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Turbulent Drift-wave Dynamics
\ and Coherent Structures

Bruce D. Scott, P. W. Terry, and P. H. Diamond
Institute for Fusion Studies, University of Texas, Austin, TX 78712

ABSTRACT

the absence of assumptions in the relation between the electrostatic potential and the den51ty
response, with the result that nonlinear coupling dominates this in the hydrodynamic region
about the resonant surface. Outside this region, an adiabatic relation prevails. Thus, the
nonadiabatic density response is small away from the resonant surface but can be as large as
the potential fluctuation near it. This response is much more self-coherent than either the
density or potential fluctuations and decays more slowly as well, becoming dominant.

. Introduction

The dynamics of decaymg 2D drift-wave turbulence are investigated numerically in

-—- - - The electrostatic drift wave has for at-least a-decade been thought responsible in- -~ - -

part, or in whole, for the anomalous transport of heat and particles in tokamak fusion devices.?

Nonlinear drift-wave turbulence is essentially electrostatic E X B convective turbulence with
the density gradient as a free energy source and with magnetic shear damping as the sink.
Higher-order effects such as coupling to trapped electrons or toroidicity are necessary for the
waves to be unstable. However, it is possible to study the essential physics of the fluctuations
by investigating decaying nonlinear drift-wave turbulence in a slab model with shear.
Previous efforts have usually made use of the adiabatic assumption, in which electro-
static and internal energy in the fluctuations are equipartitioned by diffusive processes on a
time scale fast compared to that of the waves, yielding the simplifying relation 71 /ng = e¢/T.2
The advantage of this is that without magnetic shear only one equation, the Hasegawa-Mima
equation is needed to model the fluctuations. To provide for instability, and a cross-field par-
ticle flux, a small phase shift is introduced for each wave, so that in wavenumber space one
has nx/ng = (egy/T)(1 — 26k). This will be referred to as the “i-delta” treatment. Since
for all but the smallest tokamaks the perpendicular diffusion time scale is slow compared to
the diamagnetic time scale, w; !, the condition for adiabaticity is kﬁVe2 > wv,. The problem
with the i-delta treatment is immediately obvious, because in a real system there is always
a place where the fundamental mode is resonant, where kj vanishes. This yields an electron
conduction channel, of width Ap = |/w,ve /K| IV;, in which the fluctuations are hydrodynamic,
i. e., the flow ﬂuctuatmns are decoupled from and not driven by those in the density, although

the former can still drive the latter. Outside this region the fluctuations are adiabatic, as the

plasma acts to short out the large parallel currents otherwise generated. The purpose of this
paper is to demonstrate that for the single-helicity 2D case the nonadiabatic density response,
n/ng — e/ T, and hence the cross-field particle fluxes are confined to the electron conduction
channel, with the result that anomalous transport by drift waves over large regions in toroidal
devices would have to be an inherently 3D process coupling many helicities.




Il.  The Model

The basic model for nonlinear drift-wave turbulence in this paper is a 2D sheared
slab whose coordinate system of unit vectors (X, ¥, %) is defined respectively by the directions
of the density gradient, the fundamental wavevector, k, and the magnetic field at the resonant
surface, where k|| = kila: = 0. The two-fluid Braginskii model?® is used with the assumptions of

electrostatic fluctuations (]§: 0), a thin resonance layer (kAp < 1), and cold ions (T; € T, =
T). One then has the Ohm’s law and equations for charge conservation, electron continuity, and
parallel ion momentum, with the last included to provide for the linear damping mechanism of

coupling to outward;propagating ion sound waves. If z,y,t and the normalised fluctuating
variables are respectively scaled by ps,k™,w;l, and (ps/L,); we have the dimensionless
system of equations used in this paper:

O Vig= —5- VX V(Vid) + O 'Vi(n— ) + D(Vi4), (1)
S = —2:9 % Vn— 2+ C1V}(n — ¢) - SVju+ Dlr), @
- %-:*— 2-VeX Vu=SVn+4uViu+D(w)." ~ (3

In each, the first term is the nonlinear piece of the convective derivative, V) = 2(8/8y), and
D is a perpendicular operator used solely for numerical purposes to facilitate truncation of the
spectrum in k,-space. In order to study more clearly the character of the turbulence, we have
not included artificial driving. A

The parameters are the ratios C = (Ap/p,)? = (Ve/w.)(me/M;)(Ls/L,)? and S =
L, /L,, with the parallel diffusion coefficient p = yj;/p2w«, and the wavenumber scale kp,. The
most important is C, which determines the electron channel width. The diffusion coefficient
in D is assumed to be sufficiently small that D has no effect at either the largest scales or
those at p, sizes. The scheme is finite-differenced in the z-direction and pseudospectral in y.
A split timestep is used, evaluating the V|| terms at mid-step and the D terms at the forward
step. The fields are set to zero at some zr, giving a spatial ordering of (Ap,ps) < S7! <
p~1? < zp < k=1, This places strict limits on all the parameters. One would like to vary C
in particular over a wide range but this scheme has been limited to .3 < C < 10.

Ill. Resolution Considerations

The question of k-space resolution in numerical treatments of drift-wave turbulence is
very important but often neglected. In particular, there are three scales in the problem which
must be separated. These are the macroscopic gradient scale or experimental system size, the
most probable structure size, typically on the order of a p,, and the smallest scales at which
the dissipation is acting to truncate the spectrum. The operator D serves to avoid pile-up
of energy at the highest k’s. However, a real plasma has such a high perpendicular Reynolds
number that any important scales are practically inviscid. This is the reason the p, scales
must be kept out of the dissipation range of D. Most previous treatments have neglected this
consideration,? leading to the erroneous conclusion that only the largest scales play important




roles in the physics. It is also important to separate the p, scales from the largest to allow
any structures which may form to interact on the largest scales.

IV. Results

Before going on to the results, a word on the identification of coherent structures in

-simulations of turbulence is in order. This is the fact that the eye cannot be depended on

for this identification. A useful diagnostic in the identification of self-coherence is kurtosts, or
flatness, defined for zero-mean fluctuations as Ku(¢) = <¢4> / <¢2>2, where the angle brackets
represent-ensemble-averages, approximated-in-the simulation by-all-space integrations.- Suit-— . —
ably normalised, this has the value three for completely random fluctuations. A high value
of Ku is the most reliable signature of self-coherence. This has been used before in studies of
decaying Navier-Stokes turbulence,® but has been neglected in drift-wave simulations.
The computations are initialised with an isotropic, random-phase field multiplied by a

spatial Gaussian envelope to reflect shear-localisation to the resonant surface, then normalised
so that the rms velocity fluctuation is unity, ¢. e., marginally nonlinear. Initially, the density
is purely adiabatic, h =n — ¢ = 0. The parallel velocity is set to u = Sz¢. This state is then
evolved in time according to Egs. (1-3).

-~ There is not sufficient space to fully characterise the -results, so the most important . ... .. .. ..
features are displayed in Figs. 1 and 2. In general terms, the fluctuations leave the initial
state extremely quickly. As expected they are appreciable only within ore to two Ap of the
resonant surface. A moderately violent transient state is passed through in the first few tenths
of an w,-time, after which the nonadiabatic response is strongly localised with a Ap and the .
kurtoses in all quantities have reached large values, 10-15 for the basic fields and well over
30 for the nonadiabatic response, h, which is also observed to decay much more slowly than
either n or ¢, increasingly dominating the total response.
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- the growing dominance of the nonadiabatic response in the hydrodynamic-region. It-is clear-

In Fig. 1 one sees the character of h, particularly the localisation within z = C*/2 (1
for this case). The zero contour has been suppressed for clarity. Two dominant structures have
formed of several smaller at intermediate scale. This behaviour is seen to persist throughout
all the runs varying C. In each, the localisation closely tracks C/2, verifying Ap, not ps, as
the scale. The high kurtosis identifies the structure as self-coherent. More important than the
absolute value is the fact that Ku(k) is a factor of 3 or so higher than Ku(¢) or Ku(n), . e.,
the character of h is so different from either n or ¢ that a simple phase relation between the
latter is hoplessely inadequate. The spatial dependence of the actual relation is clear, as the
fluctuations are adiabatic (as well as small) in the high-shear regions.

The comnplete dontinance of the coherent structure in thie nonadiabatic response s

reflected in the k, spectrum of h, shown in Fig. 2. Superimposed upon the intermediate
range is a maximum at the k, > ABl scale. The strength of the largest scale reflects the
combination of the small structures into large ones. The steepness of the spectrum at high &
indicates the dissipation range of D. As well, the steepness of the intermediate range (greater
than the Komolgorov Ej ~ k%) reflects the effectiveness of parallel dissipation at all scales.
It is questionable indeed whether a proper inertial range in the Komolgorov sense exists for
the system Eqgs. (1-3).

Observed selective decay between the energies in h and those in n and V¢ indicates

that an i-delta treatment can not explain the dominant features of 2D drift-wave turbulence.
Lastly, tests of the simulation have verified that all of the foregoing is independent of the form
or size of the operator D, so long as the perpendicular Reynolds numbers are large at the
intermediate scales.

V. Transport

The major implication of this work at the present stage is that appreciable cross-field
flux of density is possible only within one Ap of the resonant surface. Further away, the large
shear forces the fluctuations to be both adiabatic and small. The tight localisation of the
flux in this 2D simulation indicates that anomalous transport due to drift waves over large
regions would have to be a 3D phenomenon, capable of supporting hydrodynamic behaviour
everywhere. One other conclusion which must be qualified by the fact that an adequate 3D
treatment has yet to be performed is that anomalous transport by drift-wave turbulence should
be dominated by the dynamics of coherent structures.
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Abstract

We present measurements of density and potential fluctuations under typical discharge con-
ditions in the TEXT tokamak using Langmuir probe and far-infrared Thomson scattering
techniques. FA direct measurement of the fluctuation induced particle flux is presented
and compared with giobal particle conﬁ.nemént measurements. Measurements of poloidal

asymmetry and their effects on transport are discussed.
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__can be compared with theoretical models.

Introduction

One of the primary limitations to improving particle and energy confinement in magnetic
confinement devices is the small scale instabilities, which drive turbulence and may give
rise to the observed anomalous transport. We present detailed experimental measurements

of turbulence and transport and quantify the scalings with plasma parameters. The results

Description of Apparatus

The measurements were performed on TEXT, an ohmically heated tokamak with major
radius R = 1.0m and limiter vradius a = 0.27m. The limiter was a 360° circular titanium
carbide nng whose front surface was 0.03 m from the. stamless steel wall, at one tor01dal

posﬂ;lon " Measurements have been made for dlscharges covermg the para.meter range

of I, .= 100 — 400kA,B; = 1.0 — 2.8T,Z.s; ~ 2 — 4, and a line averaged density |

e = 0.8 —4 x 10%cm™3. Data were taken over a 50ms during the plateau region of
sawtoothing discharges.
A four probe array, consisting of a square array of four single Langmuir probes with

2 mm separation between adjacent probes, was located at the top of the tokamak along the

plasma centerline. Probes were either biased 160V into ion saturation to measure nv/T or -

unbiased to measure the plasma floating potential, ¢. Temperature, T, is measured with a
swept double probe. Space potential is computed from the floating potential and electron
temperature. We assume temperature/ﬂuctuations to have a negligible contribution to our
measurements. For most plasma coﬁditions, the probes could be inserted 0.015m inside
the limiter radius without perturbing the plasma.

Digital spectral anaiysis was used to reduce the information contained in the time
series of n(t) and ¢(t) obtained from the probe. The wavenumber % is measured from the
phase delay between two probes. Estimation of S(k,w) is based on a correlation technique
proposed by Beall® et al. The radial particle flux T and its spectral distribution Iy, due to
electrostatic ﬁuctua,tipns, is computed from' simultaneous measurements of the density (7)

and potential (¢) fluctuations by ensemble averaging over many independent realizations




using
F=<nv >=2 Z Re{n,v,} = ZZ T,

w>0 ' S ow>0

with

. E%)(f? l, .. '
= T :zkwgow/B

Vw

The six-channel far-infrared Thomson scattering system and calibration scheme em-

ployed for these measurements is described in Refs. 2 and 3. The entire S(k,w) spec-
tra is monitored during a single tokamak discharge with spatial resolution produced by
translating the scattering system both horizontally and vertically to move the séattering
volume within the plasma. The wave propagation direction was determined using single

channel heterodyne and multichannel homodyne detection. . The length of the scatter-

ing volume is dependent upon the scattering angle and varies from a chord average at

k = 0to X8cmatk = 12em™ 1,

Characterization of Turbulence

The complete S(k,w) spectra for density fluctuations measured during a single tokamak

discharge as is shown in Fig. 1. The dominant low wavenumber region (k < 5 cm 1) is

* characterized for both scattering and probe data by a broad, but peaked spectrum with

Aw/w =~ Ak/k ~ 0.5. The contour plot obtained from the probe data also indicates that
the fluctuating power above kg = 7 cm™? is small. The S(ks) exhibits a broad peak
at kg ~ 2 — 4ecm™!(kgp, = 0.1) with a fall off proportional to kj 4405 for larger wave
numbers. ' ‘

The two-dimensional structure of the turbulence was studied using an array of four
probes separated both fadially and poloidally by a small separation Az ~ 2mm. The
probe tips are not the innermost points of the probe body, so that the perturbation to
the plasma may be enhanced. The method used to estimate S (kr, ko, w) is similar to the
statistical dispersion relation approach? for a single k& component. In Figure 2 the freqﬁency
integrated spectrum S(k,,ksw) is shown for a radial location r = 255mm. The S(k,, ko)
spectrum is broader in the radial direction than in the poloidal direction. This anisotropy

is quantified by the half width o(k) of the spectrum: we typically find o(k,)/o(ke) == 2.




From the S(ke,w) spectrum we compute the power weighted phase velocity using
vpr(w) = 3o, p(w/k)S(k,w)/ >, 1 S(k,w). The phase velocity is nearly independent of
frequency for f < 100kH z. Figure 3 presents the measured phase velocity for both density
and potential fluctuations as a function of radius. Note that the phase velocity éha.nges
from propagation in the electron diamagnetic direction in the bulk plasmé to propagation

in the ion diamagnetic direction behind the limiter. This can be explained by a radial

‘ crzérnvtAer', the measured phééé‘%}élo.cify remained constant.

“electric field that produces a E, x B rotation. Also shown in Figure 3 is the profile of the

plasma potential from which the radial electric field is derived. The dominant contribution
to the measured plasma rotation at the outer edge is from the measured E,. The remaining
contribution is from the pressure gradient drift velocity and is consistent with measured
density and temperature profiles. Scattering data from the same interaction region as the

probes gave the same velocity. As the scattering volume was moved towards the plasma

In the region of highest velocity shear (dv/dr) we observe additional broadening of

the spectra. This cannot be explained by an F, x B Doppler shift of the rotating plasma,

which will cause a change in measured phase velocity but not a change in spectral width.
The high shear region extends over approximately 10mm and is located ~ 10mm inside
the limiter radius. In this region the turbulence becomes isotropic (o (k,)/co(kg) ~ 1) in
contrast to the low velocity shear regions. The correlation of a vorticity maximum with

spectral isotropy and broadened spectra may be indicative of shear flow drive turbulence.

Density and potential fluctuations peak 5 — 10mm inside the main plasma. The
scattered po*;:ver péa.ks at the limiter with a spatial width larger than the estimated spa.tizﬂ
resolution. For normal operation, the fluctuation level is significantly larger at the top
of the plasma than at the bottom deronstrating a poloidal asymmetry in turbulence.
This asymmetry® inverted with a reversal of the plasma current. Measurements with
probes located at multiple poloidal positions and one toroidal location show an up-down
asymmetry in the fluctuation amplitudes but not in density"and temperature profiles. At
the outer equator of the plasma, the density, temperature, potential and fluctuation profiles
are different from those at the top and bottom. These asymmetries are not understood

and work is continuing.




The radial profiles of the frequency integrated density and potential fluctuations are
significantly different. A conéequence of this is that the Boltzmann relation does not hold
in the edge plasma. This is shown clearly in Figure 4 where e@/kT is larger than 7/n for
probe locations inside the limiter. The fact that the Boltzmann relationship is not satisfied
throughout the édge region means that an estimate of particle flux requires a simultaneous

measurement of density and potential fluctuations and the phase angle between them.

Transport

An estimate of the fluctuation induced particle flux due to Eg x B drift as is shown in Fig-
ure 5.- The flux peaks at the radial location where 72 and ¢ are maximum, approximately

10mm inside the limiter radius. The phase angle of the density fluctuations relative to the

| potential fluctuations is close to 90° for the dominant fluctuation power at frequencies be-

low 200k H z. The sign of the average poloidal wavenumber k(w) changes going through. the

high velocity shear region but the particle flux is always outward because the phase angle -

- also changes sign. To maintain continuity, an additional convection mechanism must be

invoked. Possible mechanisms to maintain continuity are a radial flow or poloidal /toroidal
convection of particles due to asymmetries.

Comparisons with predictions of density gradient driven” (Vn) and resistivit.y gfadient
drive‘n8 (Vn) rl;lodels have been carried out. The resistivity gradient driven model scales
better with radius because of its favorable tefnperature dependence. More data is needed
to compare models with experimental results. '

From the fluctuation inducéd particle flux measurement at one poloida.l and toroidal
location, we can, with the assumption of symmetry, estimate the particle confinement time
by 7p(a) = N/(I'(a)A) where N is the total number of particles in the plasma and A is the
area of the outer surface defined by limiter contact. Typical results for 7, as a function
of electron density are shown in Figure 6 and compared with measurements of the global
particle confinement time deduced from measurements of the source function using H,.
The scaling of fluctuation induced particle flux with the global measurements of confine-
ment time is in agreement and the absolute values of 7, are well within possible errors.

This agreement may be coincidental as the probe measurements do not take into account




the known poloidal asymmetries in the plasma, but the scalings with I, Br, and Fie are
identical with the errors, suggesting a causal relationship.

We have attempted to estimate the electron heat flux due to fluctuations where
Geonv = B5/2kTel’; Geond = 5/2kn. < TE > /B. Magnetic fluctuation induced flux was
also considered. The electron heat fluxes ére_: shown in Figure 7 where gq;; = q?ond + Geonw-

Note that the convective contribution to the total heat flux is small. Electrostatic fluc-

tuations cannot explain the conducted heat flux for this low density discharge: a value
of T/T > 1 would be required. The contribution of the magnetic fluctuations to the
heat conduction in the edge appears to be negligible because of the small levels measured
(Br /Br = 10™%). The contribution of electrostatic fluctuations to the total heat flux may
become more important at higher densities. We have seen from both source and fluctua-

tion measurements that ¢..,, is approximately independent of density as the tempefature

~ drop with increasing 7i at the limiter compensates for the increasing particle flux with

increasing density. More results and theory are required to verify these results.

Acknowledgements

The authors wish to thank the TEXT staff for their assistance.




References

1
2

. J.M. Beall, Y.C. Kim, E.J. Powers, J. Appl. Phys. 53, 3933 (1982).

. H. Park, C.X. Yu, W.A. Peebles, N.C. Luhmann, Jr., R. Savage, .Rev. Sci. Instrum.
53, 1535 (1982). | | |

. H. Park, D.L. Brower, W.A. Peebles, N.C. Luhmann, Jr., R.L. Savage, Jf., C.X. Yu,
Rev. Sci. Instrum. 56, 1055 (1985). |

Ch.P. Ritz, R.D. Bengtson, S.J. Levinson, E.J. Powers, Phys. Fluids 27, 2956 (1984).
S.J. Levinson, J.M. Beall, E.J. Powers, R.D. Bengtson, Nucl. Fusion 24, 527 (1984).
D.L. Brower, W.A. Peebles, N.C. Luhmann, Jr., R.L. Savage, Jr., Phys. Rev. Lett.
54, 689 (1985).

P.W. Terry and P.H. Diamond, Phys. Fluids 28, 1419 (1985).

. L. Garcia, P.H. Diamond, B.A.Carreras, and J.D. Callen, Phys. Fluids 28, 2147

(1985).

11 ;




Figure Captions

1.

S(ke,w) spectra at r = 25.5¢m for Langmuir probes (contours) and FIR scattering

(bars indicate spectral linewidth).

. Frequency integrated spectrum S(k,, ko) from Langmuir probes, measured at the top

of the tokamak at » = 25.5 cm.

. Radial profiles of the plasma potential and of the poloidal phase velocity in the lab

frame measured with Langmuir probes.
Radial profiles of potential e /kT and 72/n density fluctuations from Langmuir probes.
Also shown is the edge value 7/n from scattering data.

Radial profile of the radial particle flux induced by electrostatic fluctuations.

Global particle confinement (++) and particle confinement predicted from electrostatic

fluctuation measurements (0) versus chord-averaged electron density. For this scan

Br = 2.0T,I, = 200kA.
Electron radial heat fluxes due to convection 6btained from source measurement and

conduction obtained from power obtained from power balance analysis.
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Ton Pressure Gradient Driven Turbulence:

Theory and Consequences
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Abstract

Ton pressure gradient driven turbulence (IPGDT) due to n;-modes is of interest both as
a paradigm for saturated, multifield turbulence and as an agent for anomalous transport -
in fusion devices. The results of recent investigations of IPGDT are summarized. Special
emphases are placed on the validity of “mixing length rules” and on the relation of ion
» thefmai tfénspof{: ;cro ﬁarticlé cbnﬁnem-ent.. "-The: ;;orswsible r(;ié of IPGDT mRFP i)lasmaé is

discussed.
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Introduction

In this paper the results of recent investigations® of ion pressure gradient turbulence are
summarized. Ion pressure gradient driven turbulence (IPGDT) is of interest both as a
paradigm for saturated multifield turbulence and as an agént for anomalous transport in
tokamaks. Here, the theory and consequences of IPGDT are discussed. Special emphases

are placed on the validity of “mixing length rules” and on the relation of ion thermal

transport to particle confinement. The possible roles of IPGDT in RFP and stellarator
plasmas are also discussed. This paper is divided into two sections. Part I is concerned
with the basic theory IPGDT, while Part II discusses applications to anomalous transport

in fusion devices.

Part I: ITPGDT—Theory

IPGDT develops from unstable n;-modes? which are incompressible mass-flows resulting -

from the coupling of sound waves to radial ion temperature gradients. For n; > ;e ~
1.5, IPGDT can be described by coupled fluid equations for vorticity (Vﬁ_(ﬁ), parallel
flow velocity (v), and ion pressure (§). Typical time and space scales characteristic of
long wavelength 7;-modes are v ~ [(1 + 77,‘)/7‘] 1/2 kgpscs/Ls and Az N‘[(l + 77,-)/7‘] 1/2 Ps-
Shorter wavelength modes develop w, ~ «v as kgps — 1. Ultimately, ion Landau damping,
represented in the fluid model as a parallel ion viscosity, truncates the spectrum at kgps ~
1.

A natural description for the nonlinear fluctuation dynamics of IPGD'T utilizes coupled
equations for the “energies” E,, ~ <<;A52 + (Vq{;)2>, Ey ~ <'Bﬁ>, E, ~ (p*), thus ensuring
consistency with the conservation laws and constraints of the system. The energy evolution
is determined by physical processes characterized by three time scales, which are 7, =~
(Dk/Ami)_l, the nonlinear interaction time; Teqp = [((1 + m)/r) 1/2 'wc] —1, the sound
wave energy equipartition time; and 74 = [/.e”lc;?’A:ci / Lf]_l, the dissipation time scale.
For IPGDT, the time scales follow the hierarchy 7.qr < 7.k < T4.k. Hence, exploiting the
fact that all nonlinearities are convective, the energy equations may be added so that the

total energy e is determined by

Oe
5 ,u,”V‘z]s 4+ Tyoe = 552. (1)
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Here, T 2 and sz) refer schematically to the triplet and gradient source, respectively.
Standard methods of renormalization and stochastic models can now be employed to
solve Eq. (1). A “Reynolds number” Re = Tl,z/,Nﬁ ~ [Lka/p”szi] ~ (1+mn;) can be
defined. As Re > 1, coupling to smaller scales broadens the spectrum to kg ~ (Re)l/ 2k,
where kops ~ 0.4 . Thus, corrections to “mixing length rule” estimates are significant! In
%,

particular, the predicted ion thermal diffusivity x; ~ xm1|C(Re)|?, where Xxm1 ~ v(Az)3,

and C(Re) ~ 7/2In(Re).

It is interesting to note that mixing length® and scaling methods,* which effectively
balance Ty e ~ Sj ., ignore dissipation scales and are hence frequently applied to equa-
tions which do not even have a stationary solution! Indeed, note that C(Re) — oo as
g — 0. Alternatively, even if “inertial” range properties are insensitive to y, macro-
scopic observables are determined by spectrum sums, whose limits of integration depend

‘on dissipation. - ‘
Part II: TPGDT—Consequences

Several transport coefficients of practical interest have been computed. These are:

i) the ion thermal diffusivity x;,
™. | 2 1 +m))
Xi = 0.4 z]n (1+77'L) (pscs/Ls> __7_‘—_ 9 (2)
ii) the accompanying electron thermal diffusivity x., |

2 21 —i—ﬁi 5 c2p?
Xe = 53/2 (Z 11'12(1 + 777:)) ( > 7:_[12, (3)

T

iii) the particle diffusivity for v, < 1, and the particle flux for ve; > wre,

2 2 3 2 2
L32[ 2 1+m\ cps
D, ~¢ / (-Z—ln (1+77i)> ( - ) Yo L2 (2+3/2776)> (4a)
W = (2 e o)) (1 1) o) 2 (12 g (4b)
T/ — 4 n T]’I. T}g * Ln T los mi ?
iv) the ion (toroidal-flow) viscosity
BL X ‘ (5)
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It is interesting to note that x; ~ (1 + n;)?, so that 7; > 7; erit is unlikely. Also,
while Eq. (4b) predicts an inward pinch® for n. > n¢, Eq. (4a) indicates that
IPGDT-induced fluxes are outward only, for v, < 1. Thus, D, drops with x;,
consistent with the results of experiments,® where particle confinement improves.
after pellet injection. Similarly, Eq. (3) indicates that x. should also decrease
with 7;, although other loss mechanisms may be operative. Finally, Eq. (5)

follows from the fact that 7;-modes are sound waves, and thus naturally couple

to ion flows.

IPGDT fluctuations are difficult to distinguish from the more familiar drift wave type,

except in regards to direction of propagation (ion, rather than electron, diamagnetic). More
generally, a possible clue would be the presence of fluctuations in flat density regions of
ohmic saturation plasmas, where drift-wave turbulence should be weak.
7 It ris”intrerésrting tof nofé rfhé,t an rirnrlpurity species”vv.it‘h” éharge Z , den51ty ﬁ;,f‘ ;nd
scale length L,, modifies IPGDT according to the substitution rule (1 + ;) — (1 +
;) [1 + 7 (no . / ng) (Ln / L, I)] -1 Thus, edge-peaked impurity cqncentrations enha.rice the
turbulence while centrally peaked concentrations quench it. In particular, for Z-mode”
plasmas in ISX-B, impurity injection was observed to improve particle confinement and
steepen the density profile during auxiliary heating. This result is consistent with the
predicted impurity enhancement of the IPGDT-driven inward flow.

Most of this discussion has focused on applications to pellet injection and neutral beam
heating in tokamaks. However, n;-modes are also possible in RFP and stellarator devices.
In particular, in RFP plasmas, 7;-modes and resistive interchange modes couple naturally.®
Thus, the non-adiabatic electron (kﬁv‘%h < w'y) resistive interchange smoothly connects
to the adiabatic electron (kﬁv%h > w'y) n;-mode of higher temperatures. It follows that
n;-mode turbulence is very likely in high temperature RFP plasmas, where density profiles
are rather flat and strong ion heating occurs. Balancing 7;-mode induced thermal loss
with ohmic heating yields the scaling 7' ~ I;/ 4 (I,/N )1/ 4. Hence, pellet injection should
be considered in order to improve RFP energy confinement. Indeed, pellet injection may
be a necessity for ignition at reasonable currents.

Stimulating discussions with M. Greenwald, F. Wagner, S. Wolfe, and A. J. Wootton
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Abstract

Localized fluctuations which are either decaying of self-binding are an im~
portant component of plasma turbulence often neglected in conventional treat-
ments. Both types of localized fluctuations are described in the context

of 3-D drift kinetic systems. Their role in plasma stability and transport
is emphasized.

Introduction

Conventional descriptions of plasma microturbulence rely on a
simple picture in which turbulence consists of a homogeneous ensemble of
randomly phased, finite amplitude waves. Relative turbulent scattering of
neighboring phase space trajectories is spacially uniform in such descriptions,
implying that any tendency of the plasma to form localized, temporally decay-
ing structures is not accounted for. Futhermore, the assumptions of statis-
tical homogeneity and the random phase approximation which are employed in
order to obtain a closure, do not allow for localized coherent structures
in which self-field effects produce very long lifetimes relative to typical
correlation times. Recent experimental results indicate that plasma turbulence
may be more accurately viewed as an intermittent, spotty pattern of localized,
nonlinear structuresl. In this paper, several such structures intrinsic to
low frequency turbulence in magnetized plasmas are described. More impor-
tantly, the role of these strongly nonlinear structures in anomalous trans-
port and stability is emphasized. Of Particular note is the novel result
that collisionless drift Alfven turbulence does not drive magnetic-flutter
transport.

For some time it has been recognized that closely separated phase
space trajectories turbulently scatter apart from each other at a rate which
is slower than that of more distant trajectoriesz. Phase space density, which
is conserved along such trajectories, thus tends to exhibit short range cor-
relation. This correlation eventually decays under the turbulent scattering,
but its lifetime may exceed the correlation time of the turbulence, which is
determined by the longer scales associated with wave-like fluctuations.

When the average distribution possesses a gradient, turbulent rearrangement
of the average distribution actually creates phase space correlation. A
balance between this source of correlation and the decay by inhomogeneous
relative turbulent diffusion gives rise to a steady state in which the two-
point phase space density correlation is highly peaked at small separation.
This statistical correlation of phase space density at short range is refer-
red to by the name of clumps. Because clumps are driven by the turbulent
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rearrangement of average density, they represent a source of nonlinear plasma
instability. Through the mechanism of phase space density comservation, this
instability naturally relates to relaxation of the average distribution and
transport. Nonlinear stability and transport in steady state turbulence for
low frequency drift kinetic systems is detailed in Ref. 3.

In the two-point formulation used to describe clump phenomena,
there is no simple way to incorporate the effects of the self-electric field
associated with a localized clump of charged particles. Yet, simple estimates
show that such fields can be sufficient to trap the particles that produced
them?®. Progress has been made in examining these self-trapping effects by

studying single, isolated self-binding structures. Originally investigated
in a 1-D geometry“4, we consider here phase space holes in the 3-D geometry
of a drift kinetic system.

Electrostatic Drift Holes

‘A phase space hole is a depression in the phase space density
distribution. Particles localized in the phase space region occupied by the
hole are trapped by the potential well which they and the background plasma,
consisting of passing particles, self-consistently produce. By definition,

the drift hole is a steady state solution of the drift kinetic equation which .. . ..

satisfies a constraint of maximum entropy subject to a given mass, momentum
and energy. The coherent structure studied here thus represents a most pro-
bable configuration of the system. We consider a simple hole in which the
trapped particle density is taken to be constant in a rectangular region in
phase space bounded by le < Ax/2, ,yl < Ay/2, Iv" - u"| < Av,/2, where

u,, is the center of mass hole velocity along the magnetic field line. The
characteristic hole scales Ax, Ay, and Av, are obtained by maximizing the

entropy o = -nyAxAyAv, [%(l + nfy) + 1/2 %/fg] subject to fixed mass,
M= mEEAxAyAv", momentum, P = Mu,,, and energy E = (M/24)Avé - lel/2fdv¥¢(x)

ny )
where n, is the density, f is the trapped particle phase space density, fo
is the background phase space plasma density, ¢(x) is the self potential,

and the energy integral is over the phase space volume of the trapped particles.

The potential satisfies the quasineutrality condition

ny
-fAv,,

(1)

2 32 | 32 1v,,3/3y
(1-02 &,+8 + ]leymm.

3y n

e 0

where the left hand side represents the dynamics of passing particles: adia-
batic electrons and ions with polarization and diamagnetic (vge = (cTe/eBo)Lﬁl)
drifts. The solution of the potential equation yields a localizing trapping
potential which e-folds away from the trapping region with the characteristic

shielding length X, = (1 + k2 02 - w /k"u")"l. Cross field trapped particle
g k vy s *e

motion is found from the drifts associated with the potential (vy = -(c/By)3¢/dy,

vy = (c¢/Bo)3¢/3x) to be vortical. Carrying out the maximization procedure,
the cross field scales Ax and Ay are found to range from a few Pg up to a
fraction of the system size. The hole depth is proportional to the width in

velocity space '¥k = (Avn/6vge)[g(Ax/Ak)]"l, where the width is given by
bvie = (2]e|$/me)1/2(3/8)1/2 gax/ni)1/2(1 - exp(-bx/N))"1/2 < 1, and g
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is a structure function. The width is such that the trapping criterion
Av, < vy, 1is satisfied explicitly. Thus the entropy maximization constraint
is internally consistent with the stipulation that the trapped particle dis-
tribution is, in reality, trapped in the self consistent potential.

Drift holes, like clumps, are nonlinearly unstable. The conserva-
tion of phase space density

8/ot [a3x [av, ¥2 = -20/t [d3x [dv, <f>F (2)

provides for hole growth in résponse to movement of the hole relative to the
background plasma <f>. When passing ions are accelerated through the hole
potential, bulk plasma electrons follow in order to satisfy quasineutrality.

"~ Owing to a spatial gradient in x, more ions and electrons move down the grad-

ient than up, placing the hole in a region of greater background plasma den-
sity. Conservation of phase space density requires that the hole depth in-
crease as the hole moves into a region of greater <f>. The growth rate is

given by v = w*e(e¢/Te)l/2IImxilS(Ax/kk) where x4 is the ion suscepti-

bility and S(Ax/Ak) is a structure function of order unity. The presence of
the ion susceptibility reflects the role of hole-ion interaction. This scal-
ing is in sharp contrast to linear growth(which scales as the electron sus-
ceptibility) and allows holes to grow below the linear threshold. The growth
rate, scaling as ¢1/2 is manifestly nonlinear in character. Particle
excursion during hole growth is limited to Ax, since particles beyond a
shielding length do not feel the hole potential. This saturation of growth
suggests that mixing length notions might be replaced by the concept of satur-
ation determined by a characteristic scale Ax representing the most probable
fluctuation.

Transport and Relaxation

The nonlinear structures we have discussed have a profound effect
on transport. This is strikingly illustrated by considering the transport
driven by magnetic fluctuations in drift-Alfven turbulence? Two related
models are described. The first is concerned with the evolution of an iso-
lated blob in a drift-Alfven system. A paradigm for such an object is a mag-
netostatic drift hole®, which is a magnetic flutter analogue of the electro-
static drift hole just described. In the second model, statistical averaging
is used to construct a Lenard-Balescu turbulent collision integral for the
relaxation of <f> due to fully developed drift-Alfven turbulence.

The conservation of phase space density, Eq. (2), describes the
evolution of the isolated blob f, and thé relaxation of the average distri-
bution <f>. Expanding <f> around x, ( <f> = <f(xp,un)> + (x—xo)3<f>/3xlxo,u")
and noting that, for drift-Alfven turbulence, dx/dt = cEg/Bo + vuBy/By it
follows that

<B J,, >
2 = _ : (C _ r 'eb
[av,fax 3/ot ¥ 23<f>/8t|x0’u"LBo<Eene>b e ) (3)

where < > dis the average over the blob volume. Imposing quasineutrality

(ny = ng) the first term on the right hand side of Eq. (3) becomes c/Bo<Egn>y,
= ckz/Bo<¢2>ImXi reproducing the results of electrostatic hole growth.

The flutter contribution to Eq.(3) (second term) is subject to Ampere's law

Jne = —VfA", for negligible ion current). Since B = VA, X f and V+B = 0, it




follows that <BrV2A”>b = —<8/Br(Br/Be)>b which ultimately contributes only
surface terms of “0(Ax/Lyx) << 1. Hence, in thig simple system, magnetic
fluctuations do not result in the evolution of ¥ nor in the relaxation of
<f>. This result may be viewed as a consequence of the self-trapping fields
generated by self-bound phase space structures. Alternatively, self-consistency
constraints (Ampere's law) ensure that transport driven by blobs is ambipolar
over blob scales.

Transport in fully developed drift-Alfven turbulence is governed by
an averaged Vlasov equation. The evolution of <f> is driven by the radial
phase space flux: 3<f>/3t = 3I;/3r where

Vi ~

= <& - - i< - Y h
B AMCER- W) h>E,MRE(lBOkf(d)-cAu_)h>k’w) L (4)

o
Here, h is the nonadiabatic part of the fluctuating distribution. Including
fluctuations h{¢) which are phase coherent with the Eotentials ¢ and A,
(collective resonances) and incoherent fluctuations h (clumps or blobs), the
right hand side of the averaged Vlasov equation can be represented as a Lenard-
Balescu turbulent collision integral. The coherent fluctuations drive (quas-
ilinear) diffusion and the incoherent fluctuations give rise to a collision-
less drag. With the imposition of Ampere's law and quasineutrality a cancel-
lation of the diffusion terms by the electron part of the drag terms occurs.
Since the ion part of the magnetic drag is proportional to negligible ion

current contributions, the transport is governed by the ion part of the electro-

static drag:

ck
- -1 Mo qBLA b,9
r. = E’MB;T%”IZF 8 (o=kyuyy) Re(£k,m <¢h> dk,w Imdk,w(ion)) (5)
where ﬁ—l is the inverse eigenfunction operator and the d's are dielectric
tensor elements. This result is analogous to those obtained using Lenard-
Balescu equations for a 1-D electron-ion plasma. In that system, constraints
of momentum and energy conservation on the interaction of localized phase
space fluctuations preclude momentum exchange in like-particle collisions,
thus preventing relaxation of <f>.

Both the isolated blob model and the fully developed turbulence
model indicate that electrostatic fluctuations alone produce transport in
drift-Alfven turbulence. This conclusion effectively underscores the criti-
cal role played by incocherent fluctuations in turbulence and argues for the
" necessity of their inclusion in plasma turbulence models.
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