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Abstract

The direct interactidn approximation is used to
obtain the kinetic electron response in the‘preéence
of dfift—wave turbulence.’ Primary effects on the.tearing
mode equations are a diffusi#é broadening of the conduc-
tivity and an anomalous pérpéndiculér viscosity. The

first has a negligible effect on collisionless current

channel modes. The viscous term, howeVer,'produces

significant stabilization of the m=l1 mode for levels of

turbulence much smaller than those expected.

PACS—mumbers—

52.35Py and 52.35Ra




I. Introduction

Fine scale turbulence due to microinstabilities can
yield significant dissipation in the electron kinetic
equation. Hirshman and Mol‘v‘igl treated this' turbulence by
modeling the mean effect by quasi-linear diffusion, They
studied the stability of electrostatic drift waves and
determined the amplitude for nonlinear saturation. Diamond
and Rosenbluth2 extended this work using-a coherent - - - - - -
approximation to the direct interaction approximation |
following Dupreé and Tetreault.3

in this paper we discuss the effects of a turbulent
background on collisionless tearing instabilities. We
follow the work of Diamond and Rosenbluthz,.although our
problem allows several immediate simplifications. To begin .
with, we aséumefghat*thevfié&uéﬁéieéiéﬂanwévénﬁmgé%;'of-fﬁéf
turbulent background are much iarger than those of the
(low-m) : tearing mode. This implies that the turbulent
noise is Markovian in nature. Secondly, we do not attempt
to treat the problem self-consistently, and so the dependence

of the microscale turbulence on the macroscale mode is ignored.

With these simplifications we apply the coherent direct

interaction'apperimation to the electromaghetic drift kinetic

equation in Sec. II. The resulting equation contains two

additional terms, both of which are basically diffusive.

__The first diffusion operator acts on the distribution function

_mwhiig_ihe_sggénd'acts on theffields_and"thus‘qont;ibutes to

the source term.




T T T T the turbulent diffusion coefficient. Equation (l&) is

Field diffusion and particle diffusion are formally Hermitian

conjugates, and it is important to retain both to maintain
the self-adjointness of the kinetic equation.4 In the
drift-wave problem the quantitative effect of fiéld
diffusion was found to be small.2 However, in the tearing
instability problem, we will see that the effects of field

diffusion are dominant.

In Sec. “III the tearing mode equations are derived,
including turbulent diffusion effects. Subsequent analysis

shows that the most important diffusive effects are included

in the equations

it
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[see Eq. (18) and Egq. (26)]. Here, ¥ qu. (15)] represents

the vector potential, ¢ the electrostatic potential,

x. [Eg. (19)] the Alfvén resonance length, and D [Eqg. (6)]

A

Ampere's law and Eg. (1b).: is obtained from quasiFnégﬁfality.

' . . .5 .
These equations differ from the standard pair™ 1in two

ways. First, the conductivity has become an integral

operator with kernal o [Eg. (23)]. This nonlocality is

—due to diffusive broadening. —Second, the guasi=neutrality——

equation contains a quartic derivative of ¢ which—is—due™




equation. This term can be given a simple physical

interpretation by appealing to a fluid model. 1In fluid

theory6 the "quaSiﬁneuﬁralityféquation"\follews'from the -
ion vorticity equation. Recalling that the parallel

vortlc1ty 1s -—V 9 _we see that. -Eg. lem%~foliowswfrom"”“”

e e e O

9 B
m. n [at V o - DV (V ¢)J = BOVX(J&B).

Therefore, the quartic derivative represents vorticity
diffusion (or Perpendicular Viscosity).

In Secsi: =~ 1V and V it will be shown that diffusive

broadening of the conduct1v1ty in Eg. (la)‘ has no effect

on colllslonless current channel modes. These modes are o

relevant when B(mi/me) > 1 where B —¢(VS/VA) ’

2 - . . te - = 2 _ l-—2\ 2 124 1
vy o= (ZTe)/(mi)~ 1s the ieon sound speed, and Vy = }bo)/(eTm@i)
is the Alfvén veloeity..‘Current channel modes are characterized

by having E, = widths much larger than the width of ¢ .

Mahajan et al.® show that the the (D=0) By width is x2/x_
while that'of o/ is x -e'w/k”ve. + which is typically

e =
—~%¥»~¥~*~much'less However . when W, >5_w,,--where wi = (1/3)D(MIV )

is the turbulent decorrelatlon frequencyif_the—Width—of*—b

pecomes Xg = ug/kjv, . Therefore, only when -
X2 /—\
X e i e - e
i R e BR—. —
- o ° — — =




does diffusive broadening of o become important. This

implies a diffusion coefficient

O Ve m, ) 3

e

if w ~ w,,, the electron drift frequency. Here, L, 1is

[

(2)

Bfmg

- -

the shear length, L, {iéﬂtﬁé‘déﬁéiﬁjfgf&éﬁéﬁ%lséalé, and
Py = Vs//ﬂi' Hirshman and Molvigl have estimated the
diffusion due to ndnlinearly saturated drift instabilities

to be

Since for typical tokamak parameters the |brackets in

Eq. (2) can be 0(102), the value of D implied is unrealis-—

ticaliy large..

Vorticity diffusion, however, has a significant.

' )
stabilizing effect on the m=1 currént channel mode

(Sec.".t V). It is clear from Eg. (1b) that vorticity

diffusion will be important when

- where -W¢ -is-thé scale of -¢.- -For-the mode ofinterest-— -

“the Towest order dlspersion“relation”implies"'k;XéxA“z 1




where k_ = wpe/c is the inverse collisionless skin depth,
and w¢ = Xy This yields significant stabilizgtion of
the mode when
pgvs g =5/4 m, 172
P 7 m 1P | mD )
S S VI =Y S

l)"ﬁgr tokamak

The bracket in Eg. (3) can easily be 0(10~
parameters. Thus, turbulent diffusion significantly
stabilizes this modef Our treatment of vorticity diffusion
is, hoWever, perturbative and bfeaks down as the wvalue
given by Eq.-(3) is approached.

Previous treatments of turbulent modifications to

kinetic tearing include the work of Biskamp et al.7 They

use'quasi}linear"ﬁhéofymﬁéiStﬁdyfVelééi£§:space nonlinearity

[NE of Eq. (7)] for a magnetic neutral sheet, as is

appropriate in astrophysics. Coroniti8 has introduced

spatial diffusion due to gradient B drifts in this context.

This leads to the replacement w -+ w + ikzD and explosive

growth. By contrast, Galeev's treatmentg, which also

- -

includes an energy-conserving term analogous to field

presentnpaper, Galeev assumes a'time4indépendent*randbm

10

vmaqnetic'field;__Katschenréuthex—et—aiT———s%udy—%he—effectb

. . T
of particle diffusion in the sheared-slab geometry iﬂ\ﬂn

- conjunction with Coulomb collisions, but négledts’fiéld—'h

[T

diffusion terms. Our results are eqguivalent to theirs for

the collisionless m>2 case. S , o




II. Electron Kinetics with Background Turbulence

In this section we consider the effect of high frequency,

high wavenumber turbulence on the electron kinetic equation.
Following closely the.treatment of Diamond and Rosenbluth2

we include only wave-particle nonlinearities and represent

We retain both particle and field diffusion (the "d" and
"RB" terms of Dupree and Tetreault3).

The electrons are assumed to obey the drift-kinetic

equation

of

ot

2o

-

t
| .
| [N

where B = |B|b and E, = E:b. We use the sheared-slab

Il

E
model,lettihg By =’Bo<£ + fi y), where LS is the ‘shear
< : s

length. The total field i B = Boﬁ + VX(ﬁA”) where n

~

is the unit vector in the BO direction.

~

Letting

f = fo + f where fo ‘is Maxwellian with density

n [l - (x/L. )] and thermal speed v?.= (2T7_)/(m_) , and
o n T e_'e,‘c

defining the field

9 : ~ C ~ l L

._turbulentmeffeets—by~quaSf&iinéarfiike‘diffﬁéfdﬁf@pé}éEBEE:mm""‘;;jf__ﬁ'




the perturbed distribution function satisfies

—ef

il — P = o (i |
-1 (w k”V”) fk,w + Nk,w Te (lw*eLk,w + VHElIk,w) (6) i
Ny, ® represents the nonlinear terms and
k K, p v
_ o L _ _ 17s's
K = kmoo= 3= Wy 5T Top—
s n

Temperature gradients have been neglected for simplicity.
To second order in the perturbed quantities, the ;

nonlinearity is

_ L - B
Nk,w - Nk,w + Nk,w d
L . -C N or
Nk,(x) = E; (VLXH Vf)k,w ’
i
E -e 3 '?
Nszm_<E|I§\—7_f) . )
~7 e I k,w ' (7) :

These can be simﬁlified'bY»usihg the cqherent direct inter-
actibh‘approximétion3 which gives the mean effect of

. Lz g e L . - . -
turbulence on £ 7 We will treat only Ni Teaving D
N 4,(1) : k,w

~

to a subseguent paper.




The term NV is formally identical to the
electrostatic nonlinearity as treated by Diamond and
Rosenbluthz, so we merely adopt the results of their
renormalization here. Briefly, the procedure is to
determine the perturbed distribution to second order and
extract those terms coherent wifh.the mode (E,w); In
addition, terms cubic in the fields (wave-wave interactions)

are neglected. In this approximation

£ - b L (8)

where d and bk n AaTre operators involving sums over
14

k,w
the turbulent spectrum. Retaining only those terms in
Eq. (8) which are diffusive in the x.-direction (since this

is the smallest scale for low m tearing) gives

82
dk,w = —Dk,w[L,L] —_—
~ ~ 9%
~ 82 - -
- - b, = -D  |L,f] — ;
o Beu M
2
b, [a,B] = & E (k1) °a h B, . (9)
k*, w r - 2 ARgy S~ J_ k“'Tw*'_k—‘k"TU)‘“w_L-k 1 P 17
~ B t 1 ~ ~ o~ ~
o k',w ‘

where h is the renormalized propagator.2

k,w

~

P
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We assume that the fields contributing to Eg. (9) have

(k',w")  >>  (k,w) ,

where (E,m) represents the tearing mode. This implies the

operators of Eg. (9) are nearly independent of (k,w), -that

is, the Markovian approximation is wvalid.

“To determine the effect of the operator 'bk,w",
I
model for the turbulent distribution fk'ew' is needed.
assume
~ efO
fk',w' - Te Lk',w' !

which would be appropriate if, foi example, the turbulence

was due to the electrostatic modes (L =+ ¢) with nearly

some =

We

(10)

adiabatic electrons. This is clearly valid for drift waves.

Under these approximations, Egq. (8) becomes

N %~D—?—2—f + -9 p 3 _

ox ~ e 9x

A

W

and contains the single parameter, D, which is to be input

(11)

“from—a- theory of- mlcroturbulence

To 51mpllfy the subsequent analy51s, we extract a

| portlon of the perturbed - response by deflnlng

T T ~ w*e eto
g‘l = f - ™ d)'x

(12)

7w k7w w Ta KT

~

F’:r.




Al

We note parenthetically that retention of the field diffusion
term in Eq. (11) maintains the orthogonality of NL and
therefore fhe operations of extracting ¢ and renormalizing
" commute. That is, if Ek,w = L . . then Eq. (11)
implies NL = 0 consistently withNEq. (7;. For the

electrostatic drift anéfwhén'therréépoﬁse”is pfedomihénﬁly
adiabatic, Diamond and Rosenbluth2 have shown that the field
diffusion term is largely canceléd' and therefore has a
negligible effect on stability. For tearing modes, however,
the response is primarily proportional to E” and the two
terms in Eq. (11) no longer nearly cancel.

Combining Egs. (6), (11), and (12) yields the

renormalized drift kinetic equation

2
. N 3¢ . B _ 3
-i(w - k“v“) gk,w -~ D 5;7 gk,w = Sk,w(x)’ (13 a):
—efO , w - w*e ‘
Sk,w(x) = T, i M w EHk,w
- T o ke T T Bk, S (138))

The source term, Eq. (13b).,. contains both the : 1

collisionless driving termll

and |the new fﬁfbuléht"field'

lmaiffusion,terﬁétrv

r-



The zeroth velocity moment of Eg.

relationship between

~
=

the current density J” :

(13) yields‘a

12

the perturbed charge density Be and '

' 2
~ 2 k 2
= _ im0 ~ De . sn.0
kHJ”k,w - (w 1D 2> Pek ,w * I Wie 1D— ¢k,w ’
(14)
where
5 41 e
Kk _ o
D T
|
|
o - o e e e
|
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III. Field Equations

Field equations for the tearing instability are derived
from Ampere's “law and guasi/-neutrality. In Ampere'S.laW we
neglect k; relative to!the x derivatives and neglect the ion

contribution to the current. Upon definition of the field

W
= — 15
v ki Mk,w ! (15)
we have12
dmw .
LR I -
v - kﬁc JH%,w ! (16)
where the prime denotes the x derivative.
The second equation is obtained from 51 + 5e = 0,
where the ion charge density is given by the formula (for
small gyroradius)13
.2
A ~kDi Wy s c 2w —'w*i
= P - == et — 11
pik,w A W ¢§,w * <VA> w ¢k,w ! (17)
- Ik PsVs Ei
Wi 21 L T
n e

~

Combining Egs. (14) through (16) to eliminate J” and ©

we obtain
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1" = =2 "o _J_-_E 2 i,
X X o " XA¢ ; | (18)
wlw ~ wy,)
xi = ; ; (19)
W= Wy
-2 = x2[142:i D el . (20)
X A 2
A P W = Wyy

This equation reduces to the standard one5 in the limit D = 0.
For nonzero D, there are two modifications, both arising from |
the field diffusion terms in the renormalized kinetic equation
(13). As discussed in v Secv I, ¢" represents the fluid
vorticity in a fluid tearing théory. In this interpretation
the diffusive modification to Xar as given by Eqg. (20),
represents vorticity damping, while the quartic derivative

of ¢ in Eg. (18) represents vorticity diffusion. Tt is
interesting to recall that the nonlinear stabilization of

the resistive mode obtained by Rutherfordl4 was due to

‘conductivity relating J; in Eq. (16) to the fields must be
, I

vorticity damping.

To complete the derivation of field equations, the

obtained. Solution of the kinetic equation (13) for g 1is

accomplished by a Fourier transform in x which reduces

Egq. (13) .to a first order equation. It is then straight

forward to obtain

£
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o 2
v

N _ 1 3
Ik jg dt exp: iwT T (GE) (wcT)

. .

-(x - vy) . X + y]
eXP[ DT vyt =
X dy 177 S(y) . (21)
- (4mDT)
' Here_,”"qg' = %D’( ljve') 2 is the turbulent decorrelation

frequency.l The term (u?cr)3 represents shear-induced
broadening while the Gaussian in (x - y) is the diffusion
equation propagator. Equation (21) reduces to previous

resultsl’2

if the source function, S(y), is expanded about
y = x through the second order. For our analysis this
approximation will not be necessary.

The first V) moment of Eg. (21) with the source

Egq. (13b) yields the current for Eq. (16)

pr(x) = j_mdy 0, (%,y) '[Wy) - Y¢(Y)]‘

o oz(x,y) cl(x,y) . _
+ iD/ dy [ ——m 9" (y) - ——— ¢'(y) . (22)

The conductivity kernels are given by
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W = Wy )

X / dt / ann™ exp {im'r - n2[l + %(w T)3]§
0 ~co ¢

2 N
-(x - y) c X + vy
ST IV eXp [T = lk”Ve’n (_2'?‘:)} . S T3
. (ampr) ~/ 2

In BEqg. (23) the first term has the form J = OE, except
that o is now an integral operator. The last two terms
arise from the field diffusion terms of Eq. (13).

An important property of o4 which permits the
formulation of a variational principle (Sec...:n V) is the

symmetry

o (x,y) = o (y,x) (.24

The field diffusion terms in Eg. (22) are difficult
to treat for arbitrary values of D. Including only first

'~ order terms in D results in some simplification since

k2 [\ %
= _ o[ e , e 5
G(x) = 2 (3;) 7 k73ﬂ_) . (25)

'
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Here, Z is the plasma dispérsion function, and
xé'=;w/kﬁve " is the electron resonance length. In this limit

o, is the familiar collisionless conductiVity.12- Using

2
Eq. (25) in the field diffusion terms of Eq. (22) yields

p(x) = /dy 0, (x,y) [w(y) —\ch(y)]

’ w - w
—T& ¢n <x)] . (%¢)

W j

+ 1iDo (x) ':[W",(X) - x




v m>2: Constant ¥ Approximation

In this section we study the modes for which the
constant ¢ approximation is valid.6 For these modes the

asymptotic matching condition is

vo—> ¥ + ¥;x, for %i- —> e

where W is the width of the tearing layer (current

channel). The ratio

A F e (27)

is given by the exterior solution, and it is easy to see that

Y is approximately constant in the layer if2

A'x << 1. (28a):

In addition, Eq. (18) shows that ¢ can be neglected

13 [ _
in Eqg. (26.)lL when the current channel is narrow

2
w
{Ef\ﬂ S S R e (28Db):
\ *a
. 2
for "D << ww g or
_,{1)\;57.]%,,/\;.;:1)\2. . —_—
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for D >> wwi. In either case, Eg. (18) and Eg. (26)
. decouple and Eq. (27) becomes
(1 - iDg)y" = / dyo, (x,y) ¥ (y) - (29)

E@Hatiénﬂ(29),may,be:rQWritten as

o]

[(1L - iDE)W']' + iD(E'w%' - iDE"w» = }[ dycz(x,y)W(y). (30)

Integrating Eq. (30) from - to LA noting that ¢ varies

o .
‘'with
R0,

slowly compared  and then letting the integration

limits tend to o«  yields

A = }[ dx ][ dyoz(x,y) ' (31)

where we have used the fact that o(x) ~ 0(l/x%) for x| - .

The integrals in Eg. (31) can be carried out exactly using

Egq. (21) to obtain

“Surprisingly, the diffusion cosfficient cancels identically

in the évaluéfiahwaAEq; (3if;7 Théfresulfihg'dispersion'

relation is precisely the collisionless mode of Laval et all.5
S A' !kii_|_v_e R |
W= w, +iv. 5 4y, = K 133) {
‘ —— g_;jmmymlm_mm_.wﬂ L'. 2%E_k§: =
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The fact that & is indepehdent,of D can be physically

explained by noting that the basic effect of D is to

~

broaden the current channel:whilé decreasing ‘J” so.as to

- keep the total perturbed current fixeéd (for fixed A' ).

A similar result’has beenVObtainéd'by Kotschenreuther et al,lO
The.current channel width, Wy i is given by -the width
of 0y which is easily seen to be
W ~ {Xe' e << Xe
L
*or %o > *e
Combining this with Egs. (28b and c) yields
m. m,
i >> . . =
B(me) 1; Wo << Wy B(me . (34)

The latter condition yields the marginal value), Eq;"jzx;”féaf'”

the diffusion coefficient, which we have seen is much larger

than expected values. We conclude that Eg. (34) is quite

reasonably satisfied and therefore that the m>2 collisionless

modes are unaffected by turbulent diffusion.
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V  m=l: Variational Principle
To treat the m=1 mbdés, which in this context means

A'XA‘>> 1, we use a variationél'principle.5 Our Egs. (18)

and (26) do not quite fit into the form in Ref. 5 because
of the field diffusion terms. However, if [as in Eq. (26)]

we treat these termS‘td.first order in D , a variational

principle can be derived.

Mahajan et al? show that the field equations can be

reduced to a second order equation for

= ¥ _ |
Q = 5 ¢, (35)
which is proportional to E”/x. This is accomplished by
integrating Eg. (18) once, which gives
200 + 8 = Tog _ 1D .2 ..
) x"(Q o) = X0 - =Xy ¢ , (36)

where the integration constant is zero in the limit A' + o,

We solve Eq. (36) for ¢f[Q] to lowest order in D

2 xz. / 2 ‘ —
|- —X v ; A f_x9'
L 7 2 sz e
A A ‘

/R

and combine it with Eq. (26) to obtain
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_ . 2 2 " !
’ + iDg [ *e .2 ' x“Q" ip | * *a x2Q'"
X iDo x7 - x - =
w A X2 _ §2 w X2 _ XZ X2 _ XZ
A A A
+ /f dy xo,(x,y)yQ(y) = 0. ' (37)
Since -0, is symmetric {see Eg. (25)] all terms in Eq. (37)

are.self-adjoint except the one involving o. We will show
| that this term is negligible compared with the third term
in Eq. (37). This third term is the primary effect and is

due to the vorticity diffusion.

Neglecting o, it is easily seen that the functional

S[Q) = I;q+ I;q + I, ;
) L]
® xzxig'

1o = X Q\ 5= | -

—c0 X" - %

\

-iD 2 ” x2Q' 1 .

I1a 5 Fa ) I (Xz : Xz) '
A

I, = }[ dx dy xQ(x)o, (x,y)yQ(y) (38)

yields Eg. (37) upon variation: %%—= 0. Furthermore, S =0

when evaluated at the solution of Eq. (37).
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Collisionless current channel modes are well represented

by the trial function”

2 -
1 1l /x
Q = T exp [-5-(W> } (39)

from the point of view of determining the dispersion relation.
Here w, the width of E”, is the variational parameter.
The integrals I1o and Ill are then easily evaluated [with

the caveat Im(xA) > Oﬂ. In addition, 12 can be reduced

to a single integral using Eg. (23):

] L
1WT

2
w

P

_ . 2 e .
I, = -i/1k_(w - Wy) W deT 1 5 7372
(1 + T)?[l + (w T)7 + kv wr) ]

(40)C
The term DT/'W2 arises from the diffusion propagator of
Eg. (21), (kliveWT)2 represents the resonance at w = k”v“,
and (wCT)3 is produced by shear-induced broadening of the

resonance.

Equation (40) manifests the behavior noted when Eq. (31)

was evaluated: As the width of E” becomes large, I,
becomes independent of D. For collisionless current channel

modes, the width of E“ is5

W ~ 7
XA/Ae . (41)
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Using Eq. (41) in Eq. (40) implies D can be neglected in

I, so long as

2
(f’.s) < () - (Bﬁ>- (42)
w X m
e e

Furthermore, Eq. (41) implies Xq << X << w for

moderate values of B. Since XA is the width of the

integrands of IlO and Iil and xe/w is a small

parameter in I,, we make little error in letting w » «

2

to evaluate these integrals5

_ =i
110 & =
A
_ 7D
17 = 3
A
_ . 2 @ Vi
IZ = Zlﬁko -FW . (43)

The dispersion relation is obtained by setting S = 0, which

yields
o Ty 2 Va ip [ 1 197 Pxe
0 = exed¥y T o RVaPs 5 | RT3 T 2 T 0y,
e a Ps
- ’ (44)
to first order in D . The third term on the right- hand side

—of mq‘*{44f*%whiﬁh_lswvortlc;ty damplng)wcan Be neglected-----
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Neglecting Wiy o for simplicity, gives

y 2 u)3

m —

w = w |1- 1(~9 : Cw B—=

Yo 2<w _ _jg) Mo

Yo\%o 2
T/ 2 1/2
_ Uxe (“’*e 2 ) /
Y T 72 ? I~ Yo
—— — —— e — i ———— . r— [— e —— __v2 v,_.__.._.. J— Sy S — e . e ——  — —r————————— ———— ——— . — - — — —
2 Ym . A
Yo T 72 (kHVApS> v_ (45)
Here, w, is the D=0 result of Mahajan et al?vwhich is wvalid,

and unstable, in the region

T3 7 8(In 2 My
e ) < R

The finite D terms stablize this result, significantly

reducing the growth rate when

3

7o

, 2
(k”vA)

(46)

. which is the estimate of Eqg. (3)

Eq. (42) 1.

[and much smaller than

We conclude that turbulent diffusion significantly

stabilizes the m=1 mode. However,

we cannot. determine

whether marginal stability is reached since our perturbative

- treatment of the vorticity diffusion is invalid for

“Ihis order. e

D of
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As a final note, we estimate the size of the neglected

o term in Eq. (37) by multiplying by Q [Eq.(39)] and

integrating over x. This shows that this term is of the
same order as the vorticity damping correction to Xp
Eg. (20).: In Eq. (44) we have seen that these terms are

small compared "With vorticity diffusion.




‘Acknowledgments:

27

vI Conclusions

We have shown that the effect of turbulent particle
diffusion on collisionless'current channel growth rates -
is negligible. In particular, so long as.the constant E”
approximation is valid, diffusion broadens the layer while

leaving the total current and consequently the growth rate

fixed.

For collisionless m=1 modes, however, the electro- -

" static potential must be included in the analysis and the

effects of turbulent field diffusion become important.
These effects result in a significantly reduced growth
rate for this mode. However, determinaticn of a marginal

stability point would require a non-perturbative treatment

"of Eg. (1).

The field diffusion terms are derived éssuming that thefﬁﬁ‘

background turbulence'obeys Eg. (10) which is valid for

low B drift-waves. An electromagnetic turbulent field

would require modification of this hypothesis.
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