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Abstract

The Hamiltonian four-field model is a simplified description of
nonlinear tokamak dynamics that allows for finite ion Larmor
‘radius physics as well as other effects related to compressibility
and electron adiabaticity. Much simpler than a rigorous or even
reduced description of the same physics, it still preserves
essential features of the underlying exact dynamics. In particular,
because it is a Hamiltonian dgnaAmical system it conserves the
appropriate Casimir invariants, as well as avoiding implicit,
unphysical dissipation. Here the model is derived and interpreted,
its Hamiltonian nature is demonstrated, and its constants of

motion are extracted.
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I. Introduction |

We present here a system of coupled fluid equations describing
magnetized plasma motions in an axisymmetric confinement
device, such as a tokamak. The system is intended to model such

phenomena_as sawtooth oscillation. and. tokamak _disruption,

especially in their nonlinear stages!. It is emphatically a
simplified system, in which numerous geometrical and dynamical
effects are neglected. On the other hand the equations attempt to
represent non—ideal. processes, including finite-ion-Larmor-radius
(FLR) terms and electron. adiabaticity, in a manner consistent with
both simplicity and fundamental physical constraints. In.
barticular, when explicit dissipation is omitted the model is shown
to define a (generalized) Hamiltonian dynamical system. (See for .
example Ref 2). |

The four-field model is so named because its essential
distinction from reduced magnetohydrodynamics® (RMHD) is the
need for four, rather than three, independent field variables. In
this respect it most closely resembles two previous models, the
approximate four-field model of Hazeltine, Kotschenreuther and
Morrison® (hereafter referred to as HKM) and the asymptotic
system of Hsu, Hazeltine, and Morrison® (HHM). More generally,
however, the present model has much in common with numerous,
earlier extensions of RMHD®-8, especially in its motivation.

The usefulness of reduced fluid models is discussed
elsewhere3=8. Here we only remark that the present four-field

model is a generalization of RMHD that allows for slow evolution °




(frequencies comparable to the diamagnetic drift), long mean-free-
path electron dynamics, and various effects of plasma
compressibility, in a simple albeit non-rigorous way. Like its
predecessors®> it reproduces such features of kinetic and FLR

physics as the "semi-collisional” conductivity; gyroviscosity-

modified,-nonlinear- diamagnetic-.convection;--curvature=modified

drift-tearing instability; and diffusion in a stochastic magnetic
field. Also like its predecessors it omits temperature gradients
‘and kinetic effects of magnetic trapping. Finally, unlike the model
of HKM, (but in common with the underlying physics it attempts to
represent) its ideal version not only conserves energy but is a
Hamiltonian'dgnamical system.

Three equivalent versions of ‘the model are presented in Sec.
II, which also includes interpretation of its most distinctive
terms. The derivation is given in Sec. 11I, while Sec. IV is devoted
to a discussion of the system’s dynamical invariants.

The Hamilitonian property is an essential feature of the
present model, which, in particular, played a major role in its
derivation. It therefore seems appropriate to comment here upon
the general significance of this property in such approximate field
theories as RMHD and its extensions.

The phase-space conserving nature of Hamiltonian evolution
depends upon rather delicate considerations, not always obvious
from inspection of the system. Yet it has strong consequences,
much stronger than, in particular, simple energy conservation
(consider for example the energy conserving but non-Hamiltonian

Boltzmann equation). In particular, Hamiltonian motion conserves




not only phase-space volumes but numerous additional functionals
of the field variables, such as Poincare invariants and the
generalized helicities or Casimirs.

The simplest way to guarantee that some dynamical system is

Hamiltonian is to demonstrate that it faithfully represents, at

least-in-some asymptotic-limit,-the-actual-classical--evolution—-of

charged particles. Thus, for example, Vlasov theory and ideal
magnetohydrodynamics can be shown to have the (generalized)
Hamiltonian property2. However, not all systems of interest to
plasma physics can be systematically derived from exact
microscopic dynamics. Progress, especially in nonlinear regimes,
frequently demands the use of simplified models in which the. -
Hamiltonian propertg is problematic. A major concern in the
application and interpretation of such models is the possibility of
unphysical dissipation.

Physical dissipation enters exact formulations explicitly,
through such mechanisms as cbllision operators or resistive terms.
[ts form (whether drag or diffusion, for example) is manifest in
the equations, and its magnitude is arbitrarily adjustable through
the size of certain coefficients (such as collision frequencies or
resistivities). In the case of non-rigorously derived models,
however, dissipation can enter implicitly and unintentionally,
because of uncontrolled approximation. No resistivity or
collisional term occurs in this case -- the system appears purely
nondissipative -- yet phase-space conservation and other

invariants may be lost. Significantly the magnitude and even the




effective sign of this unphysical, fake dissipation is uncontrolled
and typically difficult to determine.

It has been shown that RMHD is a Hamiltonian systemS$.
Certain extensions of RMHD, discussed in Sec. III, similarly

preserve the Hamiltonian property, and furthermore a Hamiltonian

e —— ——representation-of-two=dimensional- FLR-physics—has—been—found10-
Nonetheless it shall become clear that the Hamiltonian property of
reduced fluid models must be considered extremely fragile.
Amongst the myriad of physically plausible four-field models, each
conserving energy and yielding correct, FLR-modified linear
equatidns, only a tiny subset is Hamiltonian. One likely (although
unproven) element of the Hamiltonian subset is the rigorously-
derived but complicated model of HHM. The system described in
this work is shown to be Hamiltonian; we believe it is the subset's

simplest member.




[1. Description of the model.

A. Four-field equations

We present here the dissipationless version of the four-field
model, noting that dissipative terms (resistivity, diffusion and

viscosity) can be straightforwardly introduced a posteriori. The

- ———Tfour-normalized-fields—are-W;-\f;-p-an dr—v;*theg ~-have-the-following
physical significance:

W measures the scalar parallelvorticity ;

¥ measures the poloidal magnetic flux ;

p measures the electron pressure ;

v measures the ion parallel velocity .

In addition to the above normalized varaiables, the model involves.
three constant parameters: the electron beta, 8 = 8TncTo/BT2,

where nc is a constant measure of the plasma density and Bt is a
constant measure of the toroidal magnetic field; § = c/(2wpja), the
finite Larmor radius (FLR) parameter, where Wwpj is the ion plasma
frequency and a is the plasma radius; and the temperature ratio, ©
= Ti/Te (note that in previous work = denoted a normalized time
variable, for whfch we here use t).

wWe recall from HKM the following normalizations: =
(eBTa)~'Ar, where € is the inverse aspect ratio and Az is the

toroidal component of the vector potential; ¢ = cd/(evaBTa), Where
® is the electrostatic potential and va is the Alfven speed; v =
Vi/(eva)~t, where V) is the ion parallel velcocity; and p =
(B/e)(n/nc-1), where n is the plasma density. We also introduce a

velocity stream function, F, according to
(1 + v882V |2)F = ¢ + §7p, (1)




where V, is the two-dimensional gradient operator in the plane

transverse to the magnetic field. The function F, which differs

somewhat from its counterpart in HKM, is a stream function in the
sense that the normalized ion velocity tranverse to B is (‘:XVLF.

The right-hand side of (1) evidently yields the expected

~—————————combination-of ~electric-and—diamagnetic drifts;"while the0(§2)

term involving V2 on the left-hand side gives an FLR correction.
In terms of F, the normalized vorticity variable W is given by

W=V %F
Similarly, the normalized parallel current density is related to ¥
via

J=V,2%y
Finally we define h, a normalized "horizontal” distance, by h = (R -

Rp)/a, where R is the major radius and Ry the major radius of the

magnetic axis. This quantity enters the equations only in the form
V h, which is the lowest-order field line curvature.

The four-field model can then be expressed as
(3/3VW + [F, Wl + Vd + (1+2)(1+2828V | 2)h,p] =
8TV 1 [p+28N,V  F1 + (1/2)T2838V | 2[p+28h, W]

- (1/2)T88Y |2V (v+28J), : (2)
(3/3t)y + V9 -8Vyp =0, | (3)
(3/3t)p + [, p+28h] = B{28[p,h] - V| (v+28J)}, (4)

(3/3t)v + [PV + (1/2)Vlp + T(p-88W)] = 8228V, V | 2F-§TP)]
+ 28T 8lv,h] . (5)

Here we use the conventional bracket symbol defined by
[f.gl =V =V g,




where € is a unit vector in the toroidal -direction. Also, the
parallel gradient operator is defined by

Vf =93f/3C + [f¥].

Equations (3) and (4) express the generalized (collisionless)

Ohm’s law and the particle conservation law precisely as in HKM.

Equation—(2);-the-shear-Alfven-taw;—differs—from-HKkM-in-including
several additional FLR and compressibility terms on the right hand
side. Similarly the parallel acceleration law, Eq. (5), includes
previously omitted physics. All the additional terms are
numerically small, since § and § are tgp‘icallg small in tokamak
experiments. The significance of these correction terms is
discuss?ed in the Subsection C.

This system conserves the following energy (Hamiltonian)
functional: :

H= (1/72)X| ViF[2+v2+ [V |2+ (1+2)p2/(28)>,  (B)
which differs from that of HKM. Here the angular brackets denote
an fintegral over the system volume (effects of -the volume
boundary are ignored). This functional is easily understo‘dd to be
the sum of the parallel and perpendicular fluid kinetic, poloidal
magnetic field, and internal energies. In addition to the energy
functional the four-field model conserves the following four
Casimir (or "helicity” type) invariants:

Ci=<AWY)>

Co = <BWY)(p + 28h) > (7)
C3.4=<Cs[288v+BY+(287)1725(288W-T828V [2p-p-28h)1>.
These constants are associated with the magnetic helicity, density

and generalizations of the cross helicity, respectively. When there




are magnetic surfaces, such as in the case of axisymmetry or
single helicity dynamics, the functions A, B and Cs+ are arbitrary.

For general three dimensional dynamics Cy and C, remain conserved
provided A(Y) =y, B(y)=constant and C,(x)=x.

Equations (1)-(7) are the main results of this paper. We next
rewrite-the-system—in-a-form-that-makes-manifest-its—Hamiitontan—

character.

B. Hamiltonian form
In order to display the Hamiltonian structure of the four-

field ‘model it is convient to introduce the following set of

variables:
1=V 2(F - 8vp/2),
£2 =y,
£3 =p+ 28h, (8)
4 = vy,

We shall refer to the &1 as “field variables” to distinguish them
from the "physical variables” W, ¥, p and v.

When the total system energy is expressed in terms of the
&1 it becomes

HIED = (1/72)<| V [ (V  7281) +(8%/2)V 1 (&3 - 28h) | 2

+ | V82| 2+ (1+%)(83 - 28N)2/(28) + (E4)2), (9)
where V|72 represents the inverse Laplacian operator, whose
occurrence in fluid Hamiltonians is conventional.

Now we can express the four field model for evolution of the

&1 in the following form:
(8/701)ET = [Hy, £ + ViHy + [H3, &3] + [Hq, £, (10)




(3/31)82 = V| (Hy + 268Hx), (11)
(8/3t)83 = [Hy + 288H3, &3] - 8V (Hg - 28H)), (12)
(8/3t)E% = [Hy, &% - BV H3 + 82[E3-288E 1, Hyl . (13)

Here functional derivatives of the Hamiltonian are indicated by
subscripts, Hj = §H/881. They are given by

Hy="=F = =J  Hy = [(T%2)7281p = (6T72)W, Hy =V, (T4)
and can easily be written in terms of the field variables by means
of Egs. (8). Note that Egs. (10) - (13) are simpler in form than
Egs. (2) - (5), especially since the latter can only be used in
conjunction with Eq. (1).

To express the four-field model in Hamiltonian form, first
let F and G be arbitrary functionals of the fields &I, with Fj =
§F/8&1 as usual. Then, implicitly summing over paired indices, we
define a Poisson bracket by

(F.6} = <Cl&kIFy, Gl + Clia(Fi8G;/8L)>, (15)
where the coefficient matrix Ciji, which is symmetric with
respect to its upper indices, has the following nonzero components:

Ck]j = ij] = 8k 1,

Ck23 = Ck32 = 28887

C|<33 = 28,88|<3,

Ck34 = Ck43 = -85k,

Ck44 = -87(8K3 - 2688k 1). (16)
We remark that Eqs. (15) and (16) define a true Poisson bracket:
it is bilinear, antisymmetric, it satisifies the Jacobi identity,

{FAGH} + {G,{HF}} + {H,{F,.G}} = 0, (17)
and acts as a derivation; i.e.

{F.GH} = {F,G}H + G{F,H}.

- 10 -




We also remark that Cllg is a rather simple matrix, at least in the

sense of being sparse.
The Hamiltonian version of the Eqgs. (2)-(5) is given by
(8/30)&1 = {&1,H}. (18)

The invariance of the "Casimirs” defined by Eqs. (7) then follows

—————from the identities{Cj,F}="0 for i=1T=4"and F arbitrary:

C. Discussion
Here we consider the significance of the new FLR and
compressiblity terms appearing in the present model, basing our

discussion on Egs. (2)-(5) for convenience.

FLR corrections appear multiplied by ©&§28 or =88, measuring- -

the squared ion gyrodradius, pi? (explicitly 27828 = pj2/a2). Such
terms occur in the ion dynamics described by Eqgs. (2) and (5), in
combination with the expected Laplacian factor, and have a well
known interpretation in terms of averages over the Larmor orbit.
The FLR terms manifest on the right-hand side of Eq. (2) describe,
in particular, nonlinear diamagnetic convection and ion
gyroviscosity. In linear theory (where the perturbation is assumed
to vary more sharply than the equilbrium) these terms reproduce
the ion drift-frequency corrections found in linearized gyrokinetic
analysis?-,

Another type of FLR correction is most apparent in Eq. (5),
although also present elsewhere: the §8W correction to the ion
pressure, Tp ~» z(p - §8W). It can be identified with a well known

residue from the "gyroviscous cancellation”; thus gyroviscosity is

- 19 -




known!2 to modify the ion scalar pressure, Pi, in an FLR plasma

according to
pi = pill = (2Q{)~ b VxVy], (19)

where Qj is the ion gyrofrequency, Vi is the ion fluid velocity and

b is a unit vector in the direction of the magnetic field. When Eq.

(19) s expressed in terms of the four=field normalized variables
and reduced for large aspect ratio, it yields p-8§8W.

All FLR terms in Egs. (2) and (5) have been derived by
systematic ordering procedures in previous work®; however the
rigorous ordering also produces a host of additional corrections of
similar form. Thus the present model,.which is extremely simple
compared to the rigorous version, contains a selection of"
- gyroradius corrections. We presently discuss the grounds for this
selectivity.

The remaining terms of interest involve the plasma
compressibility, given by the right-hand side of Eq. (4). Equation
(4) coincides with a previous conservation law and has been
discussed in detail elsewhere?; we recall that the term involving h

is the perpendicular compressibility, resulting from curvature of
the magnetic field, while the term involving V) is the parallel

compressibility of the electron flow, Ve o« v+286J. The new

feature here is the appearance of explicit compressibility terms in
Eq. (2), as seen, for example, in its last term. We point out that
the contribution of compressiblity to the shear-Alfven law,
although rarely taken into account, is easily understood. First of

all, the vorticity associated with diamagnetic acceleration,
£-vx(d/dt)(ExVp), evidently involves V2(d/dt)p; and therefore the

- 12 -




Laplacian of the compressibility, pjV-Vj. Secondly, gyroviscosity

can be shown®® to contribute terms of the same form. Equation
(2) displays the sum of these two contributions, which, together
with the factor of (1/2), also occur in the rigorous versionS.

This comment helps explain the appearance of the modified

vorticity; &1 =V 2(F—6&vp7/2)as-abasic fietd-in-the system —The

second term correctly accounts for plasma compressibility in the
shear-Alfven law. Perhaps fortuitously, it also contributes to a
correct accounting of ion diamagnetic convection terms.

Thus the new terms are physically plausible, in the sense
that rigorous ordering arguments yield correction terms of the
same form. However, because the rigorous analysis also reveals:
numerous other FLR effects, the new terms do not make Eqs. (2)-
(5) more "exact” in any formal sense. Why then do these particular
corrections appear?

The correction terms in Egs. (2)—(5) are best characterized as
being the minimal additions to a cold-ion theory which preserve
the following essential physical properties:

(i) Reasonable cold-ion (z=0) limit; specifically we require
that the ©=0 version agree with that of the previous four-field
model, whose physical reasonableness was discussed in HKM.

(ii) Agreement in the linear regime with kinetic theory of
ion diamagnetic effects; in particular we require that the ion
diamagnetic frequency enter the linearized four-field model in the

manner predicted by gyrokinetics®.

- 13 -




(i1i) Hamiltonian structure; we insist upon a dynamical law
of the form of Eq. (18), where the bracket is anti-symmetric,
satisifies Jacobi’s identity, and acts as a derivation.

The four-field equations presented here satisfy these

requirements, and they do so minimally, in the sense that the

—- model—obtained—by—omisston——of —any term —does —notT

- 14 -




III. Derivation
Because we seek a drastically simplified description of FLR
physics -- indeed, the simplest system that satisfies the

requirements (i)-(iii) of Sec. Il -- our derivation of the four-field

———--——model-cannot-rely—on-simple-ordering procedures. —Instead it is
based on a mapping procedure that is motivated by asymptotically

rigorous models.

A. The gyro map
A high-8 version of RMHD that includes both electron and ion
drift corrections, but excludes compressibility, is obtained by a
rigorous ordering procedure in HHM. This three-field model is
given by .
(8/31)V 129 + [9, V,29] + Vi + (1+2)[h, p]
+ 8TV, [p,V 9] =0, (20)
(87381 + V9 - 8Vyp = 0, (21)
(a3/3t)p + [¢, pl = 0. (22)
It conserves the following energy:
H=0/2)X| V. 9|2+ |V, y|2+ 28pV, 29
- 82|V p|2 - 201+ T)hpd, (23)
" and is also a Hamiltonian system.
For reasons of clarity we now specialize to the axisymmetric
case. The generalization to three dimensions is straightforward,

involving nothing more than the replacement
[f,¥]-> V,T. (24)

- 15 -




If this replacement is made in a Poisson bracket then it can be
shown in general that the Jacobi identity is maintained.
The axisymmetric version of Eqs. (20)-(22) has the following

Poisson bracket:
{F,G} = <UIF,GY] + ‘P([Fu,ng] + [Fy, Gyl + P([Fu,Gp} + [FP,GuD

+§TpVFur V1G> (25)

Here, we have used §F/8U=F, etc., and in the last term the
“semicolon” notation is defined by

[A;B] = 2 [A{,Bjl.
Because of the last term, the form of this bracket differs from
previous brackets in that it involves more derivatives.  Yet one
Can prove directly that Eq. (25) satisfies the Jacobi identity.

Now consider the zero ion-temperature limit. Setting 7

equal to zero we obtain

(8/31)V 129 + [, V ,29] + VyJ + [h, pl=0, (26)
(3/31)¢ + V19 - §Vp = 0, (27)
(3/3t)p + [¢, pl = 0. (28)

Apart from removing the ion pressure from Eq, (26), the only
effect of taking this limit has been to remove ion gyroviscosity
physics. Observe that the term involving the parameter § in Eq.'
(27), unlike the gyroviscous effect in Eq. (20), reflects electron
physics; it is the Hall term.

At zero © the Hamiltonian becomes

H=(/2)X|ViP|2+ |V ¥|2+28pV 29 - 2hpD, (29)
and the Poisson bracket reduces to

{F,G} = CUIFy,GY] + Y([Fu,Gyl + [Fy,GUD)

+ p([Fy,Gpl + [Fp.GUl, (30)

- 16 -




which differs from Eq. (25) only in that it lacks the gyro term.
Now comes the crucial observation: Poisson brackets for

systems without ion gyroviscosity physics can be mapped into

those with ion ggroviscositg physics by a simple linear

transformation. The transformation amounts to changing to a

e ———Trame moving—at—one=half the magnetization velocity., The
magnetization velocity is defined by vy=(VxM)/ne, where M is
the magnetization. We call this transformation the gyro map .

The gyro map was first observed in Ref. 5 for a two-
dimensional model with compressibilty. We will demonstrate it
here for the brackets of Egs. (20) - (22). |

Technically the mapping we are refering to is a Lie algebra:
isomorphism; the brackets of Egs. (25) and (30) are isomorphic.
[In Sec. IV we use this algebraic fact to simply obtain the
complicated constants of motion of Eqs. (7).] Physically the
transformation amounts to defining a new variable U’ by

U =U+(6v/2)V ,?p, (31)
which yields the following relation between the new and old
stream functions:

P =9+ (8T/2)p. (32)
Here the second term evidently corresponds to the velocity of the
moving frame. One can show that in reduced ordering,
(8T/2)V 2p = (E- Vxvy)/2, where M=pB/B2. |

By the chain rule for functional derivatives Eq. (31), the
transformation on the field variables induces the following

relations among the derivatives: _
8/8U|upy = 8/8U [upy . 8/89|upy = 8/8% U py

|
|



8/8P | Up.y = 8/8p | pu + (8T/2)V ,28/8U" |y py - (33)
Inserting U = U’ - (§T/2)V ?p and Egs. (33) into Eq. (25) gives
{F,6) = KU [Fy. Gyl + Y(IFy,Gyl + [Fy,Gyl)
+ pllFy.Gpl + [Fp, Gyl >, (34)

Equation (34) has precisely the same form as that of Eq. (30).

Thus we see that the bracket for Eqs. (20) - (22) ¢can be obtained
from its T;=0 limit by reversing the transformation that we have

just performed. We obtain the bracket for the four-field model in

a similar way.

B. Four-Field Derivation

As noted our derivation of the new field equations begins:

with the cold-ion form of the previous four-field model®. This
cold ion model is asymptotically correct and easily obtained by
straightforward ordering arguments. Setting © = 0 in previous

formulae (c.f. Sec. 11 A) we obtain

(8/31)V 1 2F’ + [F’, V,2F'] + VyJ + [h, p] = O, (35)
(8/3t)p+ [F’, pl + BV (v + 28J) - 28[h, F’~ 8p] = 0, (36)
(3/3t)¢ + V| [F'- 8V p = 0, (37)
(3/3t)v + [F', v+ (1/2)Vp = 0. (38)

Here F’ is the velocity stream function, which in the =0 limit is

equal to ¢. The energy conserved by this system is

H=(1/72)X|VF |2+ | V|2 + 2+ p2/(28)). (39)
we define the field variables by |

(§1,82,8%, &%) = (V2F', ¢, p+28h, v). (40)
Hence, using the notation Hj=8§H/8& 1",

Hy = -F’, Hy = =J, H3 = p/28, Hg = V. (41)

- 18 -




The axisymmetric versions of Egs. (35)-(38) can be written as
(8/3t)E1" = [Hy, C'\11&], (42)
where the C' !l are given by the =0 limit of Eq. (16):
Cll=cyil = 8k i,
C'k23 = C'k32 = 28B5y2

Cl33-= 2688k3: — —

C'k3% = k43 = -8y, (43)
and

C'k44 = 0. (44)

Now the axisymmetric equations of motion can be expressed

in Hamiltonian form, .
(/3181 = {Ei M), (45)

where the bracket is defined by
{F,G} = <C &I, Gj]>. (46)

for arbitrary functionals F and G. We omit the straightforward
demonstration that this bracket, satisfying Jacobi’s identity, is a
proper Poisson bracket.

In other words the cold-ion limit of the previous four-field
model is, like MHD, reduced MHD and many other models, a
Hamiltonian system. One obvious result is that energy of Eq. (39)
is conserved, since {H,H} = 0.

For finite T; the Hamilitonian of Eq. (39) is altered, without
rigorous justification, in two ways. Firstly, F'=¢ is replaced by F,
the stream function of Eq. (1); this change is easily understood a
posteriori, as shown below. Secondly, the internal energy is

modified to include the ion contribution: p2/(28)~(1+7)p2/(28).

- 19 -




These unsurprising changes yield the Hamiltonian of Eq. (6), whose
physical plausibility was discussed in Sec. Il.

Less straightforward are the finite-v modifications of the
Poisson bracket. In this regard, it is convenient to treat the

parallel and perpendicular dynamics separately.

Consider first the parallel dynamics. It is ¢clear that our
task is to justify the replacement of Eq. (44) by Eq. (18). We do
this in an ad hoc manner, using three constraints to construct the
coefficient Cy44. First note that at finite © the stream function F
differs, to leading order in §, from the potential ¢ by §zp, a term
that gives rise to the ion diamagnetic drift. On the other hand, as
first shown by Mikhailovskii'l, the parallel flow is advected only:
by the electrostatic drift, as indicated in Eq. (5). These two facts
enforce the first term of Eq. (16). Finally one finds that the
resulting bracket satisfies Jacobi's identity only if the remaining
term of Eq. (16) is also appended.

Similar “brute-force” procedures -- inelegant but
straightforward -- have been attempted in the construction of
perpendicular dynamics at finite %, but withouf success. The
perpendicular dynamics, involving gyroviscosity and perpendicular
compressibility, are much more complicated and the physical
constraints less clear than in the parallel case. Notice in
particular that each proposed finite-z modification must be
checked for consistency with the Jacobi identity; the unwieldy
 form of typical FLR corrections [cf., for example, Eq. (25)] makes

such checks extremely tedious.
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Fortunately the gyro-map permits a much simpler and more
reliable implementation of FLR physics. To obtain the appropriate
bracket for the above Hamiltonian we consider the reverse of the
map defined by Eq. (31), setting

gl = &1+ (87/2)V 1 2(83 - 28h), (47)

A A S VLT
where

(g1, 827,837, 847) = (V2F, ¢, p+28h, V).
The chain rule yields

§/8&1" = §/8&1” | i=1,2,4;

§/883 = §/883" - (8T/2)V 128/881". (48)
Inserting Egs. (47) and (48) into the "parallel-corrected” Ti=@
bracket, defined by Eqs. (43), (16) and (46), produces the correct
four-field bracket, which together with the Hamilitonian of Eq. (8),
produces Egs. (2)-(5).

‘In Sec. Il B we chose to write the Hamiltonian equations in
terms of the variables & defined by Eq. (8). Thus the Hamiltonian
of Eq. (6) becomes that of Eq. (3) and the bracket obtained above in
terms of &” becomes that given by Egs. (15) and (16).

Notice that the electrostatic potential need not be defined
for this closed system; the four field variables &1 are advanced in
time without knowledge of ¢. It is nonetheless of interest to
identify @ in terms of the four fields. There are two arguments
leading to the correct answer, as given by Eq. (1).

First we can demand agreement between Eq. (3), involving @,

and Eq. (11) for the &i. The point here is that Eq. (3) is free of
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FLR physics and easily derived from electron momentum
conservation. Thus we use Eqgs. (46)-(49) to find

3E2/3t = - [Y,8H/8E V'] - 28 B[y, 8H/883']
= - [Y,6H/8E1] - 268y, 8H/883 - (8T/2)V [26H/88 1]

= [y,(1+828TV ,2)F-87pl - 8[y,pl,

T T whichragrees with EQU(3) ORIy T
P =(1+8282V 2)F-82p ,
as in Eq. (1).
The second argument proceeds by directly ordering the
Braginskii gyroviscosity tensor as in HHM. We express the ion
velocity as
V = eVA(ExV | F + vE) + 0(e?),
and compute the O(g) portion of the ion momentum balance

equation; the result again is precisely Eq. (1).
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V. Casimir Invariants

A. Derivation
Noncanonical field theories generally have a special class of

constants of motion called Casimir invariants. These are entropy-

- T orhelicity=likeconstants, sUch ~as the magnetic and ¢ross
helicities of MHD. Since the four-field model, unlike ideal MHD,
contains FLR physics and in addition is reduced, it is not obvious
what these constants should be. [Direct calculation from Eqs. (2) -
(5) leads to enormous and nearly hopeless labor.] We determine
the Casimirs in this section using the bracket formalism.

By definition Casimir invariants are constants that
commute with all functionals; i.e., C is a Casimir invariant if

{CF}=0 for all F. (49)
One can use Eq. (53) to obtain the constants. We begin with the

- two-dimensional, parallel corrected, cold-ion bracket of Eqgs. (43),
(16) and (46). Equation (49) can be manipulated, by partial
integration, into the form

{CF} = - <FilgdiEkci)> = o. (50)
Here we have systematically set surface terms to =zero.
Independent of the boundary conditions necessary for the vanishing
of these terms, the Casimirs so obtained will be constants of
motion in the sense that their integrands will satisfy local
conservation equations.

Now since Eq. (50) must be true for all functionals F, it

follows that the coefficient of each F; must vanish. This gives a
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system of four partial differential equations, which after some

manipulation can be expressed as

[£2',C5] = 0, (51)
[£2,Co] + [83',C3) = 0, (52)
[28B8E1-83,Cq1+ [2888% + BE2 C4) = O, (53)
[26 88+ + BE2 CI+ (2828 T(28BET=E3)CLl =0 (54)

Equations (51) and (52) involve only the variables &2’ and &3,
while Egs. (53) and (54) involve & and &%, Equations (51) and
(52) respectively imply

C=<AEZ)+E3B(E2)>

C = <k(£2,83)>, (55)
where A, B and k are arbitrary functions of their arguments.

Consistency between Egs. (S5S) yields the following Casimir

invariants:
Cy = <A(52’)>
Cp = <E3'B(E2)) . (586)

Similarly, Eqs. (53) and (54) imply

C3.4 = <Cy[2888% + BE2 +(26287)172(288E 1" - £3)]D, (57)
where C, are arbitrary functions.

Now in order to obtain the Casimirs for the four-field
model it is necessary to map from the primed to the physical
variables. We know that the quantities thus obtained will be
Casimirs, since the (parallel corrected) T;=0 bracket is isomorphic
to the four-field bracket written in terms of the physical
variables; W=V 2F, ¥, p and v. There is a one-to-one
correspondence between Casimir invariants of isomorphic brackets.

Thus we obtain the following Casimir invariants:
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Cy = <A
Cp = <(p+28h)B(Y)> (58)
C3,4 = <C.[288v+ By x (282B8T)1/2(26 8W - T828V | p-p-28h)1>.
These quantities are constants for the axisymmetric version of
Eqs. (2)-(5); i.e., where V, is replaced by -[¥, 1. For three

———— ———dimensions-the functions A; B and Cy are restricted as mentioned
in Sec. Il A. This restriction, among other things, is discussed in

the following subsection.

B. Discussion
The restriction of axisymmetry for constancy of the
Casimir invariants, Eqs. (62), can be eased. In fact the existence
of the above Casimirs for arbitary functions A, B and C, in three
dimensions is tantomount to the existence of a solution ¥ to the
following equation?:
vy ¥ =3%/8t + [JF¥l=0. (59)
The question of the existence of a global ¥ is the same as that of
the existence of a constant of motion for the one degree-of-
freedom Hamiltonian system, for which the poloidal plane is the
. phase space, ( is the time and ¥ is the Hamiltonian. Said yet
another way, the existence of ¥ is equivalent to the existence of
magnetic surfaces. In the general case it is unlikely that ¥ exists
(recall that  is a periodic variable).
A Nevertheless, let us assume that ¥ exists and change
variables; we will use the field ¥ instead of Y. We wish to

transform our three dimensional Poisson bracket, Eq. (15), into
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one written in terms of the variable ¥. To do this we relate ¥ and
¥ variations of an arbitrary functional F. This yields

v (8F/89) = [§F/80,97 . (60)
Upon inserting Eq. (60) into Eq. (15) we see that the

transformation 50—>$ takes the three dimensional four-field

T T bracketTinto the axisymmetric bracket with ¥ replacing ¥. This
bracket has the Casimir invariants of Eq. (58) for arbitrary
functions A, B and C,, but with ¥ replacing .
Thus we have shown that the existence of the general
Casimir invariants is tantomount to the existence of magnetic

surfaces. It follows that the degree to which one believes

magnetic surfaces exist in a tokamak discharge, should be the:

same as the degree to which one believes Casimir invariants with
arbitrary functions A, B and C, exist. '

One case in which solutions to Eq. (59) do exist is that of
helical symmetry. Then one has Y(r,6,t), where 8=6-0/qqy, and it
can be shown by direct substitution that the following solves Eq.
(59):

P(r.8.t) = ¥(r.8,1) + r2/(2qq). 61)
Here § is the helical flux function.

Let us next consider the meaning of the Casimir invariants.
We have mentioned that these invariants are related to the
magnetic and cross helicities. Specifically, they are the remnants
of these ideal MHD quantities that survive our ordering procedure.

The cross helicity also survives our inclusion of FLR physics,
which is manifest in the fact that v-B has an additional term vy'B
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arising from the gyro map. Since all four of our Casimir

invariants have one of the two forms

= <I0> . &= <rg0> | , (62)

where f and ¢ are arbitrary functions, we will discuss their

meaning in general terms for the fields X and Y. If we divide our

physical domain up into cells, which we label by the value of ¥ at
say the center, then the invariant C, determines the number of
cells with a particular value of X. This can be shown by picking f
to be the characteristic function. The same procedure can be used
to'show that the invariant C, determines the sum of the values of

T on those cells with a particular value of the field X. Neither of

these invariants determine spatial correlation, i.e. the placement

of the cells with a given value.

To conclude we take limits of the Casimir invariants, Egs.
(58), and show that they reduce to previously obtained Casimirs
invariants. To facilitate this we rewrite C3 and C4 as follows:

C3 = <[C(D-aE) + C.(D+a;E)1/(488a)>

Cq = <[CD-aiE) - C.(D+aiE)1/(488)> (63)
where D=8(y+28v), E=(1+828t¢V 2)p-288V 2F+28h and
a;=282B7. In the cold ion limit aj, v~ 0 and F> ¢, and the Casimirs
invariants of Eq. (83) become

Cs = <C_(¢+28v)/(28)>

Cq = <[V 29 - (p+28N)/(268)1C.(¥ + 28V)> . (64)
We can further take the limit §- 0 and obtain the invariants for
compressible MHD (CRMHD):

Cs = <vC'(¥)>

Ca= AV 2PC.(9) - (p+2BIVC(Y)/B . (65)
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This model was introduced in HKM.
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V. Summary

The Hamiltonian four-field model is a simplified description
of nonlinear tokamak dynamics that allows for finite ion Larmor
radius physics as well as other effects related to compressibility

and electron adiabaticity. Much simpler than a rigorous or even

reduced description of the same physics, it still preserves
essential features of the underlying exact dynamics.

The model is given by Egs. (2) - (5), in terms of physical
variables, and by Eqs. (10) - (13) in terms of the field variables,
&i. [The latter are defined by Egs. (8).] A Hamiltonian expression
of the model, in terms of a Hamiltonian functional and generalized
Poisson bracket, is given by Egs. (9) and (15) —V(18).

Only the dissiplationless form of the model is presented. In
many applications such dissipative processes as resistivity and
viscosity are appropriately included, in the conventional way -- for
example, by appending mJ to the right-hand side of Eq. (3). The
Hamiltonian property is then lost, but it remains significant in
that dissipation has been introduced in an explicit and physical
way: as discussed in Section I, there is no fake dissipation.

In large part because of its Hamiltonian property the present
four field model conserves not only total energy but also four
generalized helicities, or Casimir invariants. These constants of
the motion, which are given by Eqs. (7), have considerable value in
applications.
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The Hamiltonian four-field model is a simplified description of
nonlinear tokamak dynamics that allows for finite ion Larmor
radius physics as well as other effects related to compressibility
and electron adiabaticity. Much simpler than a rigorous or even
reduced description of the same physics, it still preserves
essential features of the underlying exact dynamics. In particular,
because it is a Hamiltonian dynamical system it conserves the
appropriate Casimir invariants, as well as avoiding implicit,
unphysical dissipation. Here the model is derived and interpreted,
its Hamiltonian nature is demonstrated, and its constants of

motion are extracted.
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[. Introduction
We present here a system of coupled fluid equations describing
magnetized plasma motions in an axisymmetric confinement

device, such as a tokamak. The system is intended to model such

————-——phenomena--as—sawtooth—osciltation—and -tokamak—disruption;
especially in their nonlinear stages!. [t is emphatically a
simplified system, in which numerous geometrical and dynamical
effects are neglected. On the other hand the equations attempt to
represent non-ideal processes, including fmite—ion—Larmor—radius'
(FLR) terms and electron adiabaticity, in.a manner consistent with
both simpliCitg and fundamental physical constraints. In
particular, when explicit dissipation is omitted the model is shown
to define a (generalized) Hamiltonian dynamical system. (See for
example Ref 2). | | |

The four-field model is so named because its essential
distinction from reduced magnetohgdrodgnamics3 (RMHD) is the
need for four, rather than three, independent field variables. In
this respect it most closely resembles two previous models, the
approximate four—field”model of Hazeltine, Kotschenreuther and
Morrison® (hereafter referred to as HKM) and the asymptotic
system of Hsu, Hazeltine, and Morrison® (HHM). More generally,
however, the present model has much in common with numerous,
‘earlier extensions of RMHD6-8, especially in its motivation.

The usefulness of reduced fluid models is discussed
elsewhere3=8. Here we only remark that the present four-field

model is a generalization of RMHD that allows for slow evolution




(frequencies comparable to the diamagnetic drift), long mean-free-
path electron dynamics, and various effects of plasma
compressibility, in a simple albeit non-rigorous way. Like its
predecessors®S it reproduces such features of kinetic and FLR -

physics as the "semi-collisional” conductivity; gyroviscosity-

drift-tearing instability; and diffusion in a stochastic magnetic
field. Also like its predecessors it omits temperature gradients
and kinetic effects of magnetic trapping. Finally, unlike the model

- of HKM, (but in common with the underlying physics it attempts to
represent) its ideal version not only conserves energy but is a
Hamiltonian dynamical system.

Three equivalent versions of the model are presented in Sec.
II, 'which also includes interpretation of its most distinctive
terms. The derivation is given in Sec. 11l, while Sec. 1V is devoted
to a discussion of the system’s dynamical invariants.

The Hamilitonian property ‘is an essential feature of the
present model, which, in particular, played a major role -in its
derivation. [t therefore seems appropriate to comment here upon
the general significance of this property in suﬁh approximate field
theories as RMHD and its extensions.

The phase-space conserving nature of Hamiltonian evolution
depends upon rather delicate considerations, not always obvious
from insbection of the system.  VYet it has strong consequences,
much stronger than, in particular, simple energy conservation
(consider-for example the energy conserving but non-Hamiltonian

~ Boltzmann equation). In particular, Hamiltonian motion conserves

i
|




not only phase—space volumes but numerous additional functionals
of the field variables, such as Poincare invariants and the
generalized helicities or Casimirs.

The simplest way to guarantee that some dynamical system is

Hamiltonian is to demonstrate that it faithfully represents, at

least in some asymptotic limit, the actual classical evolution of
charged particles. Thus, for example, Vlasov theory and ideal
magnetohydrodynamics can be shown to have the (generalized)
Hamiltonian property2. However, not all systems of interest to
plasma physics can be systematically derived from exact

microscopic dynamics. Progress, especially in nonlinear regimes,

frequently demands the use of simplified models in which the

Hamiltonian property is problenﬁatic. A major concern -in the
application and interpretation of such models is the possi‘bilitg of
unphysical dissipation. |

Physical dissipation enters exact formulations expiicitlg,
through such mechanisms as collision operators or resistive terms.
[ts form (whether drag or diffusion, for example) is manifest in
the equations, and.its magnitude is arbitrarily adjustable through
the size of certain coefficients (such as collision frequencies or
resistivities). In the case of non-rigorously derived models,
however, dissipation can enter implicitly and unintentionatly,
because of uncontrolled approximation. No resistivity or
collisional term occurs in this case -- the system appears pu‘rélg
nondissipative -- yet phase-space conservation and other

invariants may be lost. Significantly the magnitude and even the




effective sign of this unphysical, fake dissipation is uncontrolled
and typically difficult to determine.

It has been shown that RMHD is a Hamiltonian systemS3.
Certain extensions of RMHD, discussed in Sec. III, similarly

preserve the Hamiltonian property, and furthermore a Hamiltonian

representation-of-two~dimensional~FLR physics has been found?'®:
Nonetheless it shall become clear that the Hamiltonian property of
reduced fluid models must be considered extremely fragile.
Amongst the myriad of physically plausible four-field models, each
conserving energy and yielding correct, FLR-modified linear
-equations, only a tiny subset is Hamiltonian. One likely (although
’unproven‘) element of the Hamiltonian subset is the kigorou.s;l'g.;
derived but complicated model of HHM. The system described in
this work is shown to be Hamiltonian; we believe it is the subset’s

simplest member.




[1. Description of the model.
A. Four-field equations
We present here the dissipationless version of the four-field

model, noting that dissipative terms (resistivity, diffusion and

viscosity) can be straightforwardly introduced a posteriori. The

four hormalized fields are W, ¥, p and v; they have the‘rollowmg
physical significance:

W measures the scalar parallelvorticity ;

¥ measures the poloidal magnetic flux ;

P measures the electron pressure ;

v measures the ion parallel velocity .

[n addition to the above normalized varaiables, the model involves
three constant parameters: the electron beta, § = 87InTo/BT2,

where nc is a constant measure of the plasma density and Bt is a
constant measure of the toroidal magnetic field; 8 = c/(2wpija), the
finite Larmor radius (FLR) parameter, where wpi is the ion plasma
frequency and a is the plasma radius;‘ and the temperature ratio, ©
= Ti{/Tg (note that in previous work = denoted a normalized time
variable, for which we here use t). |

We recall from HKM the following normalizations: { =
(SBTa)"‘Ac, where € is the inverse aspect ratio and Ag is the

toroidal component of the vector potential; ¢ = cd/(evaBTa), where
® is the electrostatic potential and va is the Alfven speed; v =
Vi/(eva)~!, where V) is the ion parallel velcocity; and p =
(8/€)(n/nec=1), where n is the plasma density. We also introduce a

velocity stream function, F, according to _
(1 + T2V |2)F = ¢ + §7P, (1)




where V| is the two-dimensional gradient operator in the plane

transverse to the magnetic field. The function F, which differs

somewhat from its counterpart in HKM, is a stream function in the

sense that the normalized ion velocity tranverse to B is {xV F.

The right-hand side of (1) evidently yields the expected

combination of electric and diamagnetic drifts, while the 0(§2)
term involving V2 on the left-hand side gives an FLR correction.

In terms of F, the normalized vorticity variable W is given by
W=V %

Similarly, the normalized parailel current density is related to ¥

via |

J = V_J_2’~P S
Finally we define h, a normalized "horizontal” distance, by h = (R -
Rp)/a, where R is the major radius and Ry the major radius of the

magnetic axis. This quantity enters the equations only in the form

V. h, which is the lowest-order field line curvature.

‘The four-field model can then be expressed as
(873w + [F, Wl + Vd + (1+2)(1+7828V  D)[h,p] =
§TV - [p+28h,V  F1 + (1/2)T2838V | 2[p+28h, W]

- (1/2)’555V_L2V||(V+25J), ' (2)
(3/3t)y + V9 - 8V p = 0, (3)
(3/3t)p + [¢, p+28h] = 8{28[p,n] - 7 (v+28J)1, (4)

(3/3t)v + [@,v] + (1/2)VIp + w(p-8BW)] = 62vB8[v,V | 2(F-67p)]
+ 28T Bv,h] . (S)

Here we use the conventional bracket symbol defined by
[f,gl=CV rxv,g,




where f is a unit vector in the toroidal direction. Also, the

parallel gradient operator is defined by
v f =3f/3C + [f,y].

Equations (3) and (4) express the generalized (collisionless)

Ohm’s law and the particle conservation law precisely as in HKM. -

Equation (2), the shear-Alfven law, differs from HKM in including
several additional FLR and compressibility terms on the right hand
side. Similarly the parallel acceleration law, Eq. (5), includes
previously omitted physics. All the additional terms are
numerically small, since § and 8 are tgp‘icallg small in tokamak
experiments. The significance of these correction terms is
discussed in the Subsection C.

This system conserves the following ene'rg‘g (Hamiltonian)
functional: . .
H=(1/2)X| VF|2+ v |V 19]2+ (1+2)p2/(28)>,  (6)
which differs from that of HKM. Here the angular brackets denote
an integral over the system volume (effects of the wvolume
boundary are ignored). This-functional is easily understood to be
the sum of the parallel and perpendicular fluid kinetic, poloidal
magnetic field, and internal energies. In addition to the energy
functional the four-field model conserves the following four
Casimir (or "helicity” type) invariants:

Ci = <AWY)>

Co =<ByY)(p + 28n)> (7)
C3.4=<Cs[28BVv+BY£(28T)1/28(268W-T828V 12p-p-28h)]1>.
These constants are associated with the magnetic helicity, density

and generalizations of the cross helicity, respectively. When there




are magnetic surfaces, such as in the case of axisymmetry or
single helicity dynamics, the functions A, B and C+ are arbitrary.

For general three dimensional dynamics C; and C, remain conserved
provided A(Y) =y, B(y)=constant and C, (x)=x.

Equations (1)-(7) are the main results of this paper. We next

rewrite the system in"a form that makes manifest its Hamiltonian

character.

B. Hamiltonian form
In order to display the Hamiltonian structure of the four-

field model it is convient to introduce the following set of

variables:
gl = VLZ(F‘ - 8§Tp/2),
2=y,
g3 =p+ 28N, (8)
£4 =y,

We shall refer to the &1 as "field variables” to distinguish them
from the "physical variables” W, ¥, p and v.

When the total system energy is expressed in terms of the
21, it becomes

HIET = (1/72)<X| V (V728 1) +(8%/2)V (83 - 28h) | 2

| V12| 2+ (1+2)(E3 - 28R)2/(28) + (EH2, (9)
where V-2 represents the inverse Laplacian operator, whose
occurrence in fluid Hamiltonians is conventional.

Now we can express the four field model for evolution of the
£l in the following form: ‘

(8/80)8 1 = [Hy, E1] + VyHp + [H3, £31 + [Hg, £9), (10)




(3/31)82 = 7 (Hy + 288H53), (1)
(3/3t)E3 = [H + 288H3, &3] - 8V i(Hg - 28H,), (12)
(3/3t)E4 = [Hy, £4 - BV Hx + 8§T[E3-2888 1 Hal . (13)

Here functional derivatives of the Hamiltonian are indicated by
subscripts, Hj = §H/8&1. They are given by

Hi= =F, Hy = -J, Hs = [(1+7)/281p - (6T/2)W, Ha = v, (14)
and can easily be written in terms of the field variables by means
of Egs. (8). Note that Egs. (10) - (13) are simplér in form than
" Egs. (2) - (S), especially since the latter can only be used in
conjunction with Eq. (1). |

To express the four-field model in Hamiltonian form, first
let F and ‘G b»-e arbitrary .functi-ohals of the fields E1 with Fi =
SF/SZi as usual. Then, implicitly summing ovér paired indices, we
define a Poisson bracket by -

{F.6} = <ClgEkIFy, 6§1 + ClIa(Fi8Gj/aL)>, (15)
where the coefficient matrix Clly, which is symmetric with

respect to its upper indices, has the following nonzero components:

Ci 1 = ¢l = 8y,

Ck23 = C32 = 2888y

Ck33 = 28883

Cid4 = ¢ 43 = -Bsko,

Cid4 = -87(5k3 - 2888k 1). (16)
We remark that Eqs. (15) and (16) define a true Poisson bracket:
it is bilinear, antisymmetric, it satisifies the Jacobi identity,

{F.{G,H}} + {G,{H,F}} + {H,{F,.G}} = 0O, (17)
and acts as a derivation; i.e.

{F,GH} = {F,GIH + G{F H}.
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We also remark that CiJk is a rather simple matrix, at least in the

sense of being sparse.
The Hamiltonian version of the Eqgs. (2)-(5) is given by
(8/3L)81 = (&1, H). (18)

The invariance of the “Casimirs” defined by Egs. (7) then follows

C. Discussion

Here we consider the significance of the new FLR and

compressiblity terms appearing in the present model, basing our

discussion on Egs. (2)-(5) for convenience.

FLR corrections appear multiplied by 628 or 88, measuring

the squared ion gyrodradius, pi2 (explicitly 27828 = pj2/a2).: Such
terms-occur' in the ion dynamics described by Egs. (2) and (5), in
combination with the expecte'd Laplacian factor, and have a well
known interpretation in terms of averages over the Larmor orbit.
The FLR terms manifest on the right-hand side of £q. (2) describe,
in particular, nonlinear diama‘gnetic convection and ion
gyroviscosity. In linear theory (where the perturbation is assumed
to vary more sharply than the equilbrium) these terms reproduce
the ion drift-frequency corrections found in linearized gyrokinetic
analysis®-S.

Another type of FLR correction is most apparent in Eq. (5),
although also present elsewhere: the §8W correction to the ion
pressure, Tp = T(p - §8W). It can be identified with a well known

residue from the "gyroviscous cancellation”; thus gyroviscosity is
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known'!2 to modify the ion scalar pressure, Pj, in an FLR plasma

according to
pi = pill - (2Q))~Tb-VxVj], - (19)
where Qj is the ion gyrofrequency, Vj is the ion fluid velocity and

b is a unit vector in the direction of the magnetic field. When Eq.

(19) is expressed in terms of the four-field normalized variables

and reduced for large aspect ratio, it yields p-88W.

All FLR terms in Egs. (2) and (5) have been derived by |

systematic ordering procedures in previous work®; however the
rigorous ordering also produces a host of additional corrections of

similar form. Thus the present model, which is extremely simple

compared to the rigorous wversion, contains a selection of

gyroradius corrections. We presently discuss the grounds for this
Selectivitg. ,

The remaining terms of interest involve the plasma
compressibility, given by the right-hand side of Eq. (4). Equation
(4) coincides with a previous conservation law and has been
discussed in detail elsewhere®; we recall that the term involving h

is the perpendiculér compressibility, resulting from curvature of
the magnetic field, while the term involving V) is the parallel

compressibility of the electron flow, Vg o« v+28J. The new

feature here is the appearance of explicit compressibility terms in
Eq. (2), as seen, for example, in its last term. We point out that
the contribution of compressiblity to the shear-Alfven law,
although rarely taken into account, is easily understood. First of

all, the vorticity associated with diamagnetic acceleration,
L Ux(d/dt)(ExVp), evidently involves V2(d/dt)pj and therefore the
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Laplacian of the compressibility, piV-Vj. Secondly, gyroviscosity

can be shown%S to contribute terms of the same form. Equatioh
(2) displays the sum of these two contributions, which, together
with the factor of (1/2), also occur in the rigorous version®.

This comment helps explain the appearance of the modified

vorticity, £V ="V [ 2(F="8§Tp/2), as a basic field inthe system: The
second term correctly accounts for plasma compressibility in the
shear-Alfven law. Perhaps fortuitously, it also contributes to a
correct accounting of ion diamagnetic convection terms.

Thus the new terms are physically plausible, in the sense
that rigorous ordering arguments yield correction terms of the
same form. However, because the rigorous analysis also reveals -
numerous other FLR effécts, the new terms do not make Eqs. (2)-
(S) more "exact” in any formal sense. Whg then do these particular
corrections appear? |

The correction terms in Egs. (2)-(5) are best characterized as
being the minimal addifions to a cold-ion theory which preserve
the following essential physical propekties= | |

(i) Reasonable cold-ion (z=0) limit; specifically we require
that the =0 version agree with that of the previous four-field
model, whose physical reasonableness was discussed in HKM.

(ii) Agreement in the linear regime with kinetic theory of
fon diamagnetic effects; in particular we require that the ion
diamagnetic frequency enter the linearized four-field model in the

manner predicted by gyrokineticss.
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(iii) Hamiltonian structure; we insist upon a dynamical law

of the form of Eq. (18), where the bracket is anti-symmetric,

satisifies Jacobi’'s identity, and acts as a derivation.

The four-field equations presented here satisfy these

requirements, and they do so minimally, in the sense that the

model—obtained by omission —of any~term does ot
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[II1. Derivation
Because we seek a drastically simplified description of FLR
'phgsics -- indeed, the simplest system that satisfies the

requirements (i)-(iii) of Sec. Il -- our derivation of the four-field

model cannot rely on simple ordering procedures. Instead it is
based on a mapping procedure that is motivated by asymptotically

rigorous models.

A. The gyro map
A high-8 version of RMHD that includes both eliectron and ion
drift corrections, but excludes compressibility, is obtained by a
rigorcus ordering procedure in HHM. This three-field model is
given by _ |
(3/31)V (29 + [@, V,29] + V1 J + (1+2)[h, p] ,
+ 8tV [p,V 9l =0,(20)
(@/31)¢ + V9 - 8V p = 0, (21)
(3/3t)p + [¢, pl = 0. (22)
It conserves the following energy:
H=(1/72)X|V 9|2+ |V, y|2+28pV, 29
- 82|V p|2 - 201+ )hp>, (23)
and is also a Hamiltonian system. |
For reasons of clarity we now specialize to the axisymmetric
case. The generalization to three dimensions is straightforward,

involving nothing more than the replacement
[f,¥] = V,T. (24)
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If this replacement is made in a Poisson bracket then it can be
shown in general that the Jacobi identity is maintained.

The axisymmetric version of Eqs. (20)-(22) has the following
Poisson bracket:

(F,6} = <UIFu,GUl + Y(FU,Gyl + [Fy,GuD) + pUIFU.Gp] + [Fp GUD)

+ 8TV FUiV G- &2:5)
Here, we have used 8§F/8U=F, etc., and in the last term the
"semicolon” notation is defined by
[A:B] = 2 [A},Bil.

Because of the last term, the form of this bracket differs from

previous brackets in- that it involves more derivatives. Yet one

can prove directly that Eq. (25) satisfies the Jacobi identity.
Now consider the zero ion-temperature limit. Setting 7

equal to zero we obtain

(8/31)V 29 + [@, V,29] + VJ + [h, pl = 0, | (26)
(3/3t)y + V9 - §Vyp = 0, (27)
(3/3t)p + [9, pl = 0. | (28)

Apart from removing the ion pressure from Eq, (26), the only
effect of taking this limit has been to remove ion ggroviscosivtg
physics. Observe that the term ihvolving the parameter § in Eq.
(27), unlike the gyroviscous effect in Eq. (20), reflects electron
physics; it is the Hall term.

At zero 7 the Hamiltonian becomes .

H=(1/2)X| Vv, 9|2+ ]VL\P[2+25le2<P—2Hp>, (29)
and the Poisson bracket reduces to

{F.G} = <UIFu.GY] + ¥([Fu.Gyl + [Fy,Gul

+ p(lFu.Gpl + [Fp,GUD >, (30)
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which differs from Eq. (25) only in that it lacks the gyro term.
Now comes the crucial observation: Paisson brackets ror

systems without ion gyroviscosity physics can be mapped into

those with ion gyroviscosity physics by a simple linear

transformation. The transformation amounts to changing to a

frame moving at one-half the magnetization velocity. The
magnetization velocity is defined by vy=(VxM)/ne, where M is
the magnetization. We call this transformation the gyro map .

The gyro map was first observed in Ref. 5 for a two-

dimensional model with compressibilty. We will demonstrate it -

here for the brackets of Eqs. (20) - (22).

Technically the mapping we are refering to is a Lie algebra
isomorphism; the brackets of Egs. (25) and (30) are isomorphic.
[In Sec. IV we use this algebraic fact to simply obtain the
complicated constants of motion of Egs. (7).] Physically the
‘transformation amounts to -defi'ning a new variable U’ by

U =U +(82/2)V %p, (31)
which yields the following relation between the new and cld
stream functions: | , ' |

¢ =9+ (87/2)p. A (32)
Here the second term evidently corresponds to the velocity of the
moving frame. One can show that in reduced ordering,
(67/2)%  2p=({- Vxvy)/2, where M=pB/B2. |

By the chain rule for functional derivatives Eq. (31), the
transformation on the field variables induces the follow ing

relations among the derivatives:™ -
8§/8U | upy = 878U |upy . 8/8¥|upy = 8/8¥ | upy
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8/8D | Upw = 8/6p |y py * (8T/2)V28/8U" |y py - (33)
Inserting U =U" - (§¢/2)V ?p and Egs. (33) into Eq. (25) gives
{F.G} = <U'IFy, Gyl + Y([Fy,Gyl + [Fy,GuD
+ p([Fy,Gpl + [Fp,Gul) >, (34)

Equation (34) has precisely the same form as that of Eq. (30).

Thus we see that the bracket for £qs. (20) - (22) can be obtained
from its T;=0 limit by reversing the transformation that we have

just performed. We obtain the bracket for the four-field model in

a similar way.

B. Four-Field Derivation
As noted our derivation of the new field equations begins -
with the cold-ion form of the previous four-field model4. This
cold ion-model is asgmptoticallg correct and easily obtained by
straightforward ordering arguments. Setting = = 0 in previous

formulae (c.f. Sec. Il A) we obtain

(3/31)V 2F" + [F', V 2F'] + vy J + [h, p] = O, (35)
(3/3t)p+ [F', pl + BV (v + 28J) - 28[h, F'- spl = 0,  (36)
(3/3t)y + V| F'- §Vp = O, (37)
(3/3t) + [F", v+ (1/2)Vyp = 0. (38)

Here F’ is the velocity stream function, which in the =0 limit is
equal to ¢. The energy conserved by this system is |

H=(1/2)X|VF |2+ [ V]2 +v2+p2/(28)). (39)
We define the field variables by

(&1, 82,83, &%) = (V2F', ¢, p+28h, v). | (40)
Hence, using the notation H;=8H/8&1, |

Hy = -F', Hp = -J, H3=p/2,B,IH4=v. | (41)
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The axisymmetric versions of Eqs. (35)-(38) can be written as
(3/31)E 1 = [H;, C' 1&gl (42)
where the C’ ij are given by the z=0 limit of Eq. (16):
Cpll=cpdl = 8y,
C'k23 = C'k32 = 2888k2

Cy33 = 28883
C'i34 = C43 = -Bsko, (43)

and :
Ct4 = 0. | (44)

Now the axisymmetric equations of motion can be expressed

in Hamiltonian form,

(3/3t)E 1" = (£, H), | ,  (45)
where the bracket is defined by
{F,G} = <C' Mg [F;, Gj]>,, - - (46)

for arbitrary functionals F and G. We omit the straightforward
demonstration that this bracket, satisfying Jacobi’'s identity, is a
proper Poisson bracket.

In other words the cold-ion limit of the previous four-field

model is, like MHD, reduced MHD and many other models; a

Hamiltonian system. One obvious result is that energy of Eq. (39)
is conserved, since {H,H} = 0.

 For finite T; the Hamilitonian of Eq. (39) is altered, without
rigorous justification, in two ways. Firstly, F'=¢ is replaced by F,
the stream function of Eq. (1); this change is easily understood a
posteriori, as shown below. Secondly, the internal energy is

modified to include the ion contribution: p2/(28)=(1+w)pt/(28).
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These unsurprising changes yield the Hamiltonian of EQ. (6), whose
physical plausibility was discussed in Sec. II.

Less straightforward are the finite-z modifications of the
" Poisson bracket. In this regard, it is convenient to treat the

parallel and perpendicular dynamics separately.

Consider—first—the—parattel-dynamics—It—is—clear—that-our
task is to justify the replacement of Eq. (44) by Eq. (16). We do
this in an ad hoc manner, using three constraints to construct the
coefficient Cy44. First note that at finite T the stream. function F
differs, to leading order in §, from the potential ¢ by §Tp, a term
that gives rise to the ion diamagnetic drift. On the other hand, as
first shown by Mikhailovskii'l, thév parallel flow is advected only
by the electrostatic drift, as indicated in Eq. (5). These two facts
enforce the first term of Eq. (16). Finally one finds that the
resulting bracket satisfies Jacobi’s identity only if the remaining
term of Eq. (16) is also appended.

Similar "brute-force” procedures -- inelegant bDut
straightforward -- have been attempted in the construction of
perpendicular dynamics at finite 7, but without success. The
perpendicular dynamics, involving gyroviscosity and perpendicular
compressibility, are much more complicated and the physical
constraints l,ess clear. than in the parallel caée. Notice in
particular that each proposed finite-z modification must be
checked for consistency with the Jacobi identity:; the unwieldy
form of typical FLR corrections [cf., for example, Eq. (25)] makes

such checks extremely tedious.
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Fortunately the ggro—mép permits a much simpler and more
reliable implementation of FLR physics. To obtain the appropriate
bracket for the above Hamiltonian we consider the reverse of the
- map defined by Eq. (31), setting _ | |
gl =81+ (8T/2)V 2(&3"-28h), (47)

ETr=TE T =204
where

(&1, 827,837, 8%") = (V2F, ¢, p+28h, v).
The chain rule yields ‘

§/881V = /881" |, 1=1,2,4;

§/683" = 8/8&83" - (8T/2)V [268/88 1", , (48)
Inserting Eqs. (47) and (48) into the "pa'rallel—c_or‘re»cted“ T,»='O-

bracket, defined by Egs. (43), (16) and (46), producés the correct
four-field bracket, which together with the Hamilitonian of Eq. (8),
produces Egs. (2)-(5). | |

In Sec. Il B we chose to write the Hamiltonian equations in-
terms of the variables & defined by Eq. (8). Thus the Hamiltonian
of Eq. (6) becomes that of Eq. (3) and the bracket obtained above in
terms of £'* becomes that given by Eqs. (15) and (18).

Notice that the electrostatic potential need not be defined
for this closed system; the four field variables &1 are advanced in
time without knowledge of ¢. It is nonetheless of interest to
identify ¢ in terms of the four fields. Thé‘re are two arguments
leading to the correct answer, as given by Eq. (1). |

First we can demand agreement between Eq. (3), involving ¢,

and Eq. (11) for the E-'i. The point here is that Eq. (3) is free of
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FLR physics and easily derived from electron momentum
conservation. Thus we use Eqgs. (46)-(49) to find

382/3t = - [Y,8H/8&ET] - 28 B[y, 6H/8E3’]
= - [Y,8H/8E1] - 268y, 8H/883 - (8¢/2)V |26H/ 88 1]

= [9.(1+ 8287V 2F - 52p] - 8[¥.pl,

which agrees with Eq. (3) only if

¢ = (1+828TV 2)F-8Tp ,
as in Eq. (1).

The second argument proceeds by directly ordering the
Braginskii gyroviscosity tensor as in HHM. We express the ion

velocity as. ,
v = eVa(ExV F + vE) + 0(g2),

and compute the O(g) portion of the ion momentum balance

equation; the result again is precisely Eq. (1).
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AV. Casimir Invariants

A. Derivation

Noncanonical field theories generally have a special class of

constants of motion called Casimir invariants. These are entropy-

or helicity-like constants, such as the magnetic and cross
helicities of MHD. Since the four-field model, unlike ideal MHD,
contains FLR physics and in addition is reduced, it is not obvious
what these constants should be. [Direct calculation from Eqs. (2) -
(S) leads to enormous and nearly hopeless labor.] We determine
the Cas’im_irs in this section using the bracket formalism.

By definition Casimir invariants are constants that
commute with all functionals: i.e., C is a Casimir invariant if

{CFY=0 forallF. | (49)
One can use Eq. (53) to obtain the constants. We begin with the
two-dimensional, parallel corrected, cold-ion bracket of Egs. (43),
(18) and (46). Equation (49) can be manipulated, by partial
integration, into the form |

{CF) = - <Filg gk e l> = 0. (50)
Here we have systematically set surface terms to zero.
Independent of the boundary conditions necessary for the vanishing
of these terms, the Casimirs so obtained will be constants of
motion in the sense that their integrands will satisfy local
conservation equations.

Now since Eq. (50) must be true for all functionals F, it
follows that the coefficient of each F; must vanish. This gives a
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system of four partial differential equatibns, which after some

manipulation can be expressed as

[£2',C3l=0, (51)
[(£2',Col + B3.C3l = 0, (52)
[28BEV-E3C] + [28BEH + BE2,C4] = O, | (53)
[28BE++BEL CI + [2828T(28 881 =83),C4l = 0. (54)

Equations (51) and (52) involve only the variables 82"and &3,

while Egs. (53) and (54) involve &' and £%'. Equations (51) and

(52) respectively imply ,
C= <A(52')+E3'B(§2‘)>

O C= k@R, | (55)

where A, B and k are arbitrary functions of their arguments.

‘Consistency between Eqs. (55) yields the fovllowing Casimir

invariants=
Cy = <AEC2)>
Cs = <E3BE2)D . (56)

Similarly, Eqs. (53) and (54) imply '

C3.4 = <C,[28B84 + BE2 2 (2828 7)1/2(288E 1 = E3)D, (57)
where C. are arbitrary functions.

Now in order to obtain the Casimirs for the four-field
model it is necessary to map from the primed to the physical
variables. We know that the quantities thus obtained will be
Casimirs, since the (parallel corrected) T;=0 bracket is isomorphic
to the four-field bracket written in terms of the physical
variables; W=V 2F, ¥, p and v. Ther'e is a one-to-one
correspondence between Casimir invariants of isomorphic brackets.

Thus we obtain the following Casimir invariants:
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Cy = <AlYP

Co =<(p+28h)B(Y)> (58)
Cz.4 = <C,[28Bv+BY+ (26287)172(26BW - 1828V p-p-28h)1>.
These quantities are constants for the axisymmetric version of
Egs. (2)-(S); i.e., where ¥V s replaced by -[y,-]. For three

——————dimenstons the functio ns A, B and C, are restricted as mentioned
in Sec. Il A. This restriction, among other things, is discussed in

the following subsection.

B. Discussion

The restriction of axisymmetry for constancy of the
Casimir inv‘ariant»s, Egs. (62), can b.e easéd. In fact the e‘>'<istenche
of the above Casimirs for arbitary functions A, B and C, in three
dimensions is tantomount .to the existence of a solution ¥ to the
~ following equation?: | ,
v § =02¢/3r + [§.y]=0. (59)
The question of the existence of a'global ¥ is the same as that of
the existence of a constant of motion for the one degree-of-
freedom Hamiltonian system, for which the poloidal plane is the
phase space, ( is the time and ¥ is the Hamiltonian. Said yet
another way, the existence of ¥ is equivalent to the existence of
magnetic surfaces. In the general case it is unlikely that ¥ exists

(recall that { is a periodic variabie).
‘ Nevertheless, let us assume thét J exists and change
variables; we will use the field ¥ instead of V. We» wish to

transform our three dimensional Poisson bracket, Eq. (15), into
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one written in terms of the variable ¥. To do this we relate ¥ and
¥ variations‘or an arbitrary functional F. This yields

v (8F/89) = [sF/8 1 . (60)
Upon inserting Eq. (60) into Eq. (15) we see that the

transformation ¥ =¥ takes the three dimensional four-field

bracket—into-the—axisymmetric-bracket-with-J-reptacing¢——This
bracket has the Casimir invariants of Eq. (58) for arbitrary
functions A, B and C,, but with ¥ replacing .

Thus we have shown that the existencevof the general
Casimir invariants is tantomount to the existence of magnetic
surfaces. It follows that the degree to which one_beliveves\
magnetic surfaces exist in a tokamak discharge, should be the
same as the degree to which one believes Casimir invariants with
arbitrary functions A, B and C. exist.

One case in which solutions to Eq. (59) do exist is that of
helical symmetry. Then one has Y(r,8,t), where §=6-C/qg, and it
can be shown by direct substitution that the following solves Eq.
(59):

J(r,6,t) = y(r,6,t) + r2/(2qq). (81)
Here ¥ is the helical flux function. J

Let us next consider the meaning of the Casimir invariants.
We have mentioned that these invariants are related to the
magnetic and cross helicities. Specifically, they are the remnants

of these ideal MHD quantities that survive our ordering procedure.

The cross helicity also survives our inclusion of FLR physics,
which is manifest in the fact that v-B has an additional term vm'B
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arising from the ggrovrhap. Since all four of our Casimir
invariants have one of the two forms

Cp=<r(»> . Cp=<rgix)»> , - (62)
where f and g are arbitrary functions, we will discuss their

meaning in general terms for the fields X and Y. If we divide our

physical domain up into cells, which we Tabel by the value of X at
say the center, then the invariant C, determines the number of
cells with a particular value of X. This can be shown by picking f
to be the characferistic function. The same procedure can be used
to show that the invariant €, determines the sum of the values of
T on those cells with a particular value of the field X. Neither of
these (invariants'determine spatial correiat»ion, i.e. the placement
of the cells with a given value. | |

To conclude we take limits of the Casimir invariants, Egs.
(58), and show that they reduce to previously obtained Casimirs .
invariants. To facilitate this we rewrite Cs and C4 as follows:

& = <[C.(D-aE) + C.(D+aE)]/(468a1)>

Cq = <IC(D-2aif) - C.(D+aiE)1/(488)> | (63)
where D=8(y+28v), E=(1+8§28TV 2)p-288V ,2F+28h and
a;=28287. In the cold ion limit a;,7=0 and F= ¢, and the Casimirs
invariants of Eq. (63) become

C3 = <C-(y+28v)/(28)>

Cq =<[V, 29 - (p+28n)/(288)IC.(¥ +28V))> . (64)
We can further take the limit §»0 and obtain the invariants for
compressible MHD (CRMHD):

C3 = <vC(¥)>

Gy =<V 29C.(¥) - (p+28n)vC./(¥)/8> . (65)
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This model was introduced in HKM.
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V. Summary

The Hamiltonian four-field model is a simplified description
of nonlinear tokamak dynamics that allows for finite ion Larmor
radius physics as well as other effects related to compressibility
and electron adiabaticity. Much simpler than a rigorous or even

——————reduced description—of thesamephysi ;C’S‘,”‘i"t“"S"t‘i’l’ [~preserves ——
essential features of the underlying exact dynamics.

The model is given by Egs. (2) - (5), in terms of physical
variables, and by Egs. (10) - (13) in terms of the field variables,
&i. [The latter are defined by Egs. (8).] A Hamiltonian expression
of the model, in terms of a Hamiltonian functional and generalized
Poisson bracket, is given by Eqs.‘(g) and (15) - (18); | |

Only the dissipationless form of the model is presented. In
many applications such dissipative processes as resistivity and
viscosity are appropriately included, in the conventional way -- for .
example, by appending mJ to the right-hand side of Eq. (3). The
Hamiltonian property is then lost, but it remains significant in
that dissipation has been introduced in an explicit and physical
way: aé discussed in Section [, there is no fake dissipation.

| In large part because of its Hamiltonian property the present
four field model conserves not only total energy but also four
generalized helicities, or Casimir invafiants. These constants of
the motion, which are given by Egs. (7), have considerable value in
applications. ' |
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