a surface region, where the isodensity contours
are rising in the y-direction. Its magnitude decreases strongly with increasing wave.-
numbers as can be seen by noting the different normalizations of Yy in (a)-(c). While
both the mass flow ¥; and the energy flow Y5 are found positive, the transverse ve-
locity Y, reverses sign across the boundary, indicating shear motion as predicted by
standard RT' theory. The momentum flow normal to the surface Y3 also changes
sign for small wave numbers (a), but positive flow amplitudes become reduced near

maximum growth (b) and disappear completely near the cutoff (c).

B. Sharp Boundary Model

For reasons of analytic simplicity it is much more convenient to study a sharp
boundary model instead of the diffuse boundary layer given by Eq. (2). This ap-
proach allows the derivation of exact dispersion relations and represents an instruc-
tive example for the stabilization problem. Evidently, however, these results require
further explanation, when the relationship between the sharp and diffuse bound-
ary treatment is considered. For this purpose we now discuss in detail the thin-
boundary-layer approximation and compare its predictions with diffuse boundary
layer results.

We first wish to confirm that the sharp boundary model actually becomes
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valid as a thin-layer limit. To examine the convergence, we assume a boundary
layer, —d < ¢ < 0, with a linear density variation, p = 1 4+ (1 — p)€/d, and
consider a sequence of profiles with decreasing layer width d. For a specific case the
parameters p2 = 0.1, I' = 0.1 and k¥ = 0.001 have been chosen. The calculations,
as presented in Fig. 5, show that the maximum layer thickness consistent with the
step-profile approach is d,,, ~ 1. If the layer is much thinner (a) the variables Y;
are continuous across the density jump, but they vary inside the boundary layer
for d 2 1(c). We remark that the limiting thickness d,, = 1 is extremely small
compared with the inverse transverse wave number k1 = 1000. This circumstance
can be understood by noticing that d,, is required to satisfy the more restrictive
condition, |¢d,,| S 1, where ¢ is any wave number along the y-direction, allowed by
the asymptotic boundary regions. In the present model the maximum wave number
is that of fhe density perturbation in the region ¢ > 0 and, from Eq. (6), is given.-
by ¢ = ¢1 & —1. Accordingly, one has d,, ® 1 even in the large wavelength limit,
where k < 1. It may also be instructive to compare the smooth variables Y¥; with
the more usual flow variables. From Fig. 6 it can be seen that 6p, dp and dvy, as
obtained by inverting Eq. (4), vary rapidly in the boundary layer interior, where

the variables Y; are approximately constant.

As we have seen, the maximum allowable width in the thin-layer-approximation
is the scale length /vy of the density perturbation. But this is also about the
minimum gradient scale length of the steady-state profile (2), and therefore the
sharp boundary model is strictly not applicable to this case. In a less rigorous way,
however, step-profiles may be used to model a diffuse profile with good qualitative
agreement of results. This follows from the observation that for given parameters
I', v and k one can always choose a density ratio p; in the sharp boundary model
such that the growth rate is the same as for a diffuse boundary. To justify such a
comparison, one may think of asymptotic boundary regions, which are continued
into the boundary layer up to the region, where the perturbation maximum is
assumed. There the profile-step is introduced, with a step-height comparable with

the local density of the boundary layer. Let us now adopt this viewpoint and
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compare the field structures of Fig. 4 with those of step-profiles with equal growth
rates. Step-profile results with corresponding values of T, v, k and o are represented
in Fig. 7. Here the density ratio g, is 0.17 in (a), 0.25 in (b) and 0.4 in (c). Inside the
diffuse boundary layer these values of 5 are assumed at the points where ky = 0.1,
0.14 and 0.29, resepectively. According to Fig. 4 this is about the region of the
maximum of ¥Y;. Comparing now the eigenmodes of Fig. 4 and Fig. 7 one finds
a naturally smoother behavior for the diffuse boundary with larger amplitudes for
the density perturbation Y. But the main features are remarkably similar. The
decrease of positive amplitudes of Y3 with increasing x is well reproduced by the
step-model. Also Y, which is continuous across the step, reverses sign downstreams.
Only very close to the cutoff (c) the eigenfunctions show a more sensitive profile

dependence.

C. Steady Ablation Fronts

The present instability analysis applies to any local steady-state near the ab-
lation front. To discuss the conditions for such local steady-states, we now consider
steady-states on the larger compressible scale height of the system. These more
global models allow us to evaluate representative ablation front parameters and
give some estimates for the range of applicability of the incompressible fluid ap-
proach.

We consider steady flows for an ideal gas with particle mass m and adiabatic
index . The isothermal sonic point, where v? = T'/m, will be denoted by a subscript
s and the ablation front, where % = 0, by a subscript 1. Normalizing T" by 7 and
lengths and times by v2/g and vs/g, respectively, the steady state fluid equations
for the slab geometry of Sec. II assume the form

'U,
—(T—v)=1+T
v 9
—1 /v2 ( )
T + ———(—+y) +uT"T' =C .
v 2
These are coupled first-order equations for the velocity and temperature profiles

with two parameters u = x,g9/v> and C. Before looking at some specific cases, we
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wish to make a few remarks on the general steady-state problem. The solutions of
Eq. (9) may be classified according to their behavior near the sonic point, v = T' =1,
which is a singular point of Eq. (9). For this purpose it is more convenient to
consider variables y(v) and T'(v) depending on v. Transforming Eq. (10), one finds
for dy/dv = 1/v" and dT'/dv = T"/v' the equations,

Dg—y= —uT"B
v
p (10)
D= = “\B
- = (D +pT7)

with

B = T — v?

, D=T+%l<§-l—y>—uT”—C .

We are looking for flows describing a supersonic-subsonic transition with increasing
y. Consequently %% < 0, and B and D always must have the same signs. Especially,
across the sonic point, where B reverses sign, the same must hold for D. This can
happen in the singular case, where D = 0 for v = T' = 1. The constraint, D - 0,

then restricts the constant C' to the value,
-1
C=1+_—77 (%‘Fys)“ﬂa (11)

giving rise to a one-parameter family of solutions depending on x only. More gen-
erally, however, D may change sign discontinuously, if an energy source is assumed
at the sonic point. Such a source may model energy deposition by a laser beam and
changes the value of C discontinuously across the sonic point. In this more general
case one has D # 0 as v — 1 and a two-parameter family of solutions depending on
p and C can be obtained.

To distinguish these two cases more explicitly we consider a series expansion

of the form,
y =y, + abv + bév?

T =14+ cbv + dév?
v=1+6v
D=D0+D16’U .
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Inserting Eq. (12) into Eq. (10) the orders 0(1) and 0(6v) yield the system of equa-

tions,
Dya =0
Doye=0
Dia+2Dgb+ p(c—2) =0 (13)

.D]_C+ 2D0d'— (/,6 + Do)(c— 2) =0

-1 -1
D0:1+’YT(%+ys)—u—C; Dlz(l—,uz/)c—}—,yv. (a+1) .

In the regular case, Dy # 0, both y and T' are found to approach the sonic point

with zero slopes,

a=c=0, b=pu/Dy , d=—(1+0) . (14)

In the singular case, Dy = 0, the derivatives of y and T generally do not vanish,

but two solutions with different slopes branch at the sonic point,

1/2
1 1— 1—~\2 1 (15)
a Y i Y

In the parameter range of interest below (u =~ 1), only the upper sign yields a
transition with dv/dy < 0. Notice, that at the sonic point 2—; = 1/a and dT'/dy =
¢/a = —1. Equations (14) and (15) describe the behavior around the sonic point and
numerical solutions can be obtained by starting with these initial conditions. We
now wish to identify the relevant range of parameter values for C' and p. Evaluating
Eq. (9) at the ablation front, one immediately finds,

-1 2
C=T1+VT<%+?J1) —pIy . (16)

Choosing the origin of the y-axis at the ablation front, y; = 0, the dominant term on
the r.h.s. is T1 <« 1. Different values of C then correspond to solutions with different
ablation front temperatures 73 ~ C. The second parameter p is the ratio of the

sonic point temperature scale length L = xs/vs over the scale height L, = Ts/mg.
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This suggests, that 4 S 1. For u < 1 the heat wave penetrates only a small fraction
and for u ~ 1 a major fraction of the accelerated slab. We will now discuss in more
detail these two limiting cases.

For u < 1 Eq. (9) allows a simple approximate solution,

_ _K 1/v
T=( My) an

v=1-+v1-T .
It is obtained by neglecting in the energy equation the small kinetic and potential
energy terms as well as the constant C, and assuming consistently |7V] > 1 in
the momentum equation. The solution (17) will be a good approximation up td
the ablation front, where T' &~ Tj. From Eq. (17) the Mach number near the
ablation front is approximately M = v/ VT /T /2 < 1 and the ablation pressure,
T

p = 3 ~ 2, about two times the sonic-point pressure. The parameter I' of the -

instability analysis may be expressed as,
= pof ~?pf m 2ol 72 <1, (18)

and can assume rather small values in this regime. Because of the steep temperature
gradients the instability zone is likgly to overlap the sonic point region, indicating
that our results have to be modified for this case.

The opposite limiting case where u & 1 is more complicated and we therefore
restrict attention to numerical solutions for Dy = 0. Table 1 summarizes the ab-
lation front parameters, obtained for some values of u. For all cases of potential
interest we actually find that p ~ 1 with deviations less than a few percent. The
maximum ablation pressure now is only about 1.2 p,, because of the pressure de-
crease due to the effective gravity. The distance d between the sonic point and the
ablation front is about 0.4 and the instability parameter I' varies between 0.1 —0.3.
Steady-state profiles for the case where p; = 50, are displayed in Fig. 8. Near the
ablation front (b) pressure variations are found small and the flow is well subsonic.
One can therefore expect that compressibility effects here will only play a minor

role for the instability evolution.
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It may also be instructive to evaluate some steady-state parameters, which
can easily be compared with experiments and simulations. We have seen that
the source-free steady state requires Dy = 0 and g ~ 1. The condition u = 1
determines therefore the characteristic accelerations g and scale heights L for a
given sonic point temperature T;. For an example, assuming classical electronic
heat conduction, fully ionized carbon and a sonic point density of 102'cm™2 we
refer to Fig. 9. Obviously, this case is too restrictive to account for the full variety
of conditions in laser accelerated plasmas. However, allowing for an energy source
at the sonic point this constraint can be dropped and steady-state solutions may
be possible for x S 1. Then, at corresponding temperatures, the accelerations can
be smaller and the scale lengths larger than those given in Fig. 9. |

We finally wish to compare the present results with previous instability compu-
tations for compressible flows in spherical geometry.” Here the steady-state model
is limited to source-free sonic-point transitions and the solutions are distinguished
by two parameters Ky = 7%1;1/ G and G = ryry/L,, where ry is the radius of the
ablation front in units of the sonic point radius r;. Ablation front parameters, which

we obtain for different values of K, and G are given in Table 2. The instability

parameter,

-1
r=1 ” KoGr$pl ™" o} (19)

varies here in the small range between 0.1 and 0.2. In Ref. 7 the growth rates
fi = nrs/vs are calculated as a function of the mode number £. These are related

to the present variables o and & by,

= gripo, £=griplk (20)

where the approximate relation kr, = £/r; has been used. As can be seen from
Fig. 10 both results are in excellent agreement for large wave numbers. For small
wave numbers the local analysis fails and shell-structure effects become important.
Small discrepancies for density ratios p; S 20 are possibly related to the approx-

imate relation krs = £/r; between the wave number k£ and the mode number £.
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Replacing the radius r1 by the somewhat larger radius of the unstable layer will
obviously yield better agreement in this case.

Finally it is noted, that the different profiles for p; = 25, G = 2 and p; = 50,
G = V10 lead nearly to identical values of I'. The corresponding growth rate
curves are therefore represented by a single solution in the incompressible model.
This confirms the fact that the instability evolution here is governed by the local

profile structure.
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Figure Captions

. Steady-state density profiles as obtained from Eq. (2). The heat conductivity
exponent increases by 1 for subsequent curves and is equal to 1 for the lowest

curve.

. Instability growth rates o versus wave number «.
a) Growth rates for v = 2.5 and T varying from 0.01 to 100.
b) Growth rates for I' = 0.2 and v = 2.5, 5, and 8.

. Instability boundary x. = &.(I'). It increases faster than I' for I' < 1 and
slower than v/T for T' > 1.

. Spatial mode structures for different wave numbers « with I' = 0.17 and
v = 2.5. The different curves represent the variables Y; defined by Eq. (4) and
are labeled by the index 7. The variable Yy has been divided by a normalization
constant ¢. a) ¢ = 0.012, ¢ = 100, b) o = 0.015, ¢ = 50, and ¢) ¢ = 6.107°,
c=20.

. Local mode structure for boundary layers with increasing width d. The results
are displayed as explained in Fig. 4 with ¢ = 10. The variables Y; are continuous

across a sharp front, but vary in the interior if d 2 1.

. Comparison of a) the variables ¥;, with b) 6p — - — -, §p — — —, 4¢60, — and
6ty --+. The parameters are I' = 0.1, g = 0.1, ¥ = 0.02, kd = 0.01 and

o = 0.02. The normalization constant of Y} is ¢ = 10.

. Sharp-boundary mode structures for the same parameter values as in Fig. 4.
a) o =0.012, ¢ = 10,
b) o =0.015, ¢ = 10,
c) 0 =8.107%c=1.
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8. Steady ablation front with p; = 50 and Dy = 0.
a) The ablation front (dp/dy = 0) is well separated from the sonic point
(M =1).
b) Near the ablation front pressure variations are small compared with the

density variations and the flow is well subsonic.

9. Typical steady-state parameters g and Lg as a function of T's for extended

fronts (u=1).

10. Comparison of present incompressible ( ) and previous compressible (———)
results. For sufficiently large mode numbers, where the local analysis becomes
valid, excellent agreement has been obtained. The dotted line gives the stan-
dard RT growth rate o /¢ without ablation.

a) G=+/10, py = 50

b) G =2, p; = 12.5,25,50,100.
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Table 1: Plane ablation fronts

............................................

0922 10 0.1 1.01 0.447 0.296
0975 20 0.085 1.11 0.424 0.284
0995 30 0.039 1.16 0.416 0.263
1.012 50 0.024 1.20 0.410 0.225
1.025 100 0.012 1.24 0.406 0.175
1.032 200 0.006 1.25 0.405 0.129
1.036 500 0.003 1.26 0.403 0.082

--------------------------------------------

.....................................................

V10 0.5195 50 0.03 1.54 0.924 0.171
2 0.6225 125 0.12 1.47 0.892 0.184
2 0.6605 25  0.06 1.56 0.899 0.170
2 0.6810 50  0.03 1.63 0.903 0.140
2 0.6913 98  0.017 1.70 0.904 0.115

------------------------------------------------------
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