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Fluid descriptions of toroidally confined plasma with FLR®

effects are studied, based on a generalized, energy
conserving, self-consistent, nonlinear reduced fluid model
(HHM). The model, derived &ia a fluid approach starting from
moment equations, differs ffom Bragingkii’s fluid system in
retaining Oﬁp?) termg (where p; 1s the ion gyroradius) and
most of the non-ideal effects. Hence, many of the well-known
reduced fluid models can be reproduced from HHM by Simply
specifying soalés Oof some parameters such ag pi and . On
the other hand, a Pade approximation of the full FLR system,
obtained from the simplified version of HHM, is also
presented. This simplified model is not only ‘energy
conserving and much easier to access, but also can be. shown
to retain FLR effects quite accurately. We therefoie remark
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that this version should deserve further analytical and

numerical studies.

The possible applications of HHM are discussed in a

general way so that fﬁrther detailed studies can readily
follow. 1In parﬁioular; linear toroidal drift—tearing modes
with finite ion temperature effects are studiéd. The
eigenmode equations, derived from the 1inearized'version of
HHM, are analyzed both by a multi-scale variational ?rincipie

for the sheared slab geometry; and by the conventional

asymptotic matching process for the toroidal geometry. It is.

discovered that (1) without the effects of viscosity, the

instability condition and  the growth rate of the
semicollisional drift-tearing modes are hardly affected by
the finite ion temperature; (2) with the effects of

viscosity, the instability condition and growth rate are

characterized by the ion viscosity in a crucial manner..

Sincé ion viscosity is sensitive to the ion temperatﬁre, we
thus conclude that ion temperature could become an impbrtant
parameter for controlling the drift-tearing instabilities in
present and future day high temperature plasma devices.

In addition, the non-canonical Hamiltonian theory and its
application to our reduced systeﬁ are discussed. ‘This fast
developing theory has been useful for studying the equilibria
ahd nonlinear instability of fluid system.
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CHAPTER I

INTRODUCTION




Low frequency (g Shear-Alfven frequency) activities, such
as tearing modes, interchange modes and ballooning modes, are
believed to play important roles in toroidally confined
plasmas. Kinetio and fluid descriptions of these olaSées of
motions are given in a vast literature. In particular; fluid
Plasma theory, while neglecting several kinetic effects such
as Landau damping and particle trapping, takes advantage of .

fast growing computational techniques, the already existing

nonlinear . theories of fluid dynamics and noncanonicalii..

Hamiltonian field theory. Also - importantly, fluid theory
more explicitly provides important linear and nonlinear
physics. ConSequently, for the 'astonishing nonlinear
behaviors experimentally observed in the toroidal confinement
devices, fluid plasma theory evidently becbmes & very useful
tool to interpret the observed phenomena,.

However, because the primitive fluid system is still too
complicated (especially in toroidal geometry), simplification
éohemes are usually adopted. The main context of this
dissertation is to study the so-called ‘“reduced fluid
models", based on the assumptions of large aspect ratio
toroidal geometry, Shear—Alf?én time scale, and "stretched"
motions. The advantages of reduced fluid models are twofold:
(1) the reduced fluid equations, involving only a few field

variables, are much simpler and more accessible both




analytically and numerically; (2) the compressional-Alfven
ﬁotion is scaled out so that the maximum time stép is much
larger than the time it takes an Alfvén wave to propagate one
grid spacel.
The earliest-version of reduced fluid model was described
in the work of Kadomtsév and Pogutsez. It was then studied
numerically by Rosenbluth. et al% Strauss generalized this
work and ‘produced what is now called "reduced
magnetohydrodynamics" (RMHD). The low-beta version of RMHDE
was mainly for studying global ideal  kink modes in a
pressureléss plasma and was subsequently extended to include
finite pressure, high-beta RHMD5, for studying
pressure-driven modes. These simple models and their.
resistive versions were.then widely studied and were found to
predictively describe important phenomena in  tokamak
discharge in..agreement with the actual experiments6. For
instance, Mirnov oscillation’ has been associated with
m/n = 3/1 (where m is poloidal mode number and n is toroidal
mode number) island at the outside edge of plasma, n@jor'
disruption has been interpreted as a result of 2/1 - 3/2
oouplinge, and the anomalous electron transport has béen
related to gtochastic magﬁetic field lines produced by
resistive ‘ballooning modesg. For +this reason, RMHD has

become a principle tool in understanding the nonlinear




processes in tokamaks and has attracted great attention from
tokamak research community in the last decade.

However, RMHD excludes many pptentially important kinetic
and non-ideal effects, because of its MHD origin. Even in
its 1ideal context, RMHD omits, for instance, poloidal
curvature and density gradient terms which have been found”to
have a strong stabilizing influence on resistive modes?: 10,
Thus there héve been manyv recént efforts1l R0 4o extend
reduced fluid systems. The point is that for higher =
temperatufe plasma in present and future day machines;,
omission of +the diamagnetic drift and comparable terms,
corresponding to the finite beta and the finite ion Larmor
radius (FIR) effeots, arising from compressibility and
viscosity, is no longer appropriate.. |

However, different physical problems require different
equations to start with. For instance, when temperature
gradients matter, such as electroh temperature gradients in
the sawtooth effects®l and ion temperature gradients for the
u modeszg’zg, one can include the Braginskii’sz4 equations
of temperature evolution. A reduced fluid model that
includes the electron temperature as a dynamical variable was
derived by Drake and Antonsenl?. This model, however, is
restricted to zero iom temperature (experimentally the ion

temperature is usually about the same order of magnitude as




electron temperature). On the other hand, when particle
trapping effects become significant, one can include the
heoclassical flows, such as bootstrap current into the
equations of motion. For example, resistive
pressure—-gradient-driven  modes in the Banana—Plateau
collisionality regime has been studied based on a set of
"Neoclassical MHD" equations in which the bootstrap current
effects become dominantl®:13. Also, to include the correct
low-beta Mercier<® stabilizing term (= 1 - 1/q°), Straussi®-
has derived a set of finite-aspect-ratio MHD equatn.ons by
including the higher order inverse aspect ratio terms. For
other type of machines, we remark that similar works have
been done for mirror machines in the “iong—thin limit" by
Newcomb®, and for reverse field pinch (RFP) by Strauss. 16
Our interest here is the isothermal system which has both
high electron and ion temperatures, corresponding to the
realistic parameter regime (semi-collisional regime) .
Although many attemptsli’ 20 have been made to include the ion
diamagnetic drift to the reduced fluid equations, few have
rigorously considered the FLR effects. The importance of FLR
effects in the finite ion temperature semicollisional regime,
in the linear context, has been pointed out by Hahm?® and
will be demonstrated in chapter 4. Therefore, the main task

of this dissertation is to construct and study a generalized




FLR reduced fluid model. A recent model called the
four—field'model17 keeps electron beta terms and is valid for
a chéracteristic time as slow as the diamagnetic drifst
frequency wx. This fluid model possesses desirable features,
such as a physically realistic long mean-free-path electron
response (that usually requires a kinetic treatment); also,
unlike éonventional RMHD, the threshold for tearing
instability is given by the appfopriate finite critical valﬁe
of A’. However, the four-field model’s treatment of finite:: .
gyroradius terms is less complete and less self-consistent
than that of the present model. -

As in the four-field model, we consider slow time-scale
shear-Alfvén dynamics, with qonStanﬁ temperature. We also
allow for comparable electron and ion temperatures (T; = Tg),
- which is realistic in most of the modern day tokamaks. The
inclusion of compressibility and viscosity couples thé
parallel flow to the usual fields of RMHD. The main
distinction of the present work is that we do not scale the
ion-gyroradius p; or the plasma beta g in terms of the
ordering parameter ¢ (the inverse aspect ratio); rather, we
treat them as independent small parameters. Our reduced
system is therefqre more general: instead of imposing
complicated orderings from the beginning to make the resulted

equations suitable for certain problems, we only adopt the



general orderings following the shear-Alfvén time scale,
stretched motion, and large—aspeof—ratio geometry. We thus
derive a fully self-consistent and energy conserving éystem
that includes 'cross-field viscosity terms, 'as well as
electron diffusive terms provided by  the Spitzer
resistivity27, and ion  viscous terms due to ion-ion
collisions. The latter terms have been widely used as a

damping mechanism of plasma momentum in computational works:

Two distinct features of our model are: (1) It possessesi:

a conceptually simple energy conservation law. We remark
that energy conservation laws are necessary for the
description of reduced fluid models as a noncanonical
Hamiltonian field theory<®, a formalism that has been use‘ful.
-for obtaining additional constants of motion and nonlinear
éfability criteria for reduced systeng. Also, energy
constants can be used as a computational diagnostic. (2)
Even though we do omit O(pis) terms for simplicity, we show
that the model retains significant FLR physics even when
p§V2 ~ 1.

However, important kinetic effects such as Landau
damping, magnetic trapping, and potentially important
stabilizing effects due to the variation of temperatureso,

are beyond the scope of the this thesis. Also, due to the

omission of higher order inverse aspect ratio terms, the



5 will not be reproduced from our

low-beta Mercier criterion®
model.

Ve organize this dissertation in the following manner.
In Chapter 2, the derivation and gemneral discussions of the

generalized reduced fluid model are given. A method starting

from the second-order moment equation is used to derive the

gyroviscosity tensor that includes higher order
ion-gyroradius terms. Then, energy conservation and the:
corresponding thermodynamics is discussed. The usual..:

so-called interchange energy appearing in high-beta RMHD and.
other models is found to be the sum of the potential energy
and the kinetic energy of parallel flow, when 'the‘
incompreésibility is assumed. |
Next, several simplified versions of the generalizéd
model are discuésed. In partioular, a Pade approximation of
the full FIR fluid system is presented. This energy
congerving, reasonably simple, much more numerically
tractable model retains good FLR physics in a wide range of
ps. Hence, we claim that‘this model should be & reasonably
good description for the isothermal high temperature fluid

plasma, and therefore deserves further detailed analytical

and numerical studies.



In Chapter 3, the general applications of our reduced
system .are briefly discussed in such a way that further
detailed studies can readily follow. In particular, the
linear consequences of our model are studied in a sheared
slab geometry. The resulted boundary layer equations agree

26,31

with the rigorous gyro-kinetic theory in a wide range of

pi (with an error less than 8%). Then, the noncanonical

Hamiltonian theory and its applications to the reduced fluid:

system 1is discussed. The Hamiltonian structure of a:.

simplified reduced fluid model, which is a drift wversion of
RHMD, is studied through an isomorphism theory.

in Chapter 4, finite ion temperatufe effects on linear
drift-tearing modes are studied in detail yielding several
nev results. The eigenmode equations are derived from the
linearization of the Padeé approximation mentioned  before,
with the wusual boundary layer analysissz. This set of
equations 1is then amnalyzed by a two-scale variational
principle in a sheared slab geometry and by an asymptotic
matching process in the toroidal geometry. It is found that
when ion collisional viscosity is negligible, finite ion
temperature only mildly enhances the stabilizing ion sound
and good curvature effects by a factor of 1+T;/T,. On the
other hand, when ion <collisional viscosity  becomes

significant, the 'instability condition parameter Mg and




drift—tearing growth rate will be characterized by diomn
viscosity.

Finally, in Chapter 5, conclusions, discussions, and:
possible future studies relating to this thesis will .be

given.

10




CENTRAL DUPLICATING WORK ORDER FORM

(Acct, 4) _26-932 - 5050

Institute for Fusion Studies:

Fusion Research Center: (Acct #

Title ¢

Report #: 2 / S D/S.SEETM/D/{/

First Author: 747[5&/

# of copies needed: gﬂ v

# of pages (incl. window and figs.): 223

v
Single-side window - duplex the rest:
Single side entire manuscript:
Collate: __._:_....'_./.__. ~ Staple: : -

__.'—’4——‘_’———_—'——;——\"
Journal name and date submitted:

Internal distribution only: MM«W /”“"//

Whose mailing list(s)?

TgXnician: [j/(z ‘// /ééé/ -

Date sent to CD: g - 7 - ;7

MAR 18 1987
Date picked up from CD: : :




CHAPTER II
REDUCED FLUID SYSTEM

WITH FLR CORRECTIONS
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2.1 Introduction

The term ‘“reduced fluid model" refers to a set of
simplified fluid equations that describes +the mnonlinear
dynamics of large aspect <ratio tokamak plasmas. The

simplification is based on the following orderings:

(1) poloidal magnetic field ~ 0(s)
toroidal magnetic field

compressional Alfveén time :
(2) time scale of interest 0Ce)

transverse scale length
3 ~ 0 ,
(8) parallel scale length (e

wvhere the ordering parameter ¢ = éi << 1, is the inverse

aspect-ratio; a is the perpendiculas length scale and R, is
the toroidal length scale (or say, the major radius of the
magnetic axis). The first assumption limits the plasma
saféty factor to be of order unity, the second assumption
eliminates compressional Alfveén dynamics, and the third
assumption is appropriate to flute-like perturbations.

In addition, three other basic assumptions which are

consistent with the above large aspect ratio orderings:

(1) A, the vector potential due to plasma current, ~ 0(e);



(2) V, the plasma flow velocity, ~ 0(&);

(8) ——2 = 0(¢), vhere £ is a scalar variable of plasma

and f4 is the volume-averaged value of f.

The first assumption corresponds to the smallness of poloidal
magnetic field when ocompared with the wvacuum toroidal
magnetic field; the second assumption keeps the convection in
the shear-Alfveéen dynamics; and the third assumption -
apparently implies that the Oth order distribution function
is Maxwellian.

Consequently, O(:) terms in the moment eqﬁations describe
the ¢ompressiona1 Alfven equilibration, Q(sz) terﬁs‘deSCribe
tﬁe shear-Alfven dynamids, and 0(53) terms are dropped.
Moreover, for the system to be relevant for resistive modes,
the electron-ion coilision freguency uéi is assumed to be
0Ce). sSimilarly, in this thesis, we assume the ion-ion
collision frequency ’ii to be 0(e) as well in order to retain
the ion collisional viscosity in the finite ion temperature
system. We note that, in chapﬁer 4, when ion temperature is
finite, ion viscosity will be shown to be an important

mechanism in the semi-collisional drift-tearing activities.




Moreover, to retain the finite compressibility and finite
ion-gyromotion, plasma beta and ion-gyroradius are assumed to
be of order one during the reduction process. That is, we

don’t scale them in terms of e; rather, we treat them as

independent small parameters. Note that the explicit FIR ‘

terms are embedded in the stress tensor in the equation of

momentum conservation. In this thesis, we adopt a more

complete treatment based on the third-rank moment equation -
2

for deriving the stress tensor which retains O(p; ) terms:.

excluded by Bra,ginskii% and other authors. Also, a new term

in the gyroviscosity, arises from the compressibiiity, is
obtained. We remark that this term has not been mentioned in
previous works. However, for simplicity, 0(52) and O(pi3)
terms are neglected. Nevertheless, we will, in the next
cha,Pter, show that the reduced system we obtain retains
significant FLR physics for a wide range of Py -

Now, let’é discuss the organization of this chapter. In
sec. 2.2.1, we present the derivation of the generalized
reduced fluid model from the moment equations; in Sec.
2.2.2, we make éome genéral discussions on the resultant
reduced model and further simplify it to a more accessible

closed four fields system. Also, we present a. sgimple,

interesting model which include the drift effects to the

high-f RMHD. Ve name it DRMHD. In Sec. 2.3, the energy

14




conservation and the oorresponding'thermodynamic process of
our reduced fluid system are studied. At the same time, the
internal energy with a vague form -2hp is found due to the
inoompressibility which _forces the cancellation of the
parallel compression and berpendicular compression. In Sec.
2.4, we present a tractable, oleaﬁer, energy 'oonserving
reduced fluid model with four natural field variablesbw, Vi,

¥, p. This system is shown to be a good Padé approximation of

the full FIR system. In Sec. 2.5, conclusions are given.. . -

185
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2.2 Reduced Fluid Models
2.2.1 Generalized Reduced Fluid Model
Before proceeding with the reduction process, we first

briefly review the normalized geometry that is based on the

large aspect ratio orderings. For details, we refer reader

to Ref.[18]. The dimensionless coordinates (h, y, z, 7) are
defined by |
R-R ' VAT
h. = Os Y = Z’ z = - (s T = A 5 (2'1)
a a : a

where (R, ¢, Z2) are the wusual oylindrical coordinates

centered2 on the tokamak symmetry axis, the Alfven speed

B ‘
vﬁ = ———9——, and B., n. are the constant value of the wvacuum
4mmin, °r 0
field and ©plasma density, respectively. Hence, the

dimensionless gradient can be written .as

g— & 9
1 1 + ¢h a8z’

and the reduced geometry can be generally described by the

metric coefficients



(——)? i=j=2

.. , . 1 + eh ’
gld = vxlivzd - c (2.2)

~ ~ 5ij otherwise.

Now, due to the smallness of the poloidal magnetic field,
induced by plasma current, the magnetic field can thus be

written as

BO .
= \
? 1+5hZ * e é
~ ~ ' 2 e\
~ Bo[(l + e(BZ—h))Z —eZ x YLW) + 0(e )f ‘ (2.8

Vhere A is the vector potential induced by plasma current;

éo(V x A)
z = » Boa

is the normalized diamagnetic correction to the toroidal

magnetic field;

Yp
(1 + 0(e))
2ﬂBOa

<
n
I

is the normalized poloidal magnetic flux; and Wp is the usual

poloidal magnetic flux. Consequently, the unit wvector along

17



the magnetic field line b and field line curvature «, in the

reduced notion, are

b=2-c¢zxVy+0(s), : (2.4)

3

beVb = 2= Vb (1 + 0(e)). (2.5

1
- 222 Ry

ES
I

Also, the plasma current, due to Ampere’s law, has the form-

CBy . " 2 o | q
(szle + ZVLW)-+ 0(e*<). (2.6)%

C
=——V e —
g 4anr . X ? ¢ 4nra,

Similarly, the perpendicular and parallel electric field,

- according to Faraday’s law E = -Vo - % g%A, are
VB '
El = —¢ A ong + 0(52), _ (2.7)
v,B | |
beE = 207 o + 2y) + 0(:D), (2.8)
~ c 9T
respectiVely. Where ¢ 1is the electrostatic potential,
= ¢ is the normalized electrostatic potential,
EBOaVA
3
Vip = bV = — -~ [y, 1 (2.9
~ - Z

is the nonlinear parallel gradient, and



[£,8) = 2.V £xV g | (2.10)
defines the bracket.
For the equations of motion, we start with the exact

moment equations

praa + V n, V = 0, : (2'1-1’)
d Voz Cq A
By (g7 + Ve TV + TPq = (B + S x B+ F, (23200
3 .
(5 * VerTIBe # T+ ((BeT¥) + T0) + BI-Y,
miea
= ) (P, x b+ Tr) + C,, (2.13)
m_e. ~ N N
a1l ~ =
wvhere o« (= 1i,e) is the species 1label, sze—Bo is ion
i

~

gyrofrequency, and the moment tensors P, Ty and C, are

defined by

fo = A7 1a(Y = Vo) (V = Voo,

dq = de m, (v - vV, )(v ~ V(v - VI E
Cp = JAv m (v = VI(v - Ya)Ca(fq),

vhere C,(f) i1s the collision operator, n_, m

o o and Ya are

19



dengity, mass, and velocity, respectively. Also we usé “Tr"
‘to denote the transpose of the preceding tensor. |

For isothermal systems without the Apa,rAticle trapping
effects, it is adequate to write the friction force lz'a in the

Spit zer-Harm' form

3
~

Fo = Jav m (v - V,)C,(£,) = - n,engd (2.14).

where 7y is the Spitzer-Harm resistivity, which is scaled:tox
be 0(¢), and J is the plasma current. It is noted that
although Mg is sensitive to +the wvariation of pla,sma,

temperature (« Té?’/ 2), in this thesis, we assume them to be

constant. However, we remark that there have been some

studies on the "rippling modes" which originate from the
variation of resistivity.%%.3%
Next, we assume quasineutrality, sum Eq. (2.12) over

Species, and obtain

3 1.
mni(E + YY]Y + Y‘(lji + f’e) = g‘f X 1? (2.18)
J
wvhere V = V,; = e + V5. Here we have neglected terms Of

m
o(m—e). Similarly upon subtraction Eq. (2.12) leads to the
5

usual Ohm’s law

<20




Ve Vn'I‘e : )
E + == B = - , 2.16
~ c T2 s ne (
where n = n, = n.. Hence, the electron flow velocity can be

written as

oF

o VnTe
Ve = (g = Vidb + 50 x (ngd -

ne

- E), -~ (2.17)

~ where J, and V, are the parallel current and the parallel”

plasma flow velocity, respectively. We note that Eq. (2.16)
describes mainly the electron dynamics, while Eq. (2.15)

describes mainly the ion dynamics. Also, the parallel

component of Eq. (2.16) provides the generalized Ohm’s law;

P.(YxEq.(2.16)) provides the diffusion equation of toroidal
magnetic field and equivalently provides .the particle
conservation; the parallel component of Eq.(2.18) provides
the equation of parallel acceleration; and P‘(VxEq.(z.IB))
provides the important SheaffAlfvén law.

Although the shear-Alfveén time scale will rule out
compressional Alfven dynamics from the equations of motion,
the 0(e) terms of the moment equations will describe the
compressional Alfveén equilibration. From Ohm’s law and the

' 2
toroidal component of Faraday’s law, one finds V.V = 0(e").

21




The smallness of the compressibility is physically justified
by the inability of plasma to compress the toroidal field.
We also note that the assumption of n = n, + O(e) can be
proved to be oonsistent.with this conclusion by looking at

the continuity equation. We therefore write V as

V = avA(é x V,F + vz) + 0(£2), (2.18)

Ve

Q2

where v 1is the normalized parallel flow and F is the:s -

normalized stream function. Similarly, by using Eq. (2.6)

and vezv— i%J, the lowest order electron flow ocan be

expressed as

A ~ 2 .
Vo = eVa(z x V (F+26B,) + (v+2avf¢)z) + 0(e9), (2.19)
VA i
where the constant ¢ = 555 is a measure of FILR effects.

To find out the form of the stream function F in terms of

the typical field variables, such as electrostatic potential
and plasma pressure, the 0(e) contribution of the equation of
ion momentum conservation is required. We have

VoP: = — env ¢ + mynVxb. (2.20)

~ o~

The pressure tensor P., through which the ion romotion
D Ps g




comes into our equations of motion, can in general be

expressed as

Py = P (I -bb) + Py Db+ Py
_ oCGL -
=0 B
where
ITIV2
ivy
P, = [d 2 g
g = JAv myvy £y,

define the well-known Chew—Goldberger—Low35 stress tensor

PCGL, and ?iis called the cross-field viscosity tensor. For

-algebraic convenience, we hereafter use " ~ * to denote the

"non—-CGL" portion of an arbitrary tensor; namely,

A = a- ACGL
I - Db
= A - {bb(A:bb) + (I - bb)(*—7==:4)}. (2.21)
Eq. (2.20) therefore becomes
Y‘?i + YLPL = - enYl¢ + OVxb. (2.22)

3



The cross-field viscosity tensor is usually derived via
kinetic theory; here, we present a method for deriving this

tensor from exact moment equations. An earlier, linear

36

application of this method is due to Lee The result

differs from Braginskii’s result by including higher order
FLR correctioms.

We first define a tensor operator

~ o~ ~

such that for any tensor A, we have

~ o~

Eg. (2.13) can thus be written as

E(P.) =-% g, (2.24)

where

S = (——+V Y)P + V. ql ((P3+VV)+Tz) + P;(V.V) ~ Cj. (2.25)

Then, by using the follow1ng tensor 1dent1ty for any

symmetric second order tensor A

~ o~ o~ ~ o~ ~ o~ ~ o o~ o~

bxAxb = A — (bb.A + Tr) - (I-bb)(I-bb):A + bb(bb:A), (2.26)

~ ~ ~ ~ ~

-1
we find the inverse operator K ~,

K(A) = ((A x D) + Tr) | (22300

4



{((b x A+ (I + 3bb)) + Tr). (2.27)

By a simple algebra one can prove that the homogeneous
solution of Eq. (2.24), i.e., solution of %(g) = 0, must be
?CGL. This agrees with the Chew—Goldberge£—£ow.result that
%he lowest order (in p;) pressure tensor is fCGL. We thus

~

obtain

~ o~
~ ~ ~ ~

. . , CGL
(§) + pCCL - i% (bx§+ (I+3bb) + Tr) + P . (2.28)

We also remark here that this method can be extended to
derive the higher order moment tensors, such as q (Sée
Appendix A). -

To express S in terms of observable quantities, it is
necessary to as;ume the smallness of one or more ordering
parameters such as ¢, B, etc. In this thesis, we adopt the

large aspect ratio orderings and find that

WU
I

0>
00,
|

1)

8- (< 4 VeT)P+ ((Pg:VV) + Tr) + P + 0(9). - (2.29)

~

1 =)

1

4o)



]
~
o2
X
=)

.(§ + BPP)) + Tr),

(2.30)

is the first order cross-field viscosity, which is identical

to Braginskii’s gyroviscosity temsor. We therefore have

wvhere P8, the gyroviscosity tensbr, is
1 &8 :
ZH((b x 86.(I + 3bb)) + Tr),

and ﬁc, the collisional viscosity tensor, is

PC - _ éio((b x & .(I + 3bb)) + Tr)
Bl/i IlTl - ~ - -
== 759 _5_(W + 3(W.bb + Tr)).

(2.31)

(2.32)

It is important to note that the 0(e) terms of Eq. (2.31)

give exactly Braginskii’s24 cross-field viscosity and the

0(:?) terms give higher order FLR corrections.

Here we have

neglected the contribution from g which is O(pi). We remark

that Newcomb®' has studied an incompressible, collisionless

nonlinear system with FILR corrections in the paraxial limit.
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-He includes terms from q; however, we note that these terms
are Iimportant. only wien particle trapping effects or
. temperature variation are considered. Note that, in Appendix
B, we also briefly study gyroviscosity due to particle
trapping effects.

For collisional viscosity %O, arises fréﬁ ?, here we have

adopted Braginskii’s result which is accurate enough (under

our orderings on Vii) for the reduction process. However, in

Appendix G, for instructional purpose, we present a method:of..

deriving C by manipulating the Landau collision operator58

and expanding the distribution function in Laguerre

polynomials.

Now let’s go back to Eq. (2.22). By adopting Egs. (2.29)'

and (2.31) and dropping 0(52) terms, Eq. (2.22) becomes, in

the reduced form,

T. T: P,—nT.
2_2 1 1 1 1

1+ a.V = + 6p— + 64— ——=—,

( 8 l)F 4 pT ﬁTe eny Ty

(2.33)

Where p = f(il - 1) defines the normalized electron pressﬁre
0 8rn T

for an isothermal system, and g = ___%_g is the electron
B T. o
- 2
beta. It is worth mentioning here that a% = 6 ﬁEi = (Ei)g

e
: 2_2 2,2
and the operator a;V, corresponds to piV,, a well-known FLR

operator. Recall the well-known FILR operafoorze"z1

7




—Db. =
_ i . _ 9.2
ro(by) = e T Iyby) =1 - by + b2
; |
in gyrokinetic theory, where b; = —2a;V. and I, is the

modified Bessell function.
The remaining unnormalized variable in Eq. (2.33) is

P - nT.

1 1l

trapping effects are not considered. The inclusion of P L

apparently complicates the closure system. fortunately, by'-

observing Eq. (2.33), we see that it involves the small
quantity g. This allows us to determine it from the lower
order terms of moment equations. That is, by operating on

Eq. (2.28) with "(I - bb) :", we find

~

~ o~

(5"%6- + VeV)(P) - nT;) + nT; ((I-bD):VV) = 0(g).  (2.84)

Comparing this to the low beta version of the shear-Alfvén

law (as will be shown later) thus suggests that

P —nT.
1 - 26v%F + 0(p). (2.85)
enOTi . .

Here, terms from V.2 are again neglected because of  the

1

vhich wusually vanishes when ion gyromotion and
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absence of temperature variation and particle trapping

effects. Eq. (2.33) thus becomes

T, -
(1 - aivi)F - ¢ + 6—p. (2.36)
Te | |

Similarly, the O(:) terms of Eq. (2.15) give the reduced

pressure balance law

B, = - &y - vF, (2.37)

which describes compressional Alfven equilibration; again,

the second term of the right-hand side (RHS) is an FIR

correction.
9 :
For the reduced equations of motion, we keep 0(e¢” ) terms
and drop 0(58) terms. Consider first the electron dynamics.

Vx(Eq. (2.18)), particle conservation and Faraday’s law lead

to

(5% + VgeVIB + B(V.V.) = B.T, + n o(Vxd). (2.38)

Then, by taking its parallel components and dropping 0(2)
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terms, we obtain the diffusion equation of toroidal magnetic

field; i.e.
2B, + [F+26B,,B,]
3t 2 2’7z
= [F+26B,,2h] + V, (v+36J) + E(é%p+[F+26BZ,p]) + 7V By, (2.39)

where the operator é% + [F+26B,, ] is simply a reduced form

3

—_— 4+ oV
of (at Ve ~) and J
parallel current. After a rearrangement, Eq. (2.39) becomes

the equation of particle conservation

3
Pl [F+2aBz,p1

= - p[F+206B,,2h] - gV v - 266V, J

2

9
+ B(;Bg*[F,Byl) ~ 77 |B (2.40)

Z’

which can be also derived through Eq. (2.11) and V.Vs, by

| using Eq. (2.17).
The first term on the RHS is due to the curvature drift
and VB drift; the second term on the RHS corresponds to ion
acoustic effects. The third term on +the RHS,  the

semi-collisional compression, i1s responsible for the AC-type

Viw corresponds to the hormalizedm;
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parallel conductivity, usually refers to as the "long

nean-free-path electron response", in the semicollisional

regime. Regarding the fourth term, ﬁ(é%Bz+[F,BZ]), according |

to the compressional Alfvén equilibration Eq. (2.37), it
provides only the g corrections to the rest of terms with
gimilar structure. Hence, i1t will not affect the system
eilther qualitatively or quantitatively, provided that g is
usually a small quantity. ' | |

Similarly, the parallel component of Ohm’s law gives

Sy - .V, F - 26V,B. + nd, (2.41)
T ] 1~z 4 .

where the constant

2
C Mg
no=s
47\'a,VAE

is the normalized resistivity. The second term on the RHS
not only provides the electron diamagnetic drift but also
provides the ion acoustic effects and the long mean-free-path
kinetic response, in cooperation with the parallel
compression and the semi-collisional oom?ression,
respectively. We also note that if we allow for anisotropic

15
resistivity ~, then

3l



Fo =08y (03 + nyJ))

and our model is modified by simply replacing 7 by a

normalized =n; in Eq. (2.40) and by a normalized ny, in

Eq. (2.41).

The other two equations to be derived are the reduced

parallel momentum equation and parallel vorticity equation.

Taking b.Eq. (2.15) and b.VxEq. (2.15) yields, respectively

(2 + VoV )(Veb) + b+(V.P;) + b.V(nTy + nT,) = o),

(2 4y V) (D« VxV) + DekxV(P, - nT;) + beTx(7.2;)

~

vhere K is the field line curvature. The difficult terms to

evaluate are b.V.P and b Vx(V P) since P is a complicatéd

tensor. However, by_uSing the identities

boVO:AP = —Vb:i) + v'(b*ﬁ)
~ ~ 34 .
= ~Vb:Py+ ¥ (%N «8xb) + 0(e7),
BVx(V.B) = (Txb).V.B - Vk(P VD);jes g + 2VV (be + Tr)
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I

(va).v.ﬁ - Vk(P OF

as well as

Vxb = —a(§ + J%) + 0(52),

<
o
I

S RRNCENO NESN

1R v B
1l

6noT ¢ (VEF(I-22) - 27,V F) + 0(e),

the calculation. becomes much easier. Here, S is provided: by

Egs. (2.29) and (2.30). Also, most of the calculations in

(—b Sxb) and EVV (—S) are straightforward. However,

- Special care is needed for keeping the correct curvature

terms when caloulating V. (b.Wxb) and VV:(W). We have

~ o~ o~
~ ~

<
E
=]
X
o
1

(2b (vv)xb + (I-bb). (vv))

~ ~ o~ o~ ~ A

2Vb:V(Vxb) + 2b.V(V. (vxb)) - DT (be (TxV)) + 0(e)

P ~ o~ o~ ~ o~ o~

and

U(W) = vz(v V o+ baV(DeV) - keV) + 0(55)

~

Regarding the parallel collisional viscosity, we can simply
adopt Braginskii’s result and find it yields no contribution

to our reduced model.
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Finally, we obtain

34

(2.42)

T.
T 1+—s
2.2 2.2 i
2(1-2a17))v + [(1-a;7 i)F—di(p+ﬁ(4h—BZ)),V] +
= i v VZF [V 7.V v] V,.[F,V v] v2
= 65@{ 1 + Y1 ,~l'lﬂ + 26~l‘ ’,.,-l-v } _46/1‘ J_v’
and
3 1 2.2..2 1 2.2..2 : 4
5;(1'§&1V1)V1F + [F,(l—gaivl)VlF] + V,d + 2[Bz,h] - BuV | F
= -5 ?i vV .([V F P g 2h] [V 1)
= o (v -Clvy g ozt + [V, vD))

e

T.
Lop-iy2ey 4 - L2
- P (LT - §Ge ¢ IFpID)),

where the notation

[A;B] =) [Ak,Bk],
k
is used, and

lOaQTe

T

is the normalized viscosity coefficient.

(2.43)



The second term on the left-hand side (LHS) of Eq. (2.42)
is due to the ng, curvature, and gradient B drift; the third
term on the LHS of Eq. (2.42) is apparently responsible for
the ion acoustic effects. Also, terms on the RHS of
Eq. (2.42) are the FIR terms originate from gyroviscosity.

Regarding equation (2.43), the third term on the LHS,

V,Jd, includes the stabilizing line bending term and the kink

term; also, its mnonlinear part is responsible for the

magnetic island formation. The fourth term on the LHSY .

2[Bz,h], is the ocurvature term responsible for the return

equilibrium flows and the interchangé force. The first term

. T.

on the RHS, —aﬁilvl.[vlF,g], is responsible for the
R |

ion-diamagnetic drift. The last term on the RHS of

'Eq. (2.43), Vi(é%p + [F,pl), is responsible for the FIR
corrections to the line bending and the curvature terms.
These FLR corrections will become important in. the
éemi—oollisional regime where the ion gyroradius become
iarger than +the layer width centered at the resonant
surfaces. It is also worth mentioning here +that this
compressible portion of gyroviscosity is the a crucial term
in a Hamiltonian FIR-fluid model.>®

Although Eqs. (2.40)-(2.43) was derived ocarefully to
retain correct FLR physics to O(p%), they along will fail to

conserve energy. An intuitive reason is that our FLR system
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involves an dimplicit wvariable P,—nT;, arises from ion
gyromotion, which has been replaced according to Eq. (2.35).

Therefore, it should not be surprised that a residual O(ﬁz)

will survive the equation of energy evolution obtained from.

Egs. (2.40)-(2.43). It will also becomes clear in Sec. 2.3,
vhere the energy conservation of the reduced fluid system is
discussed in detailed, that ion gyromotion will generate an

internal energy with form (Pl—nTi)z/(ZnoTi). Therefore, it

is suggested that we should self—oonsistengly include thei

as
evolution of "P, - uT;". That is, adding '—V3(Eq. (2.34))"

to Eq.(2.43) and yields

3 5,22 2.2 4
5;(1 581 l)V F + [F, (1 Vl)VLF] + V,J + 2lB,,h] ~ guv F
Tl p
= — 665— [V F. g ~B,+4h-46V F] + (v .[vl¢ v]+vl (V)
- Lopoiiv2(y v+ Ly 4 [7,p1))) (2.44)
2°Pr U 5 9y P : :

We will show that, without the dissipation, Egs (2.40)-(2.42)

and (2.44) do conserve energy exactly.
It is interesting to note here that in a system without
O(piz) terms and with constant magnetic field, that is,

which P is given by Eq. (2.30), V¢ and B, are constant and
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curvature is neglected, Egs. (2.42) and (2.43) can be derived

alternatively by using

2 . 1, BTi nTy
min{og+VeV)Vp + TePo = = 2V (57 bV XV, ) = BbeV(—= bV xV, )
IlTi nTi ) ' . 3
+ ?P‘(YLVMXYLT) Ty bxV (V,.V,) + 0(c7), (2.45)
where Vp = L b x VnT; is the diamagnetic velocity. The.
~ m.nn - ~ .

i
first two terms on the RHS of Eq. (2.45), involving

respectively the perpendicular and parallel gradients of the
parallel voiticity, display anisotropy in  that  the
coefficients differ by a factor of two. This factor can be
related to the dimensionality of the system. To our
knowledge this anisotropy has not previously been noticed.
Ve also note that the above equation differs from the usual

"gyroviscosity oancellation“4o, because of the 1last three
terms, which are due to parallel gradients, parallel flow,

and compressibility. It implies that when the
compressibility is considered, the wusual gyroviscosity
cancellation, which has been adopted in many previous work

studying the gyroviscous effects, will not be adequate.



38

Furthermore, one might expect that the linear version of
Egs.(2.42) and (2.43) can be derived through the iom
gyro-kinetic equation to order of piz, but the calculation is
complicated. The linear, sheared-slab version of our model
will be compared with that of the gyrokinetic theoryBl.
Here, we only ‘rema,rk 41:ha1: the second term on the LHS of
Eq. (2.42),

I3

2 2 Ty
[(1—aiVl)F—GE;(p+ﬁ(4thz)),V] = [¢—6§;5(4h—52),v1

is the reduced form of

Jav v vy VE,

where vy is the particle drift velocity which includes ExB,

T~ o~

curvature, and gradient B drifts.



2.2.2 Discussions

Ve have derived a closed reduced fluid system; namely,

the particle conservation law

3
pom [F+26B,,p] + g{[F+26B,,2h] + V, (v+26d))

- 8CEB+IF,B,1) - 8V B, (2.46)

the generalized Ohm’s law

giw + V,F = -26V,B, + nd, . (2.47)

T

the parallel acceleration law

T.

T 1+E£
2 2 2 2 i e
é%(l~2aivl)v + [(1»aivl)F—dii(p+ﬁ(4h—Bz)),v] + v,
_ opdiy v? [V .F:V 9] VIF,V v]) + 4puv’ (2.48)
= 665;{ (VIF+ ~lF,~lw + 25~1‘ Vv ) + 4Bu e 48
and the shear-Alfvén law
3,. B.2.2, 2 B 22,2 4
2, (128 V)V F + [F, (1—2a3 VOV F] + 7,3 + 2[B,,h] - gu¥ F

i £ v? (v, . [v 14VRv
e ~ ~ _ ~ ~
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1.2 1,23 .
+ gvl(V”V'+ E(g;p + [F,pl))). (2.49)

Also, the electrostatic potential and toroidal magnetic field

are given by

2.2 Ty

9 = (1 - ajV)F - 6Ep, (2.50)
T.
1+ E}- 68T
e i 2
BZ = - > p - 2Te VJ_F' ‘ (2.51)

Although Eqgs. (2.46)-(2.51) appéar to form a system of
five fields, only four of these are independent. This is
because B, (or p) can be straightforwardly eliminaﬁed through
the simple relation of Eq. (2.51)._ Nevertheless, the
resultant set of equations will be much more complicated
unless some further simplifiéations, such as dropping 0(82)
terms, are made. However, terms with small quantities, such
as #, p;, are kept mainly for the reason to retain the
non-idea physics which . can resolve. the singularities;
therefore, 1if there is term which only gives a small
correction to other terms with the same mathematical form,

there is no reason the keep it to complicate our equations.
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By a quick survey on terms with "p-gB,", we easily see that

B, in those terms only give g corrections to other terms with .

exactly the same mathematical forms. We therefore suggest
that by taking p - B, -——» p in those terms, our system will
still retain all the desirable physios' as in
Egqs. (2.46)-(2.51). After some manipulations and dropping

0(62) terms, we obtain, the particle conservation

——p + [(l—a )F pl

T.
T, 1+—:L
~6{[(1-a5vV)F- 5(1+—;)p 2h]+V”(v+26J)) + 0 p—2 v%p,  (2.52)
the generalized Ohm’s law
8 T
v = -V, ((1-a4 vl)F 6(1+——)p) +n,J, o (2.53)

AT

the parallel acceleration law

T.
14—
2
Vyp - 4puV v

T.
3 2 2 2 2 i e

T.
i 2
= O AV F + [V FiV v + 267, .[F,V v]}, (2.54)

e

and the shear-Alfven law
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22
i(ls

5,2y2
Pt J_)V F+ [F,(1-= 521 PA F] + (1-a; Vl)(V"J (1+ )[p hl)

T,
= —éi{yLo[YlF,}HZﬁh—‘ldﬁViF] +ﬁ(Y [Vﬂ/’ v]+vlv"v)}

+ ﬁyViF. ‘ (2.55)

Here, Egs. (2.52)-(2.55) by themselves form a "closed"

reduced fluid system: four equations with four variables.

providing self—éonsistency and energy Qonservation.

Ve summarize here that both models provide the same
physics and both are exact to O((%%)Z); The only difference
is that the first model, described by Egs. (2.46)-(%.81),
retains the evolution of the toroidal magnetic field B,
which, in our compressible system, has been Sﬁggested to be
negligible; nonetheleés, the second model, described by
Eqgs. (2.52)—(2.53),iapparently is much more accessible.

By further specifying the scale of the small parameters,
e.g., 6 or . our system can be reduced to many well-known
reduced fluid models.' For instance, by neglecting every
terms involving gT;, our system reduces to the "four-field

model" derived by HKM17. The point is that they keep the

compressibility in equation of particle conservation by,

retaining the electron beta terms; but for ion viscous
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tensor, they basically follow the wusual gyroviscosity

cancellation mentioned in the end of last subsection.

Also,

it is of interest that a high-p version of RMHD® with both

ion and electron drift corrections can be derived by simply

8nT

setting g » 0, and redefining p = ——7?(n—no). We thus obtain

aBo

a three-field model, given by

9. -
e I [¢,p]l = 0O,

\ |
3 T e - oYyp = myd,

3

2 2
3.1t LoV el

T3 Ty

(2.56)

(2.857)

(2.88)

The stream function and the toroidal magnetic field are,

respectively,
T.

F =9 + 6E£p,
e
T.
1+Ei
B, = - —2
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The parallel flow is decoupled from the other fields and

satisfies
T,
(1+-5) \

also, the compressibility is given by
Vv = o® B (lp-op,an] + v (v+209)). (2.60)
This model arises since when g is of order =,

compressibility and viscosity are both discarded from the

system. IHence, the equation of adiabatic compression acts

the same as the equation of isothermal pqrtiéle conservation, -

during the course of shear-Alfvén motion. We hereafter call

this model as "Drift-RMHD" (DRMHD). Note that this model

agrees with the previous. derived incompressible drift fluid

model for large aspect ratio plasma by Hinton and Horton.40

It is also worth mentioning here that this simple model not

only conserves energy but also lead to a non-canonical
Hamiltonian formalism which containg a good "Poisson

Bracket"; we will discuss that detailedly in Chapter 4.
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Moreover, since our reduction‘ordering‘s are basically the
same as those in RHMD, it is not surprised that by setting ¢
> 0, we will get the usual high-g version of RMHD®; and by
further setting p » O clearly leads to the low-g version of

RMHD?® .
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2.3 Energy conservation

In a dynamical system, if a quantity @ satisfies

;%Q + Yog = 0,

wvhere <« > denotes the fixed volume average (all the surface
terms are omitted),then Q> is a constant of mbtion;' For a
general discussion of the constants of motion in RMHD, we'
refer reader to Ref.[28]. Here we study the most common
constant of motion - the energy.

The energy eonservatidn law for our primitive fluid

system, Egs. (2.18), and (2.18), can be determined by
d

calculating <V . Eq.(2.18)>, «J . Eq.(2.18)>, and <B‘atB>.
With the aid of Faraday’s law and Ampere’s law, we derive
3 minV2 2 2
TR RS R
= <-nSI€|2+YY:?O> + <n(Te+Ti>(Y‘Y)>
+ «((P,-nT; )T+(P —P )bb)+PE):VV>. (2.61)

Recall that the omission of the electron anisotropic stress

tensor is due to the smallness of mg . We note here that the




RHS of this equation corresponds to the rate of change of the

.internal energy of the system. Hence, the equation simply
represents the congervation of the total of kinmetic ehergy,
magnetic energy, and internal energy.

From the thermodynamics point of view, the change of the
internal energy is due to the entropy heat production and
work done on the system; i.e.,

du = Tds + P%?,

where u and s are the internal energy énd entropy per unit
volume, respectively. The term involving Tds corresponds to
the collisional terms on the RHS of Eq. (2.81); while the
second and the third terms on the RHS of Eq. (2.81) represent
the generalized work done due to isotropic stress and
anisotropic stress, respectively. Thus, Eq. (2.61) is

equivalent to

However, except for the entropy production, which must be

a positive quantity due to the well-known H-theorem, all
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forms of energy are expected to merge into an energy

functional <H> such that

é%(H) = — <T%%>

“the dissipation of energy" < O

To absorb the work dome into the energy functional, we use

Eq. (2.28) to derive the equality

0
2nTi

<VV : > =

o .

[E 3 v B

<P

1T
v
-

where, again, @O and § are given by Egs. (30) and (29),
respectively. }or ~thé' present paper, we also adopt\ the .
large-aspect-ratio soalings; that is, we use Egs. (A4) and
(Bl) to obtain the energy conservation law

Sui ﬁTi
100

é% <H> = - ns<lg|2> —

2 2
A7V I+ 7 (V37,07 (2.62)
i,J
where the energy functional <H> has the form
2 2
2 —
m;nV (P,—nT;) >

i B n
+ = + s+ In—) +
2 gn T D(T3+T( nno) an,T;




nTy 2 2
R AT A JPP LS (2.63)

Notice that the stress induced by ion-gyromotion tends to
expand the plasma, the same behavior as that indicated by
conventional isotropic pressure. It now becomes clear that

how the energy generated by the gyromotion through (Pl—nTi)

comes into the total internal energy. Again, the RHS of

Eq. (2.62) contains the Ohmic and viscous entropy Leat:"

production.
Equation (2.82) involves the large—aspect—-ratio
approximation but is not expressed in terms of reduced field

variables. We next compute the reduced energy functional in

terms of p, v, F, and v from the reduced fluid equations-

(2.46)-(2.49). First note that, without surface terms, we

have the idenmtity <[£,glh> = <£[g,h]l>. Then, we calculate

T.
1+ T—l
3 2_2 3 5 2_2,_2 3 e 3
<V;r~(1—2a,ivl)v> - (Fa_q-(l—-éa‘ivl)vlF) - <JW) + <2—ﬁpa—7_p>,
and find that
—a—<ﬁ> = - 7;<J2> - ﬁ/,z,<(V2F)2 + 4 |V V12>, (2.84)
oT 1 ~1

where the reduced energy functional has the form
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80

Ty
1+—
. v2+|V Fl2 B2+|V wlz T
<H> = <« 1 + Z 1 + ep >
2 2 4p
2 ,B_2 2 2.
+ ai<(ZViF) +|Y1V] > (2.65)

By noticing.that direct reduction from Egs. (2.61) and (2.62)
‘leads  exactly to  Egs. (2.64) and (2.68), the
self-consistency of our model is further indicated.
Similarly, ©Eqs. (2.52)-(2.55). lead to an energy
functional <H > which differs from Eq. (2.65) only in the
abserice of B, term which has beeﬁ suggested to-be negligible

. \]
when compared with p/g. That is,

Ty
. 14—t
) vy FIZ v g1 T
Hy = < 1 4 1 + ep R
2 2 46
2 ,B_2_.2 2 ) .
+ ai<(ZV1F) IV VI, (2.66)

" s

Where the evolution of <H > is also governed by Eq. (2.64).
We now can conclude that the reduced model described by
Egs. (2.52)-(2.855) prevails over the other one with B,.
Since, it clearly retains the same physics the other has,

while it is obviously more accessible.



On the other hand, to understand the éppearance of <2hp>

- in the energy functional of the high-g version of RMHDB, we

first note that this system satisfies

where 7y is the ratio of specific heats. This describes —g—;

v—1
dimensional adiabatic compression. From Egs. (2.56)-(2.58),

with 6 » O, we find that the above time rate of change of' thew::

internal energy is reduced to

3
3 7A [F,2h] + pv
- ¢ —-mn <plF, + Py, V.

This energy involves v because of parallel compressibility.

However, the evolution of the kinetic energy due to parallel

flow is
2
J v
g’; <?> = - <‘VV"p>,

Thus the term <«-2hp> which appears in the conserved energy

functional of the high-g version of RMHD comes from
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EF s gl —a'a? «~2hp> . (2.67)

We then conclude that whenever the incompressibility is
imposed, the kinetic energy due to parallel flow will combine
with the internal energy, and will lead to a conserved energy

functional with form of <«-2hp>. This also implies that even

though the parallel flow is decoupled from the reduced system

within the scalings of the high-g8 version of shear-Alfveni:

dynamics, it still implicitly - exchanges energy with the
thermal field.
We now show that the simplified incompressible model

DRMHD, in Egs. (2.56)-(2.58), is energy comserving, too. By

- calculating
| T, S
3.2. d i 2 i d
- —6p)—V - ~(1+=—= v 5—=p) }—
(p=0p) 7V 9> <J—~waT_> + «{-(1 Te)h+c‘5. (ot Tep)}ann
we obtain
. 9 |vl¢|2 ‘IVlwlz
«<H> = <6pvl§0 + 5 + PR 4
T P 1Y pl©
i i.9 1
— 14— —6 .
<( T)hP+T P | (2.68)

e e
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with

—a—<ﬁ> = - n<J2>

T

Note that this  energy functional = along

Eqs. (2.56)-(2.58) will be taken as an example

non-canonical Hamiltonian formalism in chapter 3.

with

for a
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2.4 A Pade Approximation

It is always instrﬁotive to have the equations of motion
in terms of the electrostatic potential ¢, rather than the

stream function F, as in most of the kinetic theories. By

using Eq. (2.80) and neglecting .0(62) terms,

Egs. (2.852)-(2.85) yield

T.
1+—=
: 2
2p + [p,p) = - §{lp-6p,2h] + 7 (v+262)) + n b~V p; (2.60)
5 ,
37 = ylemop) + myJ; (&.70)
T.
, 1+—=
3 (14p Lo vl + ey ;2
PSS DA A w—édiﬁh , vI+ (P - 4BV vV
T. 2 T. T.
= 66-{7,V (orop) + [V (pr6-7p): 7 9])
e e e
7. T.
+ Bégﬁ—lvlo[(¢+6—£p),vlv]; (2.7
Tg~ TN |

b : T. b.
3 iv.2 i 1.2 -
—(1+-==)V 6= +==)V
57 (1T ¢ Lorog 9), (1Y ]
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b b
+ (1+——)(1+ )(V”J (l+ )[p hl)

(17,937 p] - Y 17 9] 7 (protp) (2.72)
= Te{ Vo;7,pl - BV [V v ) + Bu l(¢+6Tep . ».7
Here, b; = —ZaEVi 1s the usual notation of FIR operator in

the gyrokinetic theory. Since we only neglect 0(32) terms in -

deriving this set of equations from the more general one, we

should retain most of the desirable physics. In facty.

Egs. (2.69)-(2.72), after being linearized in a sheared slab
geometry, will be investigated and compared with the
gyrokinetic theory in the next chapter. The comparisons show
that our system, although keeps only to O(p ), retains good
FIR effects over a wide range of b;. On the other hand, the
omission of 0(62) terms raises residual of order ﬁz in the
- equation of energy evolution, obtained from this set of
equations. Even though +this problem can be fixed by
aftifioially adding some ‘“harmless" O0(g2) terms to the
equations of motion, it will apparently complicate our
system. “ Moreovéf, the operator ?% and (1+2§)(1+E%) in

Eq. (2.72) apparently complicate the nonlinear analysis.
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In this subsection, we thus present an energy conserving

model through a minor simplification of Egs. (2.69)-(2.72).

A commonly used simplifioa,‘pion, which approximates the ‘reai
funct:'_Lonal operator into aL, more accessible functional with
simpler polynomial form and still retains good physics in a
wide range of parameter regimes, is adopted. The resulted
system usually refers to as a "Pade a,pproximation" of the-

real systenmn. In  this sense, the systemn of

Egs. (2.69)-(2.72), according to the comparison made in. thew:

next chapter, is a Padeé approximation of the full FLR system;
while it still suffers the disadvantages described in the

last paragraph. Nevertheless, it motivates us to further
b. '

simplify Egs. (2.69)-(2.72) by neglecting —é': term and taking
b b:
(1+T§)(1+?l) —+ (1+b;). We thus obtain
T,
1i—=
3 2 -
ol [p,p] = — g{lp-6p,2h] + V”(V+36J)} + 7,8 gevip’ (2.73)
Ly = =7 (p-0p) + 9, (2.72)
T.
: g
3 i ' 2
P [¢—46T—lﬁh R —eV”p - BuV v

e
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DR R . v T3 y.v 0] .

T

T. T.

T, |
- agi{yl.[yl¢,p] - 67, [V, 9,v]1). (2.76)

The linear consequence of this system leads to an FIR.

functional operator

" ,
y(b;) = T+b; (2.77)

which is a good Pade approximation of both h(b;) (FIR
operator of the full FIR system) and g(b;) (FLR operator of
Egs. (2.69)-(2.72)). It is also worth mentioning that y(bi),
although is not as accurate as g(b;) for b; smailer than one;
is even more accurate than g(bi) fbr b; larger than one.
Note that this consequence coincides with a rather rigorous
kinetic FIR analysis by Hahm?®, in which h(by) is also taken
an approximation to be 7(bi). ' |
More importantly, thié simpler model conserves enersgy

exactly in the non-dissipative case. That is, by calculating
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T.

l4—=
T. T T. T.
3 i N9 2 3 e ig2 i 3
v — (p+6="p)>ZVp - Iy + {—p-6—V" (p+6—p) }-<p>,
Var' Co Tep)a'r iig Ja'r ( 2B P Te 1o ‘I‘e‘p))a'r:p>
we obtain
T. T.
i i 2
1+— Ry +6—p) |
) To o V(e Tep) vp? 2 2. 78)
H» = + + + -, .78
<H> < 4[3 P ) ) 2) ‘

which changes only due to dissipation.

Finally, we note that equations (2.78)-(2.76) will be
used in chapter 4 for studying finite idn temperature effects
on the linear drift-tearing modes. The results recover many
previously derived results in certain limiting cases.
Therefore, we conclude that this simpler Pade approximation

deserves further nonlinear analysis.
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2.5 Conclusions

In this chapter, we have derived and discussed several
reduced fluid models. First,' a ¢generalized reduced fluid

model, given in Egs. (2.46)-(2.51), is derived from moment

equations to carefully retain FLR terms to O(p?). The

congserved energy functional of this generalized model is

exactly the same as that directly derived from moment

equations. Alﬁhdugh our system contains only @ four:.

independent field wvariables, the equations of motion
explicitly involves six variables. Therefore, by using the
. fact that terms with gB, gives only g corrections to other
terms with similar structure, we then took -8B, - p and
omitted 0(§%) terms to obtain a closed four fields (F, v, v,
p) model, given in Egs. (2.52)-(2.57). This model is also
proved to be energy conserving. Finally, we have also
present a simplified, more accessible, energy conserving
model, which is a Pade approximation of the full FLR system.
This model will be wused for investigating the linear
drift-tearing modes 4in chapter 4. In certain limit, the

results agree with previously derived results through

rigorous gyrokinetic treatments. Hence, we should emphasize‘

that this simpler model deserve more detailed nonlinear

investigation both numerically and analytically. In the next
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chapter, we will discuss some general applications of our
reduced fluid system.

Although some potentially important effects arises from
-temperature variations are omitted in this thesis, we remark

that our system can be easily extended to include those

effects. Ve note that a work in progress has indeed included

the electron temperature variations.
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CHAPTER 1II1I

APPLICATIONS
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3.1 Introduction

As mentioned in chapter 1, the reduced fluid model is
primarily constructed for studying the nonlinear dynamical
phenomena, observed in toroidally confined plasma,.

Nonetheless, the reduction orderings based upon shear-Alfvén

time scale and large aspect-ratio geometry allow us to apply
our system to study many of the low frequency activities, .

such as equilibrium and transport, in the toroidal devices:: ..

Most importantly, the inclusion of the FILR terms allow us to
study many of the drift-type instabilities in high
temperatﬁre plasma, both linearly and non-linearly. In this
chapter, we discuss some of these applications.

In sections 3.2 and 3.3, we.briefly discuss the local
equilibrium in an isolated system'and review low ffequency
shear-Alfven aotivities in the toroidally'confined plasma.
Note that these_topioé have been the main interest since the
early day of plasma research and have been detailedly
reviewed in a recent review article by Hazeltine and Meissdl.
We therefore discuss them only briefly. We use the reduced

system obtained in the last chapter, in a self-contained

manner so that the subsequent discussions can readily follow.
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In section 3.4, a set of linearized equations is derived
through the lboundary layer analysis and several important
non-ideal effects are discussed. Also, the comparison of the
resulted linear eigenmode equations to the gyrokinetic theory
is-given.

In section 3.5, the toroidal Pfirsch-Schluter particle
transport is studied by using our reduced model and the usual

result with toroidal enhancement is reproduced.

In section 3}6, the non-canonical Hamiltonian formalism::. -

is constructed based on the DRMHD given in
Egs. (2.56)-(2.58). The basic concept of the non-canonical
Hamiltonian theory is briefly discussed; and the generalized
Poisson bracket of that simple model is derived. Also, the
Casimir invariants are derived by utilizing an isomorphism
theory.

Finally, the conclusions are'given in -section 3.7.
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3.2 Local equilibrium

Local equilibrium in an isolated magnetohydrodynamic
system is best characterized by the lowest order steady state

solution of equation (2.75), described by

v.p =0, | | (8.1

64

wvhich is an immediate consequence of the MHD force balance:-. .

The omission of inertia terms is due to the smallness of the
ion-gyroradius when compared with the global scale length.
Eq. (3.1) implies that the confinement of the toroidally
confined plasma is characterized by a set of smooth, nested,
closed surfaces of constant pressure wound by helical
magnetic field lines. Specialist usually refer to them as
"flux surfaoes" and label each of thém with a flux function,

¥, which satisfies

v,F = 0. (3.2)

Several physical equilibrium'quantities are natural flux
functions in lowest order. For instance, the pressure is
naturally an approximate flux function; and from the lowest

order of the generalized Ohm’s law, one sees that the




electrostatic potential is also a flux function. It is

convenient to construct flux coordinates (r, ¥, z), where

r = v(F) (3.3):

is a normalized "radial" coordinate which labels the flux
surface; z coincides with the usual toroidal angle; and %, a
poloidal angle, is defined through a very important flux
function q suoh that

Vi

V"'if’»

N

q(F) = (3.4)

q, which measures the field-line pitch on each flux suffaoe,
is usually called "safety factor" due to the prediction from
ideal MHD theory that the most dangerous modes are likely to
happen near the flux surfaces having small integral safety
factor.

The change in field-line pitch from one flux surface to
another refers to as the nmgnetic "shear" which tends to
localize the instability to thé region where V, = 0. The
existence of magnetic shear implies the structure of flux
surfaces in the plasma: the singular periodic surfaces

amongst a Dbackground of quasi-periodic surfaces. For
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quasi-periodic surfaces, wound by a single helical field
line, small disturbances are usually harmless due to its
ergodicity. On the other hand, in the vicinity of rational
surfaces, on which g is rational and thus each field line
close to itself after sufficient number of circuits,
disturbancés can result in the island formation and local
destruction of the flux—surfaée topology, similar to those

happening near the rational tori in Hamiltonian theory®?.

The importance of rational surfaces in the shear-Alfven:

dynamics can be further understood through the lowest order

shear-Alfveén law without plasma inertia, 1i.e.
T : :
v, 3= 1+ 79 [h,pl, o (3.5)
Tg™ - :

where V” can be written as

v, - (V”)w(é% + qé%). (3.8)

From a Fourier decomposition, one finds that the solution of
equation (3.5) is in general singular on the rational

surfaces unless the solubility condition®!>%3

(Bl 2 ) -0 | (5.7)
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is satisfied for each (m,n), where r,, is the reduced radial
coordinate which labels the rational surface with safety
factor %. In other words, singulariﬁy oéours unless the
above solubility condition is satisfied on each rational

surface. Also,

(Ayn() = ¢_f§§%% A(X) o—1i(mv-nz) _ (5:8)
n ~ '

defines the corresponding Fourier component. Unfortunately,
the solubility condition is rarely satisfied except for the
rigorously axisymmetric equilibrium system. Failure to
satisfy the solubility condition leads generally to a large
surface current, field-line. annihilation, field-line
reconnection, local changes in the magnetic field topology
and island formation. Note that the size of the island can
effectively determine the degree the solubility condition is
violated. This argument also implies that the existence of a
smooth, well-behaved flux function really depends on whether
the solubility condition ié satisfied.

In this +thesis, we will vrestrict ourself to the
axisymmetric case. For axisymmet;io system, Eqg. (3.2)

implies that the equilibrium poloidal magnetic flux v, is a
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3.3 Shear—-Alfven law

Regarding  the non-equilibrium  situation, in an

axisymmetric system, one can write the shear-Alfveén law as

T,
= . i o _ .
Viod = - Vo t (1+E;)[h,p] -VJd+ I, - (3.12)

4

where f (f) represents the equilibrium (perturbed) quantity;..

and Y, (5") apparently represents the parallel gradient due

. to the equilibrium (perturbed) magnetic field. The term on

the LHS, Vuoé’ is the usual stabilizing line behding term;
note that the stabilization essentially comes from the
tendency of magnetic field to straighten the field lines and
relax to its lowest free—enefgy state. The first term on the

RHS, V,J

190> 18 the kink term which correspond to the "current

driven" modes. There are generally two types of kink
activities; namely, internal kink and external kink,
corresponds to the fixed plasma bouhdary and free piasma
boundary, respectively. The second term on the RHS,
involving [h,pl, is the interchange term and is responsible

for the "pressure driven" modes.
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The interchange driving term involves the interchange of
fluid elements in the Rayleigh-Taylor instability, which
occurs when a dense fluid is supported by a fluid with less
density. The point is that field line curvature, acting like
gravity, tends to draw plasma fluid toward the -« direction,
and interchange activity is activated when the curvaturé is
in the same direction of the pressure gradiént. Therefbre,

k+Vp>0 (x+Vp<0) 1is wusually referred to as unfavorable

(favorable) curvature. It was first suggested by eI’ thats

in devices like reversed field pinch and Spheromak, where the
average curvature is unfavorable, the interchange modes
become unstable. On the other hand, it has been shown by
GGI%2 that the favorable average curvature, in device such as
tokamak, provides a Stabilizing effect to the tearing modes.
Another unstable mechanism corresponds to thé unfavorable
curvature localized in certain range of poloidal angle. It
is thus called "ballooning instability".

The third term represents the nonlinear effects due to
magnetic fluctuations and is responéible for nonlinear island
evolution and the 1local vchanges of the magnetic field
topology. The fourth term, I, refers fo plasma inertia which
is generally responsible for resolving the singularity and

forming a narrow current layer on the resonant surface.
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Vhen the nonlinear terms are assumed to be small, the
first two terms on the RHS together with the LHS simply
describe the ﬁarginal'stabilities of the wusual linear MHD
activities, such as the ideal kink modes and the ideal
interchange modes. In this case, the dinertia terms are
presumably small as long as the Fourier components of the
disturbances satisfy the “solubility condition on eéch

corresponding rational surface. On +the other hand, the

success in experimentally achieving the ideal MHD stabilities:

in most of the present day tokamaks leads to the importance
of plasma inertia. The point is that the remaining important
perturbations are those which do not satisfy the solubility
condition in Eq. (3.8), therefore a complete stability study
requires the inclusion of plasma inertia which can resolve
the singularity near the rational surfaces, at least in the
linear context. Even at this stage, plasma motions far from
the rational surfaces, where inertia terms are unimportant,
are still mainly governed by the MHD descriptions. This then
leads to a usual "boundary-layer problem": one solves the
"layer interior" equat%dns including the non-ideal effects
while one uses the well-known MHD solutions as the boundary
conditions. In other wofd, one asymptotically matches the

two solutions.
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Although the non-linear behaviors are most likely to be
the realistic descriptions of the phenomena observed in the
magnetic fusion devices, thorough understandings of linear
behaviors can always provide clear phyéioal insight and is
always of great interests. In the next subsection and
chapter 4, we will devote ourself to the linear studies near
the resonant  surfaces. For mnonlinear approach, we will

discuss a recent developed non-canonical Hamiltonian

formalism and its application for studying the nonlinear:

stability.
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3.4 Linear consequence

In this subsection and the next ochapter, we restrict
ourselves to the linear problem where the distahoe between
two distinct mode rational surfaces is much larger than the
boundary layer width. Therefore the boundary layer analysis
becomes appropriate. In this case, linearization can be

achieved by expressing the field variable as

£ —— f(r,8) + ?(p,s)ei(my-nz) (3.13)

wvhere f, and f represent the equilibrium and perturbed
quantity, m and n are the poloidal and toroidal mode number.
The ¢ dependence of f, and f is mainly due to toroidicity
which we will discuss detailedly in Chapter 4. Here, for
simpligity, we consider the cylindrical geometry; That is,
- by neglecting the curvature and assuming both f, and £ depend
on r only, we can reduce our system to 1-D problem.

The reduced operators therefore have the forms

[F,G] = ikl(ForG - GorF) (3.14)

and

V“F = ik”F + ileorw; (3.15)
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where

'ki - I (3.18)
Vg ’

and

k, == -n. (3.17)
q

The relevance of layer interior problem can be further

specified by the "boundary layer ordering":

of .
-9 1; 3t W_l >> 1, (3.18)

k ,
L 3r ar

Hence, the bracket with imner produot form becomes

. yel = v < _ 2 _ a1 -
Z[YLF ; YLG] = v, ~(lF,G]) [v,“F,G] [F,v, G]‘ = 0(w).

Regarding the equilibrium current gradient, which is
responsible for the kink instability outside the boundary
layer, we assume it to be negligible inside the boundary
layer, for simplicity. Actually, for tearing modes, the kink

term has been showrfl

1 %o pe unimportant even when it is not
negligible. Moreover, we assume that the lowest order
equilibrium flow is sdlely due to diamagnetic drift; i.e.
¢o(r), vo(z) ~ 0. The linearization of Egs. (2.69)-(2.72)

thus yields
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T.

1+El
-iwp - ik Popy = 1k“ﬁ(v+26¢rr) + nlﬁ Prr’ (3.19)
—ilwy = —ik”(¢—6p) + 16k Dop¥ + 1 Vpps (3.20)
T. T,
1+Ei 1+§i
~iev = —ik”——a—ep - ileeporw + 0(8) (3.21)

T b Ti
by by
= —(1+2§)(1+E{)iku¢rr' (3.22)

Here we have omitted the "~" notation for perturbed
fields and assumed |Yr|2 ~ 1. The omission of the 0(B) terms
on the RHS of Eq. (3.21) is due to the fact that v involves
with other fields only through the parallel compressibility
in Eq. (3.19). This simply means that our system is a

three-field system in the linear context. Also note that b;
5 Ty 32 '

= —26 ﬁ .

5 5 ar2
126 ﬁ k

<K
Te
boundary layer.

This implies that even . if we assume

, Iby1 could still be large inside the
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In addition to the boundary 1layer orderings and the
assumptions on the equilibrium quantities, certéin ancillary
orderings for various problem are also needed. For resiétive
modes, we follow the most intuitive dhoicé of orderings,

first introduced in the work of GGJ32:

w ~ W; Ky ~w; o, ¥~ w; p, v ~ 1. (3.23)
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It is easily understood why the FLR operator, b;, only...

appears in the shear-Alfvén law, Eq. (3.22), in the linear
context. The point is that Egs. (3.19)-(3.20) mainly
describe the electron dynamics while the parallel velocity
involves.only the ion acoustic effects through the parallel

compressibility. - Moreover, the relevance of the FLR effects

in the boundary layer problem is that the ion—gyroradius‘

becomes comparable to the layer width; i.e. by ~ 1. This can

be achieved by a further ordering that

6 ~ W. I (3.24)

We also note here that this ordering is consistent with the

drift modes orderihg; i.e.,

~ W ~ W, ' (3.25)




vhere v, is the electron diamagnetic drift frequency.

e
Equations. (3.19)-(3.22) can thus be written as

2

K, 2 771
w
Wg k” We 77" . .

. b by
(1= D Drogy - Ly ) - <1+——><1+ )(—iwrr>; (5.28)

where p has been replaced by psx = —%yp for convenience and

T. : e
6=k Por 1§ the ion-diamagnetic frequency. Note that

wy = Te
the three variables now has the same scale; i.e., ps, ¥, ¢ ~
w.

It is worth mentioning here that Eq. (3.28) retains
pretty accurate FLR effects over a wide range of b;, in

comparison with the gyrokinetic theory. In the absence of

ion collisiomnal viscosity, Eg. (3.28) can be written as

(1 “ya(b g = 25250 (3.29)
_wgi¢"6ﬁTe—w¢Tr’ .

where g(b;) is an FLR operator with form
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by
( l+2~) bi
g(b;) = ' (3.30)

iy, Pil
( l+?) ( l+_é_)

While, from the ion gyrokinetic equation, one finds that the.

full FIR operator31 has the form

h(bi) =1 - I (by). (3.31)
The difference is apparently minor, since

fOl" bl < 1
3
g(bi) ~ h(bi) ~ bi(l_gbi);
_ (3.33)

and for bi ——>

g(b;) ~ h(by) ~ 1.

Actually, the error of g(b;) will not exceed 8% for all value
of bi. In Seo.‘ 2.4, this argument has been extended al
priori to motivate an approach to the derivation of a further
simplified wversion, "A  Pade Approximation", of the
generalized reduced fluid model.

Now, let’s consider the electron responses desoribed by
Egs. (3,26)-(3,28). In Eq. (3.26), aﬁ(%%)z on the LHS and

the first term on the RHS refer to the ion acoustic effects;
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the +third term on the RHS is the semi-collisional
compression. .the last term on the RHS is the radial particle
diffusion. In Eq. (3.27), the first term on the RHS is
sometimes referred to as the non-adiabatic response; and the
last term on the RHS is due to the usual parallel
resistivity.

After some manipulations Egs. (3.26) and (3.27) can be

combined to form a generalized Ohm’s law

k k
o(w.ky)+ (¥ = ) = Yop = D, (0, ) Papy. (3.34)

k
Where_v—:}w corresponds to the parallel electric field;

2
w k
12 el
) w2
a(w,k”) = 5 5 (3.85)
II Il P3|
—(1-ap ) R6“p——
W w®

is the generalized parallel conductivity including the

semi-collisional éffect548 and ion acoustic effect349 which

is usually derived ﬁhrough kinetic approach; and




1 Ye
aﬁ—iww
D, (w,k) = " —z (3.36)
7 I g &
—(1-ap——) - 26—
—diw a)2 w2

corresponds to the perpendicular particle diffusion.
Before further studying the significance of the
generalized Ohm’s law, we note that k” is usually

conveniently approximated to be linear near the rational

surface. Due to the fact that k“= 0 at T=Typ, W€ thus write -

ky = kyx; | (3.37)

vhere x = r-r__ is the distance from the resonant surface and

mn
k; is constant characterizing the magnetic shear. Also note

that the "shear length" can be written as

. _
L= 20 g _ p i1l - (3.38)
S T q'

Now, for the generalized Ohm’s law, let’s first neglect
the ?erpendioular diffusion. It béoomes clear that the term
corresponding to the semi-collisional compression causes a
drastic drop of the parallel conductivity when away from the

rational surface. That 1is, +the effective conductivity
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becomes small at large distance from the rational surface,
rather than staying constant over the space. If the width of
the generalized conductivity becomes smaller than the width
of the parallel electric field, then the parallel current
drops before the parallel electric field drop when away from
the rational surface. This leads to a ourrent—channeliing:
the surféce current tends. t0 concentrate inside a narrow
channel. This case is sometimes referred to as

"semicollisional", as opposed to the opposite collisional:

-case in which the classical resistive layer width is much

smaller than the width of conductivity.

On the other hand, the ion acoustic effects can now be
viewed as a mechanism that keeps the effective conductivity
to be a certain nonzero value at a distance much larger than
the width of the current channel. This long tail will be
shown in the next chapter to stabilize the drift-tearing
modes by dfagging.the drift wave out of the resistive layer
characterized by the parallel reéistivity -

Regarding the perpendicular diffusion, one can see from
Egs. (3.26) and (3.27) that, in semicollisional regime, it is

not important unless




e 2
I(262ﬁ—%;)(a62£)l s 1. (3.39)

w K

The point is when the above inequality is satisfied, the
semi—collisional compression | is balanced against the
perpendicular diffusion. The usual semicollisional current
channel thus disappears and the singularity is resolved by

the n, term.

Note that all df the above discussion will be studied:.in

detail in chapter 4, for case of tearing modes. We also note
that when ion acoustic effects and perpendicular diffusion
are neglected, Egs. (3.26)-(3.28) can by combined into one
single eigenmode for studying the resistive shear-Alfvén mode
with FLR effects. The result agrees with the previous

derived result, from gyrokinetic théory, by Hahm. 28
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3.5 Particle transport

Plasma transport in axisymmetric foroidal devices was
first studied by Pfirsch and Schliter*® and later on
extensively studied in more rigorous ways that combine both
kinetic and fluid approaohesBO. In this section we show how
we can reproduce; from our model, the particle transport
coefficient in the isothermal Pfirsqh—Schlﬁter regime, where
the trapped population is'negligibly small.

We first choose.the transport ordering in the reduced

system; that is,

g% ~ 0(nB); F, v ~ 0(68); p ~ 0(B); J,v ~ 0(1).

One thus finds that, in axisymmetric system, pressure,
electrostatic potential, and parallel flows are approximately

equal to the equilibrium quantities described in Sec. 3.2.

p = ply) + O(ézﬁz), . (3.40)

¢ = o(yv) + 0(np), (3.41)

and that the equilibrium parallel flows are given by




T. :

v = ¥(¥) + 202(5 + 6-2P) + 0(ng), (5.42)

Y Tg
Ti, 5= 2,2

J =J) - h(l + ==) =p + 0(6°8%). (3.43)
Ty v

Next, we extract the radial particle transport by flux

surface averaging, <y the equation of particle

congervation, Jjust as in the usual neoclassical transport

theory. Before doing so, we recall two important identities: -

relating to flux surface averaging:

_4d
A\ AR A

where V(y) is the volume contained within the flux surface.
labelled by y¥. We .therefore obtain the lowest order reduced

consequence of these relations in axisymmetric system:

<V, £, =0, (3.44)
([F,Gl>, = & 2 (qv,F>,) (3.45)
Y gy =yl | ’

(2 —li( o‘) | | |
VEF>,, = p aw(q VF. Vy v (3.46)
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where q is the plasma safety factor. Then, by calculating

<Eq.(2.78)>,, <Eq. (2.74)>, and <h.Eq. (3.43)>,, we obtain

DI N e
o T gt )
T.
1+T—l
— 2
V= - s 5 R ATy 26 1Y (o-0p)>y,

<hV"(¢-6p)>w ~ n“<hJ>w,

T.
< >, o~ — 2 “1y9 5
ha v <h >'¢(1+Te)8'(//p.

Therefore, the radial flux has the form

T

Ti i
e ,9- 2 |
T Gl J

1+ =
47
I|<112>

= - s )i

2 un

where the simplest version of the last term in {...}, due to

the circular cross section shape of flux surface, reduces to

27 :
the usual toroidal enhancement (;L + ——JJ. Of course, VT

i
q L
effects are omitted as mentioned before.




3.6 Noncanonical Hamiltonian Formalism
3.6.0 Introduction

Although there has been a long history of noncanonical
Hamiltonian theory in finite-degree-of-freedom systems, due
to Lie, Dirac, and others, it was not until mid 1960°’s that

this formalism was extended to continuous media, by Arriold..51

In the past few years, the capability of this fast growing; -

theory, of generally providing the mnonlinear stability
criteria, has drawn the attention of the plasma community.
In particular, several reduced fluid deseriptions, such as
RMHD, Charney-Hasegawa—Mima, equatiohs (cm)BR:5%  ang
compressible RMHD (CRMED)1?, have been proven toO possess
Hamiltonian structure of this type. Most significantly, the
usual non-dissipative version of Hamiltonian theory has been
extended to include the dissipation. In this section, we
will study the Hamiltonian structure of DRMHD given 1in
Egs. (2.56)-(2.58).

The general concept of this formalism has been detailedly
documented in many previous works.%%:96 ye first briefly
review the fundamental obncept which leads to this formalism
in subsection 3.6.1. Then, in subsection 3.6.2, we study the

Hamiltonian structure and determine the Casimir invariants of
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DRMHD. An isomorphism theory is adopted to simplify the
procedure. Further detailed instability study of DRMHD,
based on the discussions presented here, is subject to future

research.
3.6.1 Generalized Hamiltonian Filed Theory

Conventional Hamiltonian description of a physical system

of field variables xi (i=1,..,2N) is obtained by Legendre: .

transforming a Lagrangian functional, which is constructed on
physical bases. The dynamical system is thus governed by a
Hamiltonian functional H and a set of differential equations

with the following form

iLXi = (Xi,H) = Jij—gTH, i=1,...,8N (3.52)
dxl

vhere the Poisson bracket is given, for any functions F and G

of the variables xi, by

(F.G) = F3383G;5>. | ‘ (3.53)

Here, «..> 1is a volume integral, F; defines a functional

derivative of F over the variable yT, i.e.,

8%

S




F, = >, (3.54)

and the 2Nx2N matrix JiJ is

. 64 —_q o isN
Ji3 ( i,8N+1-j (3.55)

This is due to the splitting of 2N dynamical variables into. N

configuration components and their canonically conjugate:

momenta. It is well-known that this Poisson bracket:

satisfies the following algebraic relations, which are

usually called the "Poisson structure",

(1) bilinearity,
(2) antisymmetry,
(3) Jacobi’s identity : (F, {G,E}) + 1
= (F, {G,E)) + (G, (E,F}).+ {E, {F,G)) =0, (3.56)

(4) derivation : (F,GE) = G(F,E) + {F,G)E,

for arbitrary functionals F, G, E. Note that (1), (2) and (5)
define a Lie algebra.. ‘

By definition, a transformation of ooqrdinates that
preserves the form of g1l is called canonical. An arbitrary

transformation, while preserving the above algebraic
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relations, can change the form of the Poisson bracket and
lead to an obscure form of the Hamiltonian equations.
Actually, equations of state of most of the continuous media
described by means of Eulerian variables do not possess the
canonical form. This therefore motivates the generalization

of the Hamiltonian theory, which is defined in terms of the

generalized Poisson brackets. That is, a dynamical system is

Hamiltonian, in a generalized semnse, if it is described by a

set of equations which can be cast into the form of:

Egs. (3.52)-(3.53) with J1J which defines a generalized
Poisson bracket, satisfying the Poisson structure, but which
 need not have the form of Eq. (3.55).

Another i1mportant feature of +the mnoncanonical 'Jij,
distinct from the canonical one, is that it allows for a
reducible singular phase space structure. That is, it can
contain null eigenvectors which correspond to a special kind
of kinematic invariants: Casimir-invariants. This leads to
changes of +the phase space structure arising from fhe

noncanonical transformation. The existence of the Casimir

invariants confines the phase space trajectory to the

hypersurfaces labeled by the Casimir invariants.
Note that Casimir invariants have been useful for finding
the generalized free energy which is a good Liapunov

functional; constructing the ¢global mnonlinear stability
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criteria; examining symmetry breaking for general equilibria;'

and formulating the generalized nonlinear energy principles.
For detailed discussions, we refer reader to Ref.[20]. Here
we only remark that the ambigulty of the usual  energy

principle, which approaches thermodynamic equilibrium by

minimizing energy subject to some constant entropy or

helicity, Dbecomes clearer according to the noncanonical

Hamiltonian theory. The point is, a more general class of

equilibria can be obtained by minimizing the generalized free:

energy F which is the sum of the Hamiltonian functional and

Casimir invariants. That is,

fF-0 for (3.57)
dxl

3 i '

EIX =0, where ¥ = H + C, (3.58)

wvhere H is'energy functional and C is Casimir constant. Also
important is that the definiteness of the second variation of
this free energy, 52F, has been shown to be a sufficient

condition for stability<®.

3.6.2 Hamiltonian Structure of DRMHD
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The generalized  Hamiltonian theory has Special

significance for reduced fluid models, mainly because many it

can help preserve Hamiltonian structure which might otherwise .

be lost during the reduction process. Moreover, the
understanding of the Hamiltonian structure of a reduced
system can enable one to desigri numerical algorithms with
superior acoura,cy.' It is therefore the main task of this

subsection to first prove that DRMHD possess a generalized

Poisson bracket (GPB) and then determine its Hamiltonian

structure and Casimir invariants. Further study on the
stability condition of the system of DRMHD is subject to
future research.

- Before considering DRMHD, we first briefly study the
Poisson structure of the reduced fluid sYstem. Note that
bilinearity and derivation are always  true; while
antisymmetry is equivalent to anti—self—adjointneés of Jti
which is trivial. Hence, the remaindér of the proof Will be
checking the Jacobi’s identity.

As mentioned in Ref. [28], +the Jacobi’s identity

Eq. (3.56) can be reduced to

(.EiJi'j(FlQi]]:me)) + ¢+ = 0. (5.59)

Here, higher order functional derivative terms are omitted

o1




due to the anti-self-adjointness of J+J  and the

self-adjointness of Fy For most of the reduced f£fluid

j .
systems, such as RMHD, CRMHD, CHM, etc., g1l can be written

in a generic form
gtd = aldr A1 + plD¥, (3.60)

where aﬁj’s and bﬁj’s are constant, D¥’s  are spatial
operators, such as é% and [h, ], which do not involve field.
variables. It 1s important to note here that the inner
bracket [ ], defined in Eq. (2.10), and DX themselves satisfy.
the Poisson structure. Also note that antisymmetry requires.

that
aid = aft, ana  piJ - plt, ' | (3.61)

which are usually true for energy conserving reduced system.
Therefore, after some straightforward manipulations, Jacobi’s

identity becomes

TEIl o aflakl - allakl | (3.62)
and

1jpkl _ g1lipkd
agdbr = apdptt, (3.63)
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for any j and m. Also note that Egs. (3.61) and (3.62)

together mean (i,j,1) are permutable in T%jl for any k.

Iet’s now go back to DRMHD. From Egs. (2.56)-(2.58) and

(2.88), we can rewrite DRMHD in the form of Eq. (3.52) with

the following g+J

g8 - 531 _ ¢ 1 J23 _ %2
33 3 Ty 1
J =[ ,X]+5_‘V '[X ,V ]9
T 1 s
e .
J‘fLj = 0, otherwise.
Here
xt = (p, v, "R9),
T, T,
1 1
Hy = - (1+§_)h + 6V§(¢+difp),
e e
Except for the last term of J°o,

(5.64) .

(3.68)

which provides the ion

diamagnetic drift effects, g1 can be expressed in a generic

form as in Eq. (3.60). We thus have

,18 _ 31 23 32
15 _

_ _ 33 _
a1” = ag” = ag =

= a:B 1,

.,,g’::

0, otherwise.




_Also; by the observation that é% always comes with [x%, 1 in
v,, one finds that biJ=all, and biJ-0, otherwise. It is then
not difficult to prove that Egs. (3.62)-(3.83) are satisfied.
Hence, the genéric portion of DRMHD possess .a GPB.

Although it is possible to further prove the Jacobi’s

identity, with the inclusion of the last term of J°°, by a

conventional but rather lengthy manipulation, we here present

an isomorphism theory which not only straightforward proves :

the Jacobi’s identity, but also makés the searching of
Casimir invariants much easier.

For a mapping M of field variables y » x with

’

x T = b, (5.66)
we have
/Ij ] 4
F, = ox <, dlj' _ M:JLFJ (3.87)
6xl 0x J

The generic portion of the Poisson bracket thus becomes
(F.G)g = capdngFy 96y, 0 DE x 1. ~ (3.68)

Here we have omitted the field independent part since, for

reduced fluid models, it only due to V, and [, 1.
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The theorem is : If a system with generic bracket
satisfies Jacobi’s identity, then after an isomorphism, the
system will still satisfy Jacobi’s identity.- This can be

seen from Egs. (3.59) and (3.66)-(3.68), which yield

(E,{(F,G}) + ¢

= «Tiikqe 1)S TRy, efE, M0G0+ s  (3.69)
Therefore, if the original bracket is good, it means (i, jik):
are permutable for any s, then, by using the Poisson
structure of the inner bracket, one can easily prove that
Eq. (3.892) vanishes. That is, the new bracket is good, too.
Note that gimilar isomorphism has been adopted to prove the
Poisson structure of the 2-D gyroviscous MHD.

JBS

Our purpose is to eliminate the last term of in

Eq.(3.64); whence, the appropriate choice shall be

. T
i i 2 il
L _ = v
MJ éJ * 26T 6:13(S ’

. . Ty .
(M‘l)ﬁ - 53 - %5T VfdJsall.

We thus obtain the new bracket
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gl - o, otherwise, (3.70)

and new field wvariables

Xt = (p, v, V2(¢+—6—p)]

T,
H) = - (I+E£)h + 6Vf(¢+é p) + = R(p-6p), (3.71)

A 2 T "I

Note that the energy functional is not changed, since it is. a
scalar.

We have shown that DRMHD is indeed & Hamiltonian system,
the next step is thus to determine the Casimir invariants,
which have vanishing GPB with any functional. That is, C;’s
are null eigenvectors of gid. Ye start with

Egs. (3.70)-(3.71) and find that

[x'.cgl =0, ~  v,03 =0, and (3.72)

(G, xt) + V,Cp + [Cq,x51 = 0. (3.73)
Let’s define the generai flux function v, which satisfies

VIllwx =0




at all time. Note that in an axisymmetric system, v = v,
while in a helioal symmetry system, vy, = v + (rz)/CZqO).

The bnly nontrivial solution of Eq. (3.72) is that both p
= xl and Cz are general functions. However, this nontrivial
solution is not physical since it leads to the vanishing Hall
effects. Hence, Cz must be zero. We therefore obtain the

only Casimir

C = <L(p.9,)>, (3.74).

where L is arbitrary function with argument (p,v,).

Finally, we note here that after the isomorphism, the
bracket of DRMHD reduces exactly to that of high-g RMHD.
Hence, they have the same Casimir and the same bracket, but
the different field —variables and energy different

functional.
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3.7 Conclusions

In this chapter, several introductory topics have been
discussed in a general manner so that further detailed study
can readily follow. In particular, linear consequence of our
model has been studied through a boundary layer analysis. It
was shown that our model provides good FIR effects for a wide

range of p;. In section 3.6, the noncanonical Hamiltonian

theory has been studied and applied to DRMHD, which is given -

in Egs. (2.56)-(2.58). An isomorphism +theory has been

adopted to first show that DRMHD is Hamiltonian, in a
generaiiZed sense; and then the Casimir invariants has been
found. Further instability study of DRMHD will be
interesting. However, it is believed that incompressible
description of drift-modes is not accurate. We remark that a
drift, compressible, Hamiltonian model has been obtained by

using the concept of isomorphism (work in progress).
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CHAPTER IV
FINITE ION TEMPERATURE EFFECTS

ON LINEAR TEARING MODES
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4.1 Introductidn

Magnetic field line tearing, which ﬁransfers the magnetic
shear energy into the kinetic and thermal energy, has been a
potential candidate for interpreting some of the astonishing
phenomena observed in both magnetic fusion plasma.(such as
major disruption)8 and astrophysical plasma-(such as solar

fla,res).5'7
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After the pioneering work of Furth, Killeen and.

Rosenbluth®® (FKR), in which incompressibility, vanishing o,
énd sﬂeéréd sléﬁ géometryrwere iﬁpbséd; theﬁe h@swbéeh arvast
literature studying the fusion oriented tearing modes. In
particular, in Coppi, Greeme and Johnson?? (CGJ), plésma
compression (due to finite g) has been found give stabilizing
influences; while bad averaged ocurvature in c¢ylindrical
geometry is found destabilize the resistive interohange

modes. Glasser, Greene and Johnson®?® (GGJ) then subsequently

extent this work to the toroidal geometry and found that the

good average curvature can stabilize the tearing modes.

However, for high temperature plasma, as in most of the

present and future day machines, many non-ideal effects, such -

as diamagnetic drift effects, ion sound effects, and FLR
effects, can importantly modify the dynamics inside the

boundary layer. For instance, as found by Coppi and




collaborators®® in the low beta limit, diamagnetic drift cam
enlarge the resistive layer width and drastically reduce the
tearing growth rate when the usual pure growing mode becomes
the so-called drift-tearing mode with a real frequency near
the electron diamagnetic drift frequency. Alsq,

semi-collisional effects, as first termed by Drake and Lee,48

induce a rather thin current channel centered on the rational

surface by drastically reduce the parallel conductivity at x
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aWay from the rational surface; when Py (or the effective ion

gyroradius py) becomes larger than the resistive layer width.
At the same time the drift effects and semi-collisional
regime reéome significant, ion sound effects, arises from
parallel compression, induce a long tail to the parallel
conductivity and a finite fluctuation of the electrostatic
pbtential (usually refers to as the adiabatic response), and
hence provide stabilizing influence fo the drift-tearing
modes as found by Bussac®®.

Although there have been extensive studies on the drift
tearing modes in the semi-collisional regime, yet, to our
knowledge, there is a complete investigation on the téroidal
semi-collisional drift-tearing modes with finite ion
temperature. Recently, Hahm59 . has studied the

semi-collisional drift-tearing mode with both perpendicular

resistivity and ion sound effects, in the toroidal geometry;




while c¢cold ion is assumed. Note that in practical, ion
temperature is about the same as the electron temperature.
As for the FLR effects to semi-collisional drift—teaming
modes, as pointed out in another recent work by‘Hahm,26 the
treatment of FLR effects to tearing modes by Drake and Lee

was incomplete due to the omission of the second order FIR
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term which is actually the same size as the cold ion

semi-collisional term. Nevertheless, in this work, Hahm has

assumed sheared slab geometry and neglect ion sound effects

and ion viscosity. We remark that when T; = T, the viscous

skin-depth becomes the same size as the resistive skin-depth.

In this Chapter, we therefore investigate the toroidal
drift-tearing modes with finite ion +temperature. . The
eigenmode equations, derived from the linearization of the
reduced fluid model we obtained in the last chapter, retain
ion sound, FIR, ion viscosity, and perpendicular resistivity
effects. It is also noted that both the usual and the new
FLR-modified geometrical factors are obtained. Hence, 1t is
not surprising that this set of equations are found to agree
with Hahm’s eigenmode equations in both sheared slab geometry

with FIR effects and toroidal geometry with cold ion, in the

relevant limit. However, several important effects, such as

temperature gradientso, particle trappingGO, has already been

omitted from the beginning of the last chapter. Also, the




purely toroidal term H, will be ignored for simplicity. By
solving the eigenmode equations, it is found that ion
Visoosity'will importantly modify the tearing dynamics and
thus the instability conditions as well as the tearing growth
rate.

We now digcuss the organization of this chapter. In Sec.

4.2, derivation of our eigenmode equations is present and
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their physical implications are discussed. Note that the -

linearization process, which starts with a two-dimensional..

~eikonal, is basically following‘Ref.[él].

in Sec. 4.3, these eigenmode equations are analyzed by
three conventional methods: (1) variational principle, (2)
asymptotic matching, and (3) dimensional analysis (some time
refers to as "dominant balance"). In 4.3.0, the general
features of these methods are discussed. In 4.3.1, the
system is investigated via 'the variational principle in
sheared slab geometry. ¥We note here that, since about a
decade ago, variational principle has been widely used in
studying tearing nodes.®1:6% It nas not only unified®l many
of the already existed tearing theories in various parameter
regimes, but a;so explored many new modes due to complicated

62. However, all of

effects such as temperature gradients
these variational treatments are restricted to the

"single-scale" problems; while in this chapter, we try to




extend the scheme to be able to deal with a two-scale
problem, as when ion sound effects are comparable. In 4.3.2,
the intuitive dimensional analysis is briefly studied, and
carry out many of the physical insights related. In 4.3.3,
the toroidal semi-collisional drift—tearing modes with
perpendicular resistivity is investigated. Finally, the

conclusions are given in Sec. 4.4.
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4.2 Derivation of the linearized eigenmode equations

Linearization for Dboundary layer problem, in an-
axisymmetric toroidal system, can generally start with the

expression described in Eq. (3.75); i.e.,

£ - £,(r,8) + £(z,9) el(m-nz-wt)

which createév a two dimensional problem. Vhere the.
coordinétes (r,%,z) are defined in Sec. 3.3.1, such that r
is a equilibrium flux label. The point is that when the
interchange driving term, due to the toroidal curvature,
becomes comparable to the 1line bending term in the
shear-Alfvén law. Regarding the local- equilibrium, we
assume, as 1n section 3.3.3, that equilibrium flows are
solely due to the diamagnetic effects. In a toroidal

geometry with ¢, = 0, this means,

T,
_ 5nq(r) 3 i
Vo = Rh 5E;p0’

Vg oT

ey
I

T.
v By (r) - hgi—r—)—(l b 22y

Te ar

Of course, the equilibrium pressure p, and toroidal component




of vector potential ¥, are still flux functions, or say,
dependent of r only.

| Because of the v¥-dependence of f, and f, the linearized
forms of the reduced operators can no 16nger be described by

Eq. (3.78). Instead we have

[F,G] — iki(ForG - GopF) + [F,GO] + [F,,Gl, (4.1)
e m L -~ . Fy

VF - ik F + ik Fo.y + [Fo,w] + E{’ o (4.2)

[b,F] —» ik h F + [h,Fl; | (4.3)

where k , k, are as in Eq. (3.77), the safety factor q is
given in Eq. (3.71), and the symbol "—-" simply means
linearization. We note that the eikonal factor has already
been suppressed on the RHS of the above relations; therefore,

[f,g] on the RHS means

jé (£r8y — £48p)- (2.4)

The boundary layer orderings as well as the ancillary

orderings described in section 3.3.3 are also adopted here,

so that
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25 24 ‘
VEF = 1VrI®F, (1 + 0(w)). (4.5)

The bracket with inner product form is no longer negligible,
mainly due to v-dependence of the equilibrium flows. In

particular, we have

[V (¢+5?ip)-v Yl —» = ~l—(&+6?;§) J.o + 0(w)
1 . 1-

VeV vl - - - (Vosdr = 5Vpdos) + O(W).

However,_these terms are later found not to contribute to our

final eigenmode equations.
We then suppress the carets from the perturbed amplitude

and obtain a set of linearized equations

—iwp - ik pope + [¢,p,]

(V+25_J),0
- ik, (v+269) + [(vy+269,),9] + ———
+ 26(ik h (p=6p) + [h,(p=6p)1) + 7 falvri®p, (4.6)
) ) (W"‘dp),ﬂ
“1omug)y = =ik (p=0p) ~ —= + 5lpo, ) + md, (4.7)

T
“iov + [9,v,] = - ik, T - ik apy¥ - lap,.¥] - Ef
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60—
Te

- |
2z T PrTon: (4.8)

2
+ 4uppliverl Vop —

T. T.
. 1 1
(w0 ) 1721Rp, + dig[po,lVrlzwrr] - MﬁIVrI4(¢+GE;p)rrrr

g
= - (1+b;)(ik,J + 1k Ty + [Jg,v] + ?f)

1

T. '
- 2a(1+b;)(1k hyp + [h,p]) - 6p2(vo,dp—2vpdy); (4.9)
v vg Tg 2

T.
1+ 55

where o = > S and T is defined as
T. T.

Tz ap - 66==V(p+o-Tp),
Te + Te

which, after a rearrangement, can be written as

T.
T = a(1l+b)p - GBE£V§(¢—GP). (4.10)
e

Equation (4.10) will be useful for the calculation of the
second term on the RHS of Eq. (4.9).

- Equations (4.6)-(4.9) form a two dimensional problem. It
is desirable to further simplify the mode equations to a set

of coupled ordinary differential equations. In general, this




can be achieved by a further Fourier decomposition of f(r,ﬂ)
over poloidal angle. This represents a set of poloidal modes
couplings for each fized helical mode number n. However, this
approach is complicated.

One important feature of the boundary layer problem is
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that +the disturbances on each helical field line can be_-

treated independently. This leads to a rather simple

approach: taking the wv-average of the mode equations. The

point is, for each fixed helical .field 1line, the resonant:.

Fourier component of £(r,s) corresponds to the eigenmode

which minimizes the stabilizing line bending effects near the
rational surface; therefore, the mode structure described by
the equations of the resonant component dominates the
shear-Alfvén dynamics in the layer interior. This component

~

is obviously equal to the #-average of f, i.e.,

f5<f>zg‘)§_’if,

Hy»
I

F(r) + £(z,v).

The point is that, for each fixed helical number n, T
corresponds to the disturbance which has minimum parallel

gradient on the rational surface.




Before taking the v-average, we first look at the
linearized equations (4.6)-(4.9) and find that the lowest
order non-resonant field variables are given by the lowest

order terms of those equations; i.e.,

T.

Vg = - 2§1(a+5525)rhﬁ + 0(w), | (4.11)

Jy = &Lap by + 0(1), » (4.12)
vg

T~ 0Gw), and therefore p ~ O(w), ¢ ~ O(wzj‘ (4.13)

Here Egs. (4.11)-(4.12) give .the perturbed Pfirsch-Schluter

flows.

Now, by using Egs. (4.11)-(4.13), the fact that

«[f,g]> =0,

and the equilibrium described in the early part of this

section, the v-average of Egs. (4.8)-(4.9) becomes

~iwp - ik Py

- p(2ik A (7-6F) + 2<[h,((¢-ap)—zéapor«p)]> - ik, (F+263))
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+q B IVTI®HP + 0(w?), | (4.14)
~1(w-wg)P = —ik (5-65) + n,d + 0Gw®), o (a.18)

~16¥ = - ikjaf - ik apo; ¥ + 0(6) + 0(w?), (4.16)
: 2.- 4, - Ti_
—1(w—wi)<IVrI >pp — MBIV >(¢+6§;p)rrrr

= - (1+<IVr12><IVrl—2>bo)(ik”3+2aiklﬁr§)

~ b 17z 1735 (dk, <1 V2123>)

- 2a<[h , ((1+bi)p+5%porw]]> + 0(w), (4.17)

where

o 26”p  T4 BR
° vrl %, Te 2

ar

One notices that the toroidicity comes into the eigenmode
equations through the terms involving nonvanishing <fg> which
explicitly appear-in Edé. (4.14) and (4.17).

Let’s first consider the nonresonant term in Eq. (4.14).

By using the identity

1
<[h,F]> = ;§<ﬁfﬁ>r

and the nonresonant part of Eq. (4.7), we find that
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<«[h , ((‘P"dp)*Z;qgépor'lﬁ]]) = ;qg‘*{i(w—we)<fl‘lj/>r + nll(ﬁJ>r},

Then, by using Egs. (4.5) and (4.12), we further find that

7" <|Vr1|“2> Yz © 2;%(|Vr|2>@r)’
, | |

Wz - 2é<|vi|2>a§ ' <|v§|2>< 1Vr1|“2> Wz - %ﬂvilz’“i"y
and

B>, = 2:/%<ﬁ2>a13rr.

Eq. (4.14) thus becomes

~10P - ik pogp? = - ik, (F+263) + 2pik B (5-6D) +

2 g2 ( ﬁé’z
i(w_we)ﬁ{ég (<|v11-|2> ) <:Zi:‘2>)@ i zé(lVi|2)<lVI‘1l_2>}_r
, 2
+ aﬁ(n”<ﬁ2ig—+nl<|Vr|2>)§rr + 0(vR). (4.18)

For the curvature term on the RHS of Eq. (4.17), by using

Eq. (4.10), we have
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aclh, ( (1+bi)p+épor1//)] ;

T.
1 a i.2 v
= —<h( T+ Y+ —=V(0=6D) ).g>m- (4.19)

Then, by using the nonresonant parts of Egs. (4.7)-(4.8) as

well as Eq. (18), together with the identity

i

Tep) - (w-wy)e,

T3
55;(wP'k1Por¢) = w(p+6

the curvature term can be determined. The calculation 1s
straightforward but rather lengthy, we therefore only give

- the resulted eigenmode equations

(1+26EI’)( —) = — £ _ ﬂ 2 + E + AM
1-
(1- ~&)px 26 0T ——8 il | (4.20)
- - " BKpsx + Q26ap (—wiwr‘ wP*r), _ | .
l_ —_
@e
Sw
Yo I Yo i Wrr—Hw Prr
_ = - - = .21
(1 cu)w (o cup*) + e veg, (4.21)




w.
1 KB
(1- w ) (Me,.— _in,u,q’rrrr)

2,42

k k<p K
Il 1+or b
- (1+MJbO)~;//w —— oc-—w2 (1+(I\I+—K )bO)Kp*
b enCH((14NDb.) 1+(M EIl—’)Jo il (4.22)
adw { o) wr - ( + J H o)cop*r}' .

Where the overbars, which denote the resonant fields, are

suppressed and p has been replaced by px

bw

0l

e

The geometrical factors are defined as follows:

L 2 2h

K = ég;a[( ><lVr|_2> - < h >2] — r(!VI|_2>;
ViR vz 1< Por
1- &
I 2 2h
Ky, = [ € é-C-{-—<I'12>0( - r<IVr12>]<IVrI_2>;
14 g Por
“Ye
1- . 492<ﬁ2>
w
N = e g IVI‘I_2>;
1. Pi 2R,
w. it
e Por
M =

2

2
[<IVrI2> + ég[——<ﬁ2>]<IVI*I"2>]<I\7II_2>'
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ﬁg§<ﬁ2>
MJ = [<IVrI2> + —g————ﬂ<lVrl_2>;
268,
1+
or
4, 49° 22 o 2 2
MM = [<IVeI™ + p <REIVrI%> ] <1Vl ™%,
2.49° ™ 2 2
Ml = [<B%> + —=<|VpI® ] <1VrI™%>;
g 77”
= sy Hy = 21 E1v1% e
VE 1vpI% Vg

Here, K, measuring the averaged curvature, corresponds to the
interchange driving term; its first term comes from the
diamagnetic correction while the second term comes from the

vacuum curvature. It is also important to note here that

- s ar
T T ar <d1//o’¢o

actually measures the shift of the equilibrium flux surface.
Recall that r is radial-like coordinate which labels the
equilibrium flux surface. In the 1low bheta Shafranove®
geometry -- the shifted circular shape, this shift is known

to be 0(e). On the other hand, in high beta equilibrium, the




flux surface is distorted from the circular shape, and the
shift becomes larger than that in the low beta case. Also

from

'Por! = 6

1

we see that wvacuum curvature term becomes much larger than

the diamagnetic correction in the low beta case 1in which.

~0(¢®); while in high beta case, vhere -0(e), it is still
larger than the diamagnetic correction. This also implies
that, for devices such as tokamaks, K < 0. In additiomn, for
drift-type modes, the diamagnetic correction to Ky is

apparently unimportant in either high beta or low beta case.
2ph

One also notices that the term 5
or
one and is thus negligible. We therefore hereafter take

268,

1+ —1. MJ thus reduces to M, the wusual toroidal

Por
enhancement. The factor 16 in Mﬂ is due to the ratio of the

parallel viscosity to the perpendicular viscosity.

The significance of the purely toroidal factor H, which
measures the variation of B on the magnetic surface, is first
found by GGJ to modify the usual tearing mode growth rate
3/58

scaling from 7 into 7(37RE)/(8+RH) = A1g0, for resistive

modes, it modifies the usual interchange driving term, with

L is much smaller than




:cespeot to K, into KR = K + aHZ.SZ However, since H is
usually small, we hereafter neglect it to avoid the
complications. We therefore obtain the simplified eigenmode

equations

(1+aﬁ(i)2)p* -9 = iaﬁg—z\// + j.f_;x%il//m + afXEM Prgy, (4.23)

_ ey, o 4 E(, _ e 2
S 1XA(¢ “Px) Xy (@2

(1- 2y Ry ) = —i(+b )X L (D+b D ps. (4.25)
” ¢:Q:"XM¢:QQQ:*_1M+0}_{XW§Q:_2 Ol Px . L%

XA

Here

2
D= o 1,01’ E,

k”2 M

2.2
D, k_LpOI’ NK+Kb
i = . )

k”2 M
and

is the normalized radial distance from mode rational surface.
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Here, the normalized characteristic scale 1engths are

defined, basically following Ref.[41], as:

the shear-Alfven width

the normalized ion gyroradius

i

e

<2 . 26°p
i = -3
<|Vr| >

H

and the FLR operator b, thus becomes

2 .
- - x2 (4.26)

b ;
0%

0

the normalized resistive skin-depth

7 - Dele Ve o (4.27)

2, 2pmT; —do

X§E
—iw< | Vp] %>

similarly, the viscous skin-depth with toroidal modification

xR o LB T _ B gy R, 1L 48 (4.28)

We have derived a set of eigenmode equations which
retains desirable non-ideal terms such as ion sound terms

(terms involving «pf), FLR terms (terms involving X% or by),
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and interchange driving terms (terms involving D or Di), all
with toroidal modification. However, as mentioned before,
some potentially important effects, such as which arises from

temperature gradients and particle trapping, are omitted.
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4.3 Derivations of the dispersion relation
4.3.0 Preliminary discussions

There are basically three methods for solving the
eigenmode equations in the boundary layer problems.

(1) Variational principle: The basic éoncept of the

variational formulation is based wupon the self-adjoint

property, with respect to the mnatural inner product
(f,8) = fv dx f¢,

of the eigenmode equations. That is, if the eigenmode

equations can be expressed as

where f is the solution to the field equations, then the

linear operator L is self-adjoint in the sense that

(h,Lg) = (g,Ih)

for any well behaved h and g. For the boundary layer problem,
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the integration is taken from -« to » in radial direction.

We can then define a bilinear functional

Klh,gl = (h,Lg),
.80 that

K[g,gl = 0 and 6K[g,gl =0 at g = f.

Therefore, a proper trial function can be adopted for
deriving the dispersion relations by taking the extremal::
value of the functional with respect to the variational
parameters.

(2) Asymptotic matching: By separating the radial space (or
the Fourier space) into several regions with respect to the
characteristic scale lengths, mode equations ~ can. be
simplified into amalytically tractable differential equations
in each region and the boundary conditions can be matched
asymptotically_ at the boundary between two neighboring
regions.

(3) Heuristic analysis: The mode widths may usually be
approximately estimated via a simple dimensional analysis, or
say, dominant balance; and then, by adopting the constant-y
approximation, the dispersion relations can be qualitatively

derived.




An obvious restriction on the methods (2) and (3) is that

n32 concerning  the

the so-called ‘“subsidiary orderings
relative magnitudes of o, Veir P4 etc., are needed before
analytic solutions ocan be achieved. Note +that these
orderings usually relate to various classifications of modes
such as "collisional" and "semi-collisional" regimes. By an

appropriate choice of subsidiary orderings, complicated

effects such as ion sound effects, perpendicular resistivity
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and interchange effects can be included simultaneously by:.

methods (2) and (3). However, the procedure of method (2) is
still rather complicated and wusually requires further
assumptions on the behavior of sblutions, such as "nearly
hydromagnetic" and "nearly adiabatié“,sg a priori.

On the other hand, the wvariational scheme allows for
uniform analytical treatment over a relatively wide range of
the radial wvariable x (or kr)’ and the rather general and
accurate dispersion relations can be obtained without a
priori subsidiary orderings. Also, the procedure of the
variational technique is much simpler than the rather lengthy
and intricate matching process, and thus minimizes the
opportunity for error.

Let’s now go back to equations (4.23)-(4.28). We can see

that the inclusion of the ion sound and perpendicular

resistivity terms in Eq. (4.23), as well as the FIR terms,




the viscosity term and interchange term in Eq. (4.25), make
it impossible for these three equations to be combined into
one equation. Through a Fourier transformation, the problem

arises from the higher order differentiation can be obviated;

nevertheless, new complication of the higher order.

differentiation in the Fourier space will appear, due to the
ion sound terms with x° form in real space. In this case,
semi-collisional resistive interchange modes, in which the
ion sound effects are not important59, can be studied.

On the other hand, for tearing modes, the main interest
of this chapter, ion sound effects are known to be crucial?®
and responsible for the nearly adiabatic responses; and even
the curvature effects can come into action bnly through the
coupling with ion sound waves, in both collisional and
semi-collisional regimes. It will be shown Ilater that,
without the perpendicular resistivity, the ion sound effects
can be ininded in a variational formulation in sheared slab
geometry. Therefore, in the next subsection, the sheared
slab tearing modes are studied via the variational scheme.

For effects due to toroidicity, curvature, and
perpendicular resistivity, which we ignore in subsection
4.3.1, they will be included in subsection 4.3.3, in which
the asymptotic matching process will be adopted. However,

due to the complication of the matching process, we shall
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restrict ourselves in the semi-collisional regime with strong
ion-viscosgity effects.

Finally, we must note here that method (3), although is
rather rough, it always, by a proper choice of the subsidiary
orderings, leads tb qualitatively accurate solutions which
usually differ from the exact solutions in only the numerical
factors. Also note that this method 1is wusually more

physically insightful, and therefore more instructive.
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Hence, in subsection 4.3.2, we will briefly discuss many:

cases via the utilization of method (3).
4.3.1 Sheared-slab tearing modes with finite ion temperature

As has been pointed out by many authorség, the ion sound
effects are crucial to the drift-tearing modes. 1In this
subsection, we therefore neglect toroidal curvature terms
while emphasiiing ion acoustic effects.

By using Egs. (4.23) and (4.24) to eliminate ps, and by
ignoring the perpendicular resistivity, which is usually

unimportant, we obtain a more generalized Ohm’s law

o(x). (v + iiigo) = Yoy | (4.28)




Here,
w 3
1--24 aﬁx—
1 Xﬁ
o(x) = — (4.29)
xR 2 x°
R 1 + aﬁ—é + —2
XA X5
is the generalized parallel conductivity, and
2~ Q
. XSX
xR = = B4 (2.30):
o Te x°
i

is the width of the conductivity.

Moreover, through a Fourier transformation, Eq. (4.28)
and Eq. (4.25), without the interchange driving terms, can
- merge into one self-adjoint differential equation,
appropriate to the variational formulation. Now let’s apply

a Fourier transformation

) = | B o) exp(-iZy)
on Eq. (4.25) and Eq. (4.28). We find

— d-— , PN Tl
v - a§¢ = [ dy’ Aly,y") J(¥v"), (4.31)
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o = — G(y) d__YJ; (4.52).
where
2
1 Xzzx
G(y) = , (4.33)
(LJi X2
1- — .2 THLR
w Y01+ 2Y )
XA
oL dx 1 X ,
ANy, ¥7) = /.2ﬂXA ;§;E;5 exp| lXA(Y v I, (4.34).

and all the integrations are taken from —~ to «. Also,

Iy =/ ;‘—1"; X exp(—iéy) (4.35)

corresponds to the Fourier transformed parallel ocurrent.

Then, by eliminating ¢, Egs. (4.31) and (4.32) yield

v+ é%(G(y) é%&) = [ dy’ A(y,¥") 3(y’), (4.38)

which is self-adjoint due to Egs. (4.35) and (4.34) as. well
as the fact that G(y) and ¢(x) are even functions.

It is important to ﬁote that the boundary condition,
which asymptotically matches the exterior (or ideal) solution

and the interior solution, is embedded in @(y) due to the




discontinuity of the slope of y(x) on the boundary between

interior and exterior regions; and it is usually defined by

0+

A = (é% 1y(x)) (4.37)

when view from the exterior region. The explicit form of
¥(y) was generally derived by Hazeltine et.a18% through

Ampere’s law and the boundary condition Eq. (4.37) with
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finite k,w; here we only give the consequence of their . .

result, in the small mode-width limit klw << 1,

-~ 2
[ dy v(y)a(y) = Az,—“ - [ dy () . (4.38)
Xp Y2

Therefore, we obtain the wvariational functional, from

jay (7 Eq. (4.36)),

K[£] = Ky[£] + Kol£] + Kglf], (4.39)
where

£R
Kl[f] = [dy ;2—, (4.40)

I

Ko[£] = [dy G(y) (£%f)2, |  (4.41)
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Kz[f] = [fayay’ A(y,y") £(PEy s (4.42)

so that

6K =0 at f =4d,

on (4.43)

A ’XA

and K(J) =

provides the dispersion relations. We note here that the
variational quantity K here is constructed Dbasically
following Ref.63; however, it is more generalized in the
sense that the FLR and viscosity effects are retained in G(y)
and the more generalized version of conductivity is given by
NGB X

For tearing-parity modes, the perturbed, Fourier

transformed current can be represented by the trial function

£(0) = exp(- %Ayz). (4.44)

Here the wvarlational parawmeter A, which approximately

measures the mode width

~ 1/2
W= Xp I ,

must satisfy the consistency condition




Re(r) > O. (4.45)

Note that the magnitude of f()A) have been normalized against
3(0).

By using Eq. (4.44) and Eq. (4.34), Eq. (4.42) becomes

2
1 dx 1 X
Ke[f] = — [ = exp(- ——=], (4.48)
5 Axﬁ xp 0(x) xxﬁ

with which we can allow for even more complicated o(x), even
involving the plasma dispersion function Z, as long as it is

an even function. After a straightforward calculation, we

obtain
K = - Z(ﬂk)l/z
w w
x xR P 1 1 1
+ 22 YA R 0+ - —2 ) p(i(H Y3
X2 O(ﬁX2 X2 af af
A o A
O(ﬁ-i-—z
XO’
2 2 42
x4 X pe X _
+ L ()l 4 x(—‘;\ - —g) F(i2a1/2)) . (4.4m)
(1- —5)x? % K
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Where

FP(ix)

Jdy exp(~y°)
l/2 Y2+X2

- Lizm - = P1emp(a?))

_ .2 (2x?)n ,
2% (2n+1) 11 for IxI <1,
- |
(ep-1)!1 for ixl »1.

b

Note that equation (4.47) describes tearing modes of various
regimes, corresponding to the relative magnitude of scale
lengths x;, Xp, X, and Xﬂ, etc., except for the collisionless
tearing modes which arise from the collisionless parallel
conduotivity.61 In the rest of this subsection, we will study
the dispersion relations of tearing modes (A) = without
viscosity and (B) with viscosity, in both collisional and

semi-collisional regimes.

A. Inviscid plasma

The viscosity can be ignored whenever the inequality
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is satisfied. We can further simplify K by first considering

the limiting case

Pg
apr/(1- Z) << 1,

which corresponds to the neglect of the ion sound effects.

We then obtain

'elva
!_l.

o
o [

K2+K5 _ 2878

+
1/2 ws W4 w
n - == (1- =5(1- =)
w W w

One finds that for

Egqs. (4.48) and (4.43) yield

2
R

=
\1/2 172

w
1 e
w

T ap w
(1) JaPx?| <o |xpxa(1- —HL/Ra- HH1/E],
1

(4.48)_.

(4.49)

(4.50)
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and the dispersion relation

B/4,1/2
yo B “xx
anl/2 43/

W w
(1- =12~ )3/%, - (4.51)

which reproduces the classical collisional tearing mode. Ve
note here that in order to satisfy the condition Eq. (4.44),
the unstable root of Egs. (4.50) and (4.51) must satisfy o >>
Ye
consistent with Eq. (4.48) which ocorresponds to the low
temperature regime where the collisionality is high and the
diamagnetic frequency is low. Also noted here is the
validity condition for Egs. (4.50) and (4.51):

T

€.,

, ‘aE;Xi| << |XRXA (4.52)

lx

L

where the first term on the LHS implies that the viscous skin

“depth is thinner than the classical resistive layer width.

Finally, we remark that the irrelevance of drift-tearing mode
in the high collisionality regime has been pointed out first

by Rutherford and Furth66, and then by many other authors.
64
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and therefore becomes a purely growing mode. This is




T

ws w
(ii) For |aE$X§I > IXRXA(l— :%)1/2(1— 2?)1/2 ,
1

there is one sgelf-consistent root

2
= i X_E(l_ w_l)
aT,. 2 w’’

eXi

The dispersion relation thus becomes

Ti
2_
. X w w Tg 1/2
L - - HIRa- B2,
an XpXi w R
Te
with the validity conditions
wi (A)e
12| X oy x5 (1- = 1, -3
g << —2(1— —)’ << ’ , —ﬁ
: W w o

Eq. (4.55) confirms Hahm’s®® result, obtained

(4.83)

(4.54)

(4.55)

(4.58)

from a

gyro-kinetic treatment in the semi-collisional regime, which

is different from Drake and Lee’s3d (DL) result.

Thisg is due

to the fact that DL kept FIR terms only to the first order

Ty

while, for T = 1, the second order FLR terms (due to Xi) are

e .

comparable to the cold-ion semi-collisional terms (due to the

finite value of XS). Here
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nw
|

SR

B0

(4.57)

i
4:

1
[

refers to the effective ion gyroradius

However, we shall note here that for drift-type modes, w =
wg, Eq. (4.856) is not really different from its cold-ion
counter part. |

It is aiso noticed that when the temperature increases
from the collisional regime, the collision frequency become
lower, the ion (or the effective ion) gyroradius become

larger, while the drift wave broadening the resistive layer

LA characterized by

w ~

‘ XRXA * 1/2
mn we

1___
w

for drift-resistive modes. Consequently, we see that, also
from Eq. (4.53), the semi-colligional regime, which occurs

when the ion (or ion-sound) gyroradius becomes larger than
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the resistive layer, is much easier reached for drift-type

mode.

Regarding the ion-sound effects on the resistive modes,
perturbative treatment has been adopted in most of the

previous variational oalculations64. That is,

KA, o) =K (h,w) + K (r o)

w = wo + wl, A= Ao + kl,
where B (4.58)
0 0 0 0 0
3x°0,0% = o, k°2%..% =0
3
1 1 1

P

w A K

then, the dispersion relation becomes

: 0

KA, 0) = wléiK (%0 + £ (2%, - 0.
w

Therefore,

1 0 0 '
ol o - B o) | | (4.59)

EESITSINS'
Jw

. . w
For our problem, we can retain the next order (apr)/(l- 2?)




expansion of K- and use the perturbation theory to calculate
the correction of the mode frequency due to the ion-sound
terms. Therefore, sufficient information about whether the
ion-sound effects are stabilizing or destabilizing will be
obtained, although the smallness of the ion-sound terms is
 presumed. |

However, it will be more interesting to derive vthe

general dispersion relations which retain +the comparable
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ion-sound effects; therefore, the critical stability -

condition parameter Ao due to the ion-sound effects can be
derived. It is also mnoted here that, according to
Eq. (4.29), the ion-sound effects are negligible in the
collisional regime where x, is very large while the drift
type modes are irrelevant; We therefbre oonsider the iomn
sound effects only in the semi-collisional regime.

The point is, in semi-collisional regime, one finds

another consistent root

W S
A= — .
55 %, (4.60)

from determining Kz in the limit
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|_ﬂg_>‘__] sy 1
Wg )

1_._
w

It implies that the real solution of Eq. (4.36) has two
distinct length scales A; and A, which refer to Eq. (4.54)
and Eq. (4.60), respectively. We remark here that these two
length scales actually correspond to the so-called nearly
hydromagnetic solution and nearly adiabatic solution, which
%ill be discussed in the next two subseotionS' where the
dimensional analysis and the asymptotic maxching process is
utilized.

Conventional variational scheme will not be sufficient
for dealing with this kind of multi-scale problem. However,
with a minor modifioation, wve find a two-scale variational

scheme, leading to the dispersion relation

A'X ’
A 1 1
= + . (4.81)
2n1/2 K(Al) K(AZ)

This relation simply represents that the total discontinuity .
is the sum of those corresponding to the two diSparate length
scales. The derivation is as follows. If we assume a trial

function which involves two distinct length scales,




- 1, 42 1, 42
f=A exp(—ley )+ (1-4) exp(—axay D, (4.82)

where A and 1-A are due to the normalization against J(0).

We thus have

KI£] = &% K(a) + (1-8)% R(hg) + 2A(1-A) K(Ay,ng). (4.65)

If the two length scales are decoupled from each other, i.e.,

if the coupling term K(Ay,2,) is negligible, then, we find -

the best value of K[fl, with respect to the variation of A,

K(Ap)K(Ag)

KOy + KOng)' (4.84)

K[f] =

Hence, from Egs. (4.43), this vyields Eq. (4.61). It is

consistent with Eq. (4.43) also provided that

=0 leads to
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Now consider the coupling term. Due to the fact that

Ag 2> Ao
Egs. (4.41) and (4.46) yield
47\17\2 ?\1+7\2 4.7\1 7\_2

Kp(hy,hg) = (?\1+7\:§,)2 Kal 2 ) = Ay Kz(z)’

i

4rhg  1/2 RA 2o .2 il]l/Z

Ka(Nq,25) ( ~ (RAq).
3 102 3 3leM
(ry+rg)R Mthe 2

We also note that K, is much smaller than K, and Ks.
Therefore, the omission of the coupling term is appropriate

for our problem.

Now, from Egs. (4.55), (4.57) and (4.81), we finally have
the dispersion relation for the drift-tearing modes with

comparable ion-sound effects

1
1- —= w (5aﬁ)5/4xi/2

Ws
- (1- 514, (a.88)
ZXRXS o w 4X2/2 w

with the validity condition Eg. (4.56) and
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w

e
|1— . laﬁxﬁ/x§|
wg !’ wg
-2 -
w w 2
afXg  11/2 Te
8% /% <¢ |—————— << T—-. (4.66)
54 W .
BTN (- 9% "
(1- _&)1/2
w

It is noticed that Eq. (4.68) prefers a colder ion, and in
that limit, Eq. (4.65) reduces to Hahm’s®® result.
By using a Nyquist technique, one easily obtain the

tearing modes instability condition

A > AC, where

ﬁ1/2(5aﬁ)3/4_xi/2 w

: iv1/4 o
A, = - —= ) 4.87
c 51/2,3/2 1 w) ' ( )
S
For w = We it reduces to
2.1/4 L i/z
P S o
8o = B2 [ a8, (4.68)

n  Psg
hence, the growth rate becomes

Lmv.: 1/9
Y ~ o [-—Iﬂ] Wg- (4.69)




We then notice that parameter o, measuring the finite iom
temperature, enhances the ion sound stabilizing effects by
increasing A,, while it also increases the growth rate when
unstable region is reached.

Howéver, the more important effects arise from the finite
- ion temperature are the ion viscous effects. Acoording to
Egs. (4.27) and (4.28), with the maximal ordering for typical

machines,

viscous skin-depth is found comparable to the resistive
skin-depth, i.e.,

XR = X:u"

when T; = T As a result, the validity conditions imposed

o-
by Egs. (4.52), (4.568) and (4.66) become unlikely to be
satisfied at the same time except for the case of very weak
shear. It is therefore relevant to investigate the viscosity

effects when T; is comparable to T,.
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B. Viscous plasma
Let’s now consider the case that ion viscosity has strong

effects on the tearing modes. That is

Xu
|——A\ > 1, which yields
%<
A
2 2
X nl/@ X§ 3/ X)
o = ——— A (1-_a—).
©i x° X%
- N

(i) For collisiomnal regime, we find -a consistent root

2.2 “i
x5x<(1- )
R 1/3
W AN RS b | (4.70)

w
~10x3(1- =9

which yields the dispersion relation

_ Y
R
b B Cey xR, (1= %) /8 (4.71)
onl/2  gxR w 4 wg )
R —'1OXA(1- "—)
w
with the validity conditions
w w
2 x(1- =) x3(1- -2
ol R R
: c< w” |1/38 — 172, (4.72)
Bl ©4 “4
XA xﬁxﬁ(l— Z%) . Xﬁ(l— :%
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This result agrees with CGJ when viscosity dominates inertia;
in addition, we have retained the drift effects. One also
notices that, unlike the inviscid case, the drift-type modes
are - possible in the strong-viscous collisional regime.
However, ion sound effects are still negligible in ﬁhis
regime. |

(ii) For the semi-collisional regime, as in the inviscid

case, we find two consistent roots,

xR
A = 2— (4.73)
x5
2 - |
TeX wi 1/2 :
Mg ='(————ii—(1— )77, | (4.74)

3CXﬁTlX§ @

which yield the dispersion relation

3/4.,1/2,1/2 , -
b XA (1- gg) . (Bap ) =xp X, - f£)1/4_ (4.75)
2ﬂ1/2 21/2XRXS w 4X2/2X%/2 w

Here, the validity conditions are

ELE e
ﬁTlxﬁ w




© *R
5> | | > ‘Xgl (4.76)

It is important to note that the first term on the RHS of
Eq. (4.75), referring to the nearly hydromagnetic response,
is not affected by the ion dynamics, such as ion viscosity
and the finite ion temperature; while the second terin,
referring to the nearly adiabatic response, is modified by a
factor [xﬂ/xi]l/ 2 which implies the enhancement of ion-sound
stabilizing effects for the inorease. of ion viscosity.

Therefore, the instability condition parameter A, becomes

3/4,1/2,1/2
c 4x5/251/2 ©°  sin(n/8)
S 1
2.1/4 Lg 1/2 Vass
= cos(n/g) [EMD) 7 (BT eB Li1/4 (4.77)
2 Ln Pg “Ye

It is interesting to note here that the stability condition
is now independent of the electron resistivity, as in the

cold ion case. Also, the ¢growth rate is proportional to

1/4

l/il .
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In summary, the viscosity modifies both A, and growth
rate by a factor (uii/we)l/é; therefore, ion temperature (and
thus ion viscosity) could become a crucial control mechanism
in high temperature plasma devices.

We have derived the dispersion relations for oollisionai
and semi-collisional tearing modes in both viscous and
inviscid cases, in the sheared slab geometry with the neglect
of the perpendicular resistivity. ﬁxoept for the strongly
viscous case 'in the semi-collisional regime, the results
agree with previously known results derived via dquite

different approaches. This further confirms the advantage

and accuracy of the variational scheme.
4.3.2 Heuristic analysis

Before proceeding to the next subsection, in which a more
rigorous calculation retaining the toroidal effects is made,
it is instructive to briefly discuss method (3) which can
easily lead to the same results we have derived, and help us

understand some of the questions. For example, how do ion
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sound effects enter the mode action and how do the FIR

effects mix with their cold-ion counter parts (the usual
gsemi-colligional effects arises from the semi-collisional

compression)? In addition, the concept of dominant balance we




utilize here will also be the crucial key for simplifying the
complicated differential equations, even in the
deep-resistive region, in the next subsection.

We first begin with the Ohm’s law Eq. (4.28), through

which the dispersion relation is determined. That is,

A w(o) f dx a(x) (y+ 1—;¢) (4.78)

The integral is usually estimated by the ‘“constant "
approximation along with the fact that the width of current
channel is the minimum of width of parallel “electric field

(y+ iﬁgw) and width of parallel conductivity; i.e.
A

2~ w(@ow(@),  with - (4.79)

w(J) ~ Min(w(E), w(s)). (4.80) -

The usual semi-collisional effects arises from the largeness

of Xy, and therefore the smallness of x; which yields

w(J) ~ Xg-

The result is the usual semi-collisional teafing mode as

derived by DL.
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However, the above estimation i1s apparently over
simplifying in two senses:
(1) It ignores the ion sound contribution to the long tail

of o(x). The point is, although aﬁxg/xﬁ is a very small
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. w
quantity, for drift type modes, (1- :?)‘is also a very small

quantity. This is precisely the reason why ion sound effects
is important only for drift type modes.

(2) It assumes the smallness of the electrostatic potential

fluctuation ¢. ©Note that for the hydromagnetic response;:

which has length scale not larger than the resistive layer,

¢ 1s indeed very small except for the imviscid case with Py -

larger than the scale,length. However, theréﬂis another type

of response which has a larger ¢ with length scale larger -

than the resistive layer. This can be seen from a simplé

- dominant balance study of mode equations.

Let’s take example of the strong viscous case with Py 2

w. We have, from the vorticity equation,

ws _ : :
(1- jl)xﬁgoxx ~ —ixfiwxx. _ (4.81)

Then, by inserting it into the Ohm’s law Egs. (4.24), with

the subsidiary ordering




Xy ~ Xp ~ X, 20 Xp, we have
. 2

2 w X W

X _ e _ R iR

A X

With a quick observation on this equation, we find that two
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distinc‘b length scales w,, Wwg, are possible: w,, which is .

thinner than the resistive layer, leads to ¢, << pa; while

wg, which is thicker than the resistive layer, leads to g ~--

w,
pr. Then, by using this information, obtained from the

vorticity equation and Ohm’s law,b we can easily estimate the
two length scales, from Eg. (4.23). The results agree with
Egqs. (4.73) and (4.74) perfectly. Note that the first one
refers to as hydromagnetic response; while the second one
refers to as adiabatic response.

-It is also clear from the calculation that, in
semi-colligional regime, the adiabatic response ié due to the
dominant balance of the semi-collisional compression and the
ion sound term. It is important to note here that, from
'dominant—b‘alanoe point of wview, the semicollsional regime
refers to the parameter regime in which the semi-collisional

compression is dominating the equation of density evolution.




To understand why Eq. (4.55) is different from DL’s
result, let’s also briefly discuss the semi-collisional

invigecid case, in which

W .
(- D = ixfEy,. (4.88)

It implies ~that semi—collisional‘ compression is now
comparable to the convective term in Eq. (4.23). The
inoréase of the fluctuation of electrostatic potential ¢ is
apparently due to the finite ion gyromotion during whioh ion
will see the change of o. _(For'visoous case, however, ¢ is
again smoothed out by the viscosity). Then, by inserting

this relation into Egs. (4.23) and (4.24), one easgily finds

that
w
1 Z? :
Xz 2X2
B+ oo

where ) 1is as in Eq. (4.54). Therefore, w(J) is now
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[(1-(w;)/(w))/2a]x, rather than x . Hence the resulting
dispersion relation differs from Eq. (4.55) only in the
numerical factor. Also note that the validity of Eq. (4.65)
depends upon the inequality Ay «« xﬁ << MAy; therefore, when
estimating the length scale of the adiabatic response in that

regime, one must adopt

@5 . X
(1- j)“’Bxx ~ _lMX_'AV/XX’ v (4.84)

rather than Eq. (4.83).

We can now write down the more accurate form of the

dispersion relation, for semi-collisional regime,

e
1- — G(WB) = dx ngo%
2 XA 0 'W(O)

(4.85)

It is important to note here that in Eg. (4.85), ¢% means
the ‘“nearly adiabatic response"; because, according to
Eq. (4.24), the exact adiabatic response will not contribute

to the dispersion relation. The "nearly adiabatic response”

can be obtained from the vorticity equation. Let’s consider’
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the viscous semi-collisional regime, with the inclusion of

average curvature term D. Provided that

2.8
0 “e 0 _ ZA¥s; . x
‘8 C”PB aﬁwg[ XA'XX]f

the vorticity equation becomes

2 P23
wi Xﬂ' . 9X - (A)XS
1- —)—£X& ~ — o —_ —
( co)wzw 1Xl§;¢XX[1 Dlw aﬁwz]
B ' e B
2
wX
~ -axfE 1 - Dy———] o (wg) (¥ + iZ-p).
A WX FWR A

wg then is estimated from

03 xﬁxﬁ 1/4
wg = [(1- —=)———— ,
w Xgo(w )
i B
where
o(vg) = 2.
s

e .
. 1- . wxg
S i o(wglwg[l - Di___—_g]‘

xR . weXBVE

(4.86)
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This result will be found in agreement with the result from a
rigorous calculation in the next subsection.

Furthermore, we remark that Eq. (4.85) is also relevant
for other cases such as those which include perpendicular
resistivity and curvature effects. For instance, one finds
that the importance of the perpendicular resistivity, in the

semi-collisional regime, arises when semi-collisional
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compression is balanced against perpendicular diffusion. In: ..

this case, the narrow width of conductivity disappears, and

the length scale becomes

Finally, we remark that the 'similam procedure can be
taken to estimate the 1eﬁgth scales for each parametef
regime, as has been disousséd by many other authors. 1 Here,
we only write 'down, without showing the procedure, the
general expression of the dispersion relation for collisional
regime, in which, there is only one length scale w and the

ion sound effects are negligible. That is




A ~WO’+]—J.
w

¥ith this expression, for both inviscid and viscous cases,

the results agree with wellknown results derived by caa”.

4.3.3 Toroidal semi-collisional drift-tearing modes with

perpendicular résistivity and idn'visoosity effects

Although the dispersion relation in this parameter regime

has been approximately estimated in the last subsection, it
is always desirable to solve it in a more rigorous way. Ve
have shown that it is very difficult for a variational
principle to include the ion sound effeots together with the
pérpeﬁdioular resistivity and the interohaﬁge driving force
at the séme time. Therefore, in this subsection, we use the
usual asymptotic matching process to solve for viscous
'semi—-collisional tearing modes. For inviscid
semi-collisional case, we remark that finite T; will only
enhances the usual cold ion curvature effects by a foator of
2a. This can be understood from Egs. (4.65)-(4.69) and

Eq. (4.88).
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Due to the higher order differential form of the
eigenmode equations (4.23)-(4.25), it is obviously easier to
study them in the Fourier space. Through the same Fourier

transformation in subsection 4.3.1, we obtain

X ez N AP :
(1+aﬁ-—ngy Jpx —afp =9 - gy + —(y%Y) (4.87)
Ye Yo |- X% 5 ' S o
(1 - == (¢ - —px) - Y%, (4.88)
w w %< )
A
2 - 2
ws X x5 , x§
(1- z%)y2(1+—§y2)¢ = (%+—§y2)(y2w) + [D+—§y2Di]p*. (4.89)
X XA XA

Before proceeding to solve the above equations, we shall

note here that the appropriate subsidiary orderings for

semi-collisional drift-tearing modes, with strong ion

viscosity, are chosen to be

This is suggested by Egqs. (4.75) and (4.78), with w ~ oy and

the assumption that the two terms on the RHS of Egq. (4.75)
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are comparable. In addition, to keep the finite interchange

driving force, we further assume

D ~

separating the Fourier space into three asymptotic regions:~‘

(1)

(2)

(3)

D X2A 1/2
i~ 26 .
X

We now can solve the eigenmode equations by conveniently

. . 2 XA Y
ideal MHD region, where vy° << —(1- —s

intermediate region, where vy*< ~ —

a o . 5 A “e
eep resistive region, where y© >» —5(1— —).

XR

For region (1), the eigenmode equations reduce to

T (v*v) =0, and

SQ B _ Sg. ,
w)'ﬂf/— (o wP*) .

large-y behavior is then given byhahmdd

185



156

- where A’, related to the gradient of current profile, is a
parameter given by the outside ideal MHD solutions.

For region (2), the resistive effects appear, we have

px =V, (v*y) = 0, and

2

X ’
(1- =2+ ¥ 2w = (v - o)

X

A

By eliminating v, these equations further reduce to two

ordinary differential equations which has the general

solutions
2 .
1 %R @g
A = JCy = —¥C + Cz, (4.90)
A
Cl . '

where C;’s are constants to be determined by asymptotically

matching the small-y behaviors of the solutions in region (2)



with the large-y behaviors of the solutions in region (1).

We easily obtain,

Cp = - : and Cg = C4 = 1. (4.92)

For region (3), where the inertial, perpendicular
resistivity, and other desirable non-ideal effects appear,

The eigenmode equations become -

2 2
X ., wX Wz
1+ “ﬁ'gMﬂz)p* - afpx = —E(1- D3R, (4.93)
XA leA @ : .
2.2 L2
w ., XpX Wea X
((0 - —QP*) = _gl—‘g(l - _l)Y2€0 - '—'2“ ip*, ‘ (4:94:)

Where ¥ has been eliminated through the line bending term of

the reduced vorticity ecquation.

Ve note that for semi-collisional modes, the term on the

RHS of Eq. (4.93), which arises from the semi-collisional
compression, is expected to dominate in the deeply resistive

region. - Also, by defining
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o 1. i
T x~ 1- —
AW SE e 1

Eg. (4.94) can be rewritten as

2 2
w 7 X X

(v - 2p)"" = ap—aByRy - pyp,. (4.95)
@ 4xg x5

We therefore find two types of solutions, with respect to twor

different length scales as found in the variational

treatment.

(1) Nearly hydromagnetic solution (y% » —1)

A&
Therefore,
2

4 %g Y -
P R e wPr P
which, with Eq. (4.93), vields

2 2 ‘

X X ..
1+ ap2 vR)p, = —Spl 4.96

( aﬁX2 LYP P ( )

2R
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The solution of Eg. (4.96) which decays as 'y

parabolic cylinder function,

which has the small-y behavior

r(3/4 + Al/2)
Pa = PALOI(L - T A /R)

(ZAL)1/2Y];

where T is the Gamma functionm, .

2 =3
Ai = éaﬂxzszl,
AXg
2
X
X
GafxlM

(2) Nearly adisbatic solution (y* ~ A7% <<1)
Therefore,

%8

(X,G_RAZY4 ~ ﬁ ((l 1,
=7

which, together with Eq. (4.95), implies an adiabatic response

o~ &
wpé'

Hence, Eq. (4.93) becomes

— [ :LS

(4.97)

(4.98)

(4.99)

(4.100)
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ap, = 22y°p,, | (4.101)
which has solution

pg = U(0, Al/zy).

That the dispersion relation will be derived via the
asymptotic matching of the small-y behavior of the solution

in region (3) with the large-y behavior of solution in regiom

(2) that
’ 2
w , A X\XD -
(¢ — 2p,) = A 1; (4.102)
w ™ XA ‘

-We thus require the higher order solution, i.e., the nearly

adiabatic response, which can be determined from Eq. (4.95).

We have
2 2
w x pe
1 e 1+’ R R
((’OB - 'w—PB) = 0([3—27\2Y2§0% - _ZD:LP%
e ‘ XA

Through a direct integratidn, the small-y behavior is given by

2 .
w , ofw X - X
(0d - o) = [- —0 21, + Do 1R )p8(0);  (4.108)
@ 4wxg x3




n=Jy, WY 5oy

By using the identities

172
U0,2) = ()77 Ky (x/4),

ut+v+l —v+1
) T(E )

® L _ o1
fo dx %K, (x) = 2 r( . 5

and the recursion relations of parabolic cylinder function,

we find

r(3/4)
r(i/4)’

I, % (r(3/4))% = (32)1/3

. 1/2
T~ = (& .
0 (2) 2

wvhere KV is the modified Bessel function.

Now, the general solutions in the deeply resistive region

are
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hence, p,(0) and p%(o) can be determined by matching with

Egs. (4.90) - (4.92), we have

pA(O) =1 - )

pS(0) = <.

Egs. (4.100), (4.102) and (4.103) thus yield

é; _ fg XAF(B/é + Al/Z) 1/2
— = (1- = 5 (&r )
© xgEr(1/4 + AL/2)
afx
¢ [/, @ p1,71R) (4.104)
4x§ WeXA .

The first term on the RHS refers to the nearly' hydromagnetic

response, while the second and the third terms refer to the
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nearly adiabatic response. Also note that this expression .

- agrees with Eq. (4.86) in the last subsection, where WA

corresponds ﬁo A, while wg corresponds to A. Also, since the
first term is a purely electron response, it 1is not
surprising that it agrees with Hahm’s cold ion result.

The importance of perpendioular resistivity apparéntly
depends on the magnitude of the parameter A . Let’s consider

two limiting cases:



(1) For small perpendicular diffusion, A oo 1, de.,
2 2
7 X L¢
L= (—-J; + 2q2) << A = 5 s for W~weg
Sy 4opxs 4ol
Eq. (4.104) reduces to
' 3/4,1/2 1/2
A = (1- _£ XA (O(ﬁ) 4XA X,U' )1/41_(3/4)
n © XX £5/2,1/2 - r(1/4)
, s ‘i
' 1/2 1/4
- oy [ )T (4.108)
we AX,LL 1_ Ci)_i

@

As expected, this expression agrees with the variational
calculation Eq. (4.75) in the sheared slab system, and the
intuitive dimensional analysis result Eq. (4.86).

The instability condition with both ion sound and

curvature effects is

(4aﬁ)3/4 1/2 1/2

= X iN1/4r(3/4)
g ncos(n/8) X5/2X1/2 (1- ) r(1/4)
s i

(L2 ap 1/

- ﬂSln(ﬂ/B)——D [2 =% [ "
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Lg 1/24p 711, 174 Lp 172 Mo, 1/44
=) (== + (—Di)(-L—) (M ) =
Ly Pg “Ye S w’ii Ps

(4.108)

~ (

As 1in the cold ion case, the interchange term will be
stabilizing when the curvature is good; i.e., D; is negative.
However, it 1s worth mentioning here that +the usual
interchange driving term D is now replaced by D;, due to the

FLR effects. From the definition of Di and &b in section

le4

4.2, we notice that the diamagnetic correction to the-

effective average curvature, which is usually destabilizing .

disappears, when w =~ wy,. Also noticed is the « faétor in the
definition of Dj. Finally; one notices that A, can become
very large for small viscosity, which is likely to happen
wvhen ion temperature gets higher. On the other hand, when
vion viscosity increases, the ion sound stabilizing effects
are enhanced. Hence, we conclude that the finite ion
temperaturé effect enhances both the ionvsound and curvature
effects, and it can become a crucial control meohanismAin the
future day high temperature plasma devices. Moreover, it is
also implied that the increase of lAop! due fo ion viscosity
can also drastically enhanoé the interchange instability for

system with bad average curvature.
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(2) For large perpendicular diffusion, A, << 1, the

dispersion relation becomes

4 1/2
A Yo, %A 1/47(3/4) w n /2 qap .1/4
— = 1- —)———— M ——z - —D.
T a( co)X X1/2(aﬁ l) r(1/4) weDl[QXAX ] [ wi]
R [ 1- =
w
3/4,1/2 1/2
<3/251/2 r(1/4) o
S 1

In this case, the center current channel width is enlarged,-

due to the perpendicular particle diffusion, by a factor

2
7 1/4
CEHL/R [+ 2gD)
L g

vhile the growth rate are reduced by‘(Al/z)l/z. Also, the
instability condition is the same as in case (1). Therefore,
as in the oold dion 1limit, pointed out by Hahm, the
perpendicular resisﬁivity is rarely important fo: drift

tearing modes.



4.4 Conclusions

In this chapter, drift-tearing modes with finite iqn-
temperature have been investigated. The eigenmode equations,
derived from the linearization of the reduced fluid model we
 derived in chapter 2, recover Hahm’s in both toroidal cold
ion 1imit®° and sheared slab FIR limit.<® These equations are

analyzed by Dboth variational scheme, in sheared slab

le6

geometry, and asymptotic matching process, in toroidal:-

geometry. New dispersion relations, which describe the
semi-collisional drift-tearing modes with finite Ty effects,
has been obtained.

For inviscid plasma, finite ion temperature is found only
mildly enhances the ion sound.ahd average Curvatu:e effects
by a factor of 2« = 1% Ti/Te. Nonetheless, in the wviscous
semi-collisional regime, in addition to the 2« enhancement,
two potentiallyiimportant effects of finite ion temperature,
when coupling with toroidal curvature term, are found: (1) it
enhances the good curvature effects by avoiding the
destabilizing  diamagnetic  correction to the average
curvature; (2) when T; gets higher, therefore v;; gets lower,
the instability condition parameter,

1/4



can become very large. On the other hand, ion sound
stabilizing effects are enhanced for increasing of the ion
viscosity. Therefore, ion temperature could become a crucial
parameter in controlling the Ilinear tearing modes in the
future day high temperature plasma devices.

Since the inclusion of comparable ion sound effects

lev

induces two responses with distinct scales, a two-scale

variational scheme is utilized. In its cold ion limit, the

general dispersion relation derived via the variational .

scheme recovers many of the previously derived results in

various parameter regimes. The success of the two-scale

variational calculation could imply the extended applications
of the variational principle to the more complicated system
which includes temperature gradients effects, which, to our
knowledge, has vyet to ©be studied in the viscous
semi-collisional regime.

Finally, we remark that, before a rigorous, complicated
calculation 1is carried out, the intuitive dimensional
analysis of dominant balance, described in 4.3.2, is always a
good starting point in dealing with boundary layer problems.
It can easily provide not only the profound physical ingight,

but also the qualitatively accurate result.




CHAPTER V

CONCLUSIONS
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We have studied the fluid descriptions of toroidally
confined plasma with finite ion temperature effects. This
work is motivated by noficing that despite the successes of
RMHD in interpretation of many mnonlinear phenomena
experimentally observed in the devices of toroidally confined
plasma, such simple deséription will become inadequate for
the hot plasma encountered in the present and future machines

where many non-ideal effects can significantly modify the
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dynamics. In particular, the diamagnetic drift-type

frequencies and finite ion temperature semicollisional regime
become the realistic descriptions of the plasma low frequency
activities. Imn this thesis, we have constructed a reduced
fluid description pertains to this parameter regime.

In chapter 2, a generalized reduced fluid model is
derived, through a moment approéch, to retain accurate O(pf)
FLR terms. It is generalized in a sense that, instead of
imposing complicated orderings from the beginning to make the
resulted equations suitable for restrioﬁed problems, we have
adopted the general orderings for the low frequency
activities in large aspect ratio toroidally confined plasma.
That is, shear-Alfven time scale, stretched motion, and small
poloidal magnetic field. This generalized model is not only
self-consistent, energy conserving, but also provides good

FLR effects for a wide range of p;.



Several simplified versions of this model have also been’

obtained. In particular, a Pade approximation of the full

FLR fluid system, which lead to an FIR operator has

1
1+bi

been presented. This simpler, energy conserving, numerically
tractable reduced fluid model has been claimed_ deserving
further detailed studies both analytically and numerically.
Moreover, although the present work has been restricted to
the isothermal system, we remark that temperature gradients
effects can be easily included (work in progress).

In chapter 3, several general applications of our reduced
fluid syétem have been briefly studied in such a way that
further detailed studies can readily follow. In particular,
the noncanonical Hamiltonian theory and its applications to
the reduced fluid system has been discussed. The Hamiltonian
structure of the driff—RMHD has been studied. The difficulty

arises from w:; term has been simplified wvia an isomorphism

i
theory. Further study of the instability condition of DRMHD
based on this result should be interesting. Nonetheless,
incompressibility is unlikely an appropriate description of
drift-type activities. We remark that an extended work
retaining both w; and compressibility is in progress. This
new Hamiltonian reduced fluid system is obtained partially
through the similar isomorphism theory presented in this

thesis.
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In chapterA 4, the finite ion temperature effects on
linear drift-tearing modes have ©been investigated in
detailed, based on the linearization of the model of Pade
approximation. The resulted eigenmode equations have been
found consistent with Hahm’s sheared slab system and cold ion
toroidal system. Due to the second boundary layer interior
length scale, arises from the adiabatic response, a two-scale

variational scheme has been developed to derive the

dispersion relations in the semi-collisional regime in the

sheared slab geometry. For toroidal geometry, we adopted the
asymptotic matching process for .solving the eigenmode
equations.

It has been found that when ion viscous skin-depth is
thinner than the current width, the existence of finite ion
temperature can only mildly modify. the semicollisional
drift-tearing modes through enhancing the stabilizing ion
. sound effects and good curvature effects by a factor of 2a.
On the other hand, when ion viscous skin depth becomes larger
than the current width, ion temperature significantly
modifies the semicollisional drift-tearing modes by replacing
good average curvature term (D » D;), and characterizing the
instability condition through ion viscosity. Therefore, ion
temperature could be a crucial parameter in controlling the

drift tearing modes in the future high temperature plasma.
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We also remark that further studies which include the
tempeiaxure gradients effects, particle trapping effects,
will Dbe interesting. The success of the two-scale
variational scheme should make the extended approaches
relatively easier.

Finally, we hope that the reduced model of Pade
approximation will be useful in the future stability analysis

of magnetically confined high temperature plaSma.
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~ APPENDIX A

DER

IVATION OF

[REYYo}

Here we present a derivation which yields the general

expression of q as that of P given in Eg. (2.28).

The point

is, similar to Egs. (2.24) and (2.25), the third rank moment

equation can be written as,

2

[(gxb) + TTr] =

Pl H»

where

1.4
"0 (dtq A

(R ]

|

(——PV P)+TTr] - C
mn

d 3
—_— = _— OV
at T at T D

~ o~ A

MR SEE

+ Ver [(gqeVV)+TTr] + q(V V)

and """ of a third-ranked tensor is defined by

P PP ~

A = A - bbb(A:bbb) - —[(I—bb)b+TTr]{A (I-bb)b}.

~

Hence, we have

= q1bbb + g5 (I bb)b+TTr

~ o~ ~o

(EEYTe]

1+

VR »

(AL)

(A2)

(A3)

(Ad)

(A5)
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where
qq = /dY mv? f, (A8)
m

Here, v is particle velocity in CM frame. The main task of
this appendix is thus to solve for & from equation (Al).

Before doing so, we first present the derivation which leads

to Egs. (2.26) and (2.27).

It is obvious that any antisymmetric second-rank tensor B

can be expressed in term of a vector E such that

Bij = = Bij = fijx Bk

wvhich, along with the identity
1

2 fijkfikm = %ime

vield

E = — (bxB).b + %(be):Ib.

~ ~

Hence, for any anti-symmetric second-rank tensor, we have

~ o~ ~ o~
~ ~ ~

bxB %[(be):I](I—bb) + (bxB).bb. (A8)
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Then, from the fact that (Axb-Tr) is an anti-symmetric

tensor, we find that, for any second rank tensor A,

~

bxAxb = AT — bb.AT - AT.bb - (I-bb)(I-tb):A + Eb(bb:A), (4A9)

~ o o~ ~ A ~ oA ~a e~ o~

~ ~ ~ ~ ~ ~

where AT is the transpose of A. For symmetric A, Eq. (A9)

reduces to Eq. (2.26).

From Eqs. (2.23)-(2.28), we find

o
X
AT
N
R
-/

I

~ o~ o~ ~

bxAxb + (I-bb). A
= A ~ (2bb.A + A.bb), and (A10)
be(A) = (I-bb). A b A (Al1)

~ o~ ~ ~

One can then obtain Eq. (2.27).

Similarly, from Egs. (Al) and (2.27), we have

?x? + TTr

- 83 (IR(IBDIG(I-D) - ZBbkb + 5.3 + TTx),
S

bb?T = g: N -

Therefore, we obtain
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g = é (D + TTr), (A12)

~ o~ ~ o~ ~ o~

D = —Txb - 2[(I-bb)(I-bb) - bbbb]l:Txb + B{K ~(T-b)}b. (A13)

~ ~ ~ ~ ~ ~
~ ~

Recall that T is defined by Eq. (A2) and K_1 is given by

~

LR

Eq. (2.27).

Egs. (A12)-(Al13) are useful for deriving the part of

higher order cross-field stress tensor which arises from V.q..

~ o~

More importantly, they can be used to determine the

perpendicular heat flux. Note here that the heat flux,

q = q”? +q) | o (Al4)

0 -
e H
1

can be determined by

dy = d7 + *dp, (A1B)

(A18)

0 [+
e H
11 »

9, =

As an example, in Pfirsch-Schluter regime, the .lowest

order of Eq. (A2) yields
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7 = 2T (1v7 4+ Prr);

~ md .

therefore,

q-= II;—'(I; (IbxVT + TTr). (A17)

One can then easily show that Egs. (A16)-(Al7) lead to the

classical perpendicular heat flux due to gyromotion.



178

APPENDIX B

A MOMENT APPROACH TO GYROVISCOSITY IN BANANA-PLATEAU REGIME

As mentioned in chapter one, the main context of this
thesis 1is restricted to the collisionality regime where
trépped population is negligible. However, in this appendix,
we present an approach to obtain the gyroviscous tensor in -
banana-platesu regime where particle trapping effects are
significant.

We start with Eqs. (2.24)-(2.25) and adopt the Maxwellian
ansatz that the lowest order distribution function is a
moving-Maxwellian. Our goal here is to evaluate
gyroviscosity to O(p ), therefore, we need only to 0(p;) of

ég. We have

~

%g é%@ + Plﬁ + (Py=P )[b(I-bb). (b- YYfEE?) + 1] + P (v V)

+ {[(q-Ragdbe + qp(7,b) + DY gor (bxVT)VES

(beVT + (Vb)x(VT))] + TTr} — 2bbbxk.VT)

~ o~ M~~~ o~

- (I—bb)[q2V b + b VT V Q + ((be) VT - bx««.VT)]. (Bl)

~ ~ o~ ~ o~ o~



Note that terms which involve VT arise from the first order §

obtained in Eq. (Al7). ”

It is obvious that the gyroviscosity determined from
Eq. (Bl) will have a form even mOTe complicated than
Eq. (Bl). However, further scaling can drastically simplify
the result. For instance, when Ilarge aspect-ratio (or
long-thin limit) is assumed, the first five terms will. reduce
to Eq. (2.29); or, when V is assumed to be 0(p4i), the first
five terms will reduce to nT ?.

Our main dinterest here 1s the particle trapping
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contribution to gyroviscosity, therefore, let’s concentrate

only on terms which involve q; and q,. From terms with qq

and g5 in Eq. (Bl), Egq. (2.27) thus yields

q .
= {blbxVqy + (qy-Gg)bxx] + —2[bx(V bHTr)} + Tr. (B2)

Note that similar results have been obtained by Newcomb®! and
Siebert®” for the long-thin mirror configuration. However,
we claim that our result should be more exact since we start
with the exact moment equations and have imposed only the
gyroradius ordering. Also note that further detailed study

based upon Egq. (Bl) should be interesting.



APPENDIX C
COLLISIONAL CROSS-FIELD VISCOSITY

In this appendix, we present a semi-moment approach of

deriving collisional cross-field viscosity via determining c.

~

The detailed information of distribution function is not

required.

Starting with the Landau - collision operator38 for

like-species, C, after integration by part and some

~

manipulations, can be written as

m: A 2 -
_ 1 < _u
C = o Javjay’ ST 22y, =
Here, u=v-v’ and
A =-2 yzm v, . | (c2)

2 al

By assuming the lowest order f£(v) is Maxwellian fy(v),

Eg. (Cl) becomes

m; A "
jdvfdv ——(uu———I) f(v)fM(v ).

o u

1)

Then, by using the facts that
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Javjay wr g £(DE(T)

_ 3 Ao Y - e oo
= Jav £(v) [o(fdvioviiy(vi)) YSV(IQY SEn(v 1,

1 2
1_4ns 3 L Yy (s.0) ¥, (807
N s Lm ’ ’
u 1=Om=—g <~%+1 VJ>z+1
and

v = 2/n/8 vI¥gb - vA(eqRe(¥q))+epIn(¥y1 )],

we have
Vz
C=m;a [dY fi(Y) (Yy—zgg) o(x). _ (C3)
m v2
i
H =
ere x 2Ti’

o(x) - (x% - By exf(®) | 3 exp(-x")

IE Jr < ’
erf(x) is the error function, Y, is spherical harmonic and
é1,2 are unit vectors perpendicular to ?.

To evaluate Eq. (C3), it is convenient to expand the
distribution function in spherical harmonic and Laguere

polynomials68’69



v = £(v) - £4(v)

e 3/2¢2 12 5/2 (2
~ Ti[Y.igkLk (x*) + = T (YY 5v I) EP Wl < (X2 1fy (V) (C4)

where I¥s are the generalized Laguere pol nomials,
g gu poly

[dv VLE/z(Xz) F(v)

3
, = = , (C5)
“k 2 de (XLILZ)/2(X2))2 fM(Y)
and
5 15om;  [dv wif/3(x2) #(v)
FT 4 jav GRLERER? £y(n)
K .
(8/2) k! (C8)

i
= 3 MA ,
=0 (j+(5/72))151(k-3)! ( Ti) LR+
2.5

In Eq. (C4), we have neglected the velocity space spherical
harmonic components with 2 > 2, for simpiioity. It is also
understood that the first term on the RHS of Eg. (C4)
corresponds to the odd ranked moments such as particle fiuX,
heat flux, etc.; while the second term oorrespondé to the

even ranked moments.



From Egs. (C3)-(C6), we have

2

Bv. — -X
- - = I B 4/z/ax e o(@IY/RE). (c7)

)
I v RS

Note that our interest is to evaluate C to O(pi), therefore

~

O(ps) ©Of Mpyip. By moting 0((p;)?) of the 2kth moment

equation

T. k (k+2)! .
R(Mpp) = = om; (C2) —2— ¥, (c8)
-~ 0 1 m. 5 -
~ o~ 1 (=1 =

2

one finds that
P =0 - for k # O. (G9)
Hence,
G- -8, . p (C10)
- 5 1 o i _

where @o is given in Eq. (2.30). One can then use

. -1 .
BC - % g (&)

and obtain the collisional cross-field viscosity which agrees

with Braginskii’s result.
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We remark that the above technique is very useful in
deriving the ocross-field moment tensor in the magnetized
plasma regime, because of the small factor % in front of é.

This approach has been wused to reproduce the wusual

neoclassical cross-field viscosity (unpublished). .
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