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ABSTRACT
Saturated resistive pressure-gradient-driven turbulence is studied analytically and with

numerical calculations. Fluid viscosity and thermal diffusivity are retained in the analysis

~ and calculations. Such dissipation guarantees the existence of a stable, high-m dissipation

range, which serves as-an energy sink. An accurated saturation criterion is proposed. The
resulting predicted pressure diffusivity scales similarly to the mixing length estimate but
is significantly larger in magnitude. The predictions of the analytic theory are in good

quantitative agreement with the numerical results for fluctuation levels.
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I. INTRODUCTION

Resistive pressure-gradient-driven turbulence, which evolves from linear resistive inter-
change instabilities,’»? is a likely cause of fluctuations and anomalous transport in mag-
netically confined plasmas. Indeed, resistive interchange modes have been proposed as the
cause of anomalous thermal transport in stellarators® and reversed-field pinches,*® while

the closely related resistive ballooning mode has been proposed as an explanation of the

degraded energy confinement in high 8, tokamak plasmas with auxiliary heating.® Thus,
the development of an understanding of resistive pressure—gradient-driﬁen turbulence is a
generic theoretical problem of broad interest.

Previous work on the theory of resistive pressure-gradient-driven turbulence has con-

sisted primarily of the application of mixing length arguments* and dimensional analysis
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___ techniques.® Mixing length arguments, such as D = ~/k2, attempt_to relate the properties.

of fully evolved turbulence to the characteristic scales of the underlying linear instability -

by semiquantitatively bala.ncing nonlinearity with the linear drive. Dimensional analysis
techniques utilize the scale transformation symmetries of the basic, nonlinear equations.
Both yield similar results for predicted fluctuation levels, diffusivities, etc. ‘These pre-
dictions are in qualitative agreement with the results of numerical simulations performed
for relatively high resistivity and high viscosity. The agreenient was particularly good for
predicted scalings with Bp, dpo/dr, etc. However, when compared directly with experi-
mental results, the predicted thermal diffusivities were, in general, too small to explain
the observed phenomena. |
There are several deficiencies in the theoretical underpinnings of the ini);ing length and
dimensional analysis approaches. First, as mentioned earlier, mixing length predictions are
derived from a heuristic procedure of balancing nonlinearity with linear drive. In particular,
no genuine saturation criterion based on considerations of energetics is satisfied or even
established. Second, the dimensional analysis approach, as implemented in Ref. 5, omits
the effects of dissipation and the role of scales dominated by dissipative damping. The

omission of damping, which is analogous to lack of a well-defined saturation criterion,




explvains‘why~the~(zero~d—a,mping~)-mixing—length—predict~ions~a,gree~with~those of dimensional
analysis.

An initial attempt to resolve these difficulties was undertaken in Ref. 7. In that work,
a saturation criterion was defined in terms of the requirement that fluctuation energies
be stationary in time, and the thermal dissipation required for this was retained in the

analysis. A two-point spectrum theory, which treated the nonlinear coupling of sources

and sinks, was developed. Quantitative calculations indicated an enhancement of the pre-
dicted turbulence levels beyond those given by mixing length theory. The leading order
parameter scalings of the predicted diffusivity agreed with those of mixing length theory.
The nonlinear radial correlation length was determined by the asymptotic balance of tur-
bulent viscosity with resistive field line bending. The saturation levels were determined

by the balance of the nonlinearly modified curvature drive (i.e:, diffusion was retained

in the p response calculation) with resistive field line bending. It was also shown that:. .
the enhancement factor is determined by the effective Reynold’s number of the resistive
pressure-gradient-driven turbulence.

Despite the progress it reflected, Ref. 7 still contained two significant deficiencies.
First, large-m resolution and pressure gradient control were insuﬁicient. in the numerical
calculations. Thus, only qualitative tests of the nonlinear theory were possible. Second,
thé analytical theory did not include collisional viscosity effects in the vorticity evolution
equation. As shown here, collisional viscosity is required to s‘t‘a,bilize short-wavelength, fast
interchange modes and thus provide an energ& sink. Note that gradient-flattening effects
in the simulation obscured the significance of this omission.

In this paper, saturated resistive pressure-gradient-driven turbulence is studied an-
alytically and with numerical calculations. Fluid viscosity and thermal diffusivity are
retained in the analysis and calculations. The viscosity and thermal diffusivity guarantee
the existence of a stable large-m dissipation range, which serves as an energy sink. In the

numerical calculation, the pressure gradient is held fixed, thus avoiding possible confusion




of quasilinear and nonlinear effects. Sufficient large-m resolution is retained and the ex-
istence of a saturated state is demonstrated by well-converged numerical calculations. A
saturation criterion is proposed. This criterion requires the turbulence level' to be high
enough that energy outflow, as represented by renormalized fluid viscosity and pressure
diffusivity, from the energy-containing low-m modes is sufficient to stabilize these modes.

The resulting predicted pressure diffusivity scales similarly to the mizing length estimate

but is significantly larger in magnitude. The parameter scalings of the enhancement factor
are determined. The predictions of the analytic theory are in good quantitative agree-
ment with the results'of the numerical calculations. The implications of the results for
fluctuation levels and particle transport in stellarators are discussed.

A similar departure from the simple mixing length theory was found for the resistivity-

gradient driven turbulence.® In that case, at saturation, the level of diffusion adjusts to

a iralue a,t’ Which fhermal dissipationybalavnces resistivity | gradient drivé. Finally,. it: is
worthwhile to note that in a recent study® of ion temperature-gradient-driven turbulence
due to n; modes, related considerations also lead to a significant enhancement of saturated
turbulence levels beyond the levels corresponding to mixing length predictions.

The remainder of the paper is organized in the following manner. The basic resistive

pressure-gradient-driven turbulence model is presented in Sec. II. In Sec. III, the linear

stability properties of the model are investigated, with particular emphasis on the role of -

the dissipative terms. In Sec. IV, the renormalized theory of the resistive—pressﬁre—gradient

~ driven turbulence is developed. A simplified set of renormalized equations is derived. They

‘are analytically solved in Sec: V. The saturation mechanism and the significance of the

mixing length approach are discussed. Section VI contains a discussion of the multiple-

helicity nonlinear numerical results and comparisons with the analytic theory predictions.

Finally, Sec. VII contains the summary and conclusions.




II. RESISTIVE INTERCHANGE MODE STABILITY MODEL

The basic resistive g-mode stability is discussed in this section. The equations used for
the multiple-helicity numerical calculations are presented. For the analytic calculations,
a simplified electrostatic model is used. The approximations made in deriving such a
model are also discussed in this section, with special attention given to the implications of

conservation laws.

The simple model of the resistive interchange instability used in this paper contains the
main physics properties of the instability, while taking the average pressure gradient as the
only source of free energy. The basic geometry is a periodic cylinder of length L = 27 R.

The model consists of three equations:

9y

Fri —RoV|¢é+ Rondz , . (1)
w1 I ,
7 —--—p V”Jz-i—me'(VQXVp)-I-MV_LU , | (2)
dp dpo
d — X_LV p V dr . (3)

Here 9 is the poloidal flux, ¢ the velocity stream function, and p = po+ p the total pressure,
where po is the time-averaged pressure and p the fluctuating part. The term V,(dpo/dr) in
- Eq. (3) is shown explicitly because it contains the only free-energy source term, (dpo/dr).
To simulate the conditions of steady-state turbulence, (dpo/dr) is maintained constant in
time throughout the calculations presented here.

The vorticity is U = V2 ¢, and Jz = V3 ¢/(uoRp) is the current parallel to the z-axis
of the cylinder: For the initial equilibrium the current density is taken to be zero. The

constant uo is the vacuum permeability. The convective derivative is

d d
£"5§+V -V ) (4)

with the velocity given in terms of the stream function by V = V¢ X z, and the derivative

along the magnetic field lines is V|, where

of (5)

Vif =4~ = (z x Vy) Vi+Bog>
0
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and By is the magnetic field along the z-direction, which we assume to be constant. The
coefficients n, K, and. x; are the collisional resistivity, viscosity, and cross-field thermal
transport coefficients, respectively. They multiply the corresponding dissipative terms in
Egs. (1)-(3). Finally, pp, is the constant mass density.

This model, as stated, can be interpreted as the reduced magnetohydrodynamic (MHD)

equations'® for a straight stellarator configuration. This reduced set of equations can

be derived using the stellarator expansion.!! From this viewpoint, the V) term can be
interpreted as the average helical curvature, and it is directly related to the oscillating part

of the external stellarator field B, by

1
= 5B - (%)

o Here the. bar indicates toro1dal angle average.In.the present.calculations, {}.is taken to.be .. |
a function of r only and is constant in time.
Equations (1)-(3) constitute the basic model used in the present studies. They are
solved humerically by the nonlinear initial value KITE code.!? The results are discussed
in detail in Sec. VI. For the analytic calculations, we have used a simplified electrostatic
model that results from neglecting the induced electric field (8¢ /8t) term in Eq. (1). Then

Ohm’s law is simplified to

1
Ty = ;vﬁo)qs : | (7)

and the model reduces to two equations,

av 1 (0) 1 .
e npm ¢ + z [VQ x V3| +uViU (8)
dap 2. 10¢ dpo

o - XaViP— oo ‘ (9)

Here V(%) means that only the equilibrium magnetic field is included in the parallel deriva-
Il

tive. From Egs. (1)—(3) one can derive equations for the evolution of the magnetic energy,

B = g [V 1Va0 (10




the kinetic energy,

Ex = ”—2"—‘ av | Vié|? , (11)

and the mean-square pressure fluctuation,

E, = %/dVﬁz . (12)
These evolution equa,tionsA are

dE
— = /dVJZv,|¢—n/dVJ§ : (13)
dE d
e / AV IV + / dvvrﬁd—? ~ b / vu? (14)
dEp _ =12 . dPo

Tl xl/dV[VJ_p[ —/dVV,pdr , (15)

for rigid conductive boundary conditions. The terms with V)¢ in Egs. (13) and (14)

transform kinetic energy into magnetic energy, the latter being dissipated by resistive
diffusion: The kinetic energy is driven by the radial flux of pressure across curved magnetic
field lines. Part of the kinetic energy is expended by coupling to magnetic energy, and
part is dissipated by viscosity. The averaged pressure fluctuation is driven by the radial
flux of pressure and damped by cross-field dissipation. |
By a slight change in the definition of E,,
E,= l/dv B — (16)
2 | (dpo/dr) (d2/dr)™" |

has the dimensions of energy, and its evolution equation,

dE o Vip|? . dpo/dr I
”d'_tp:_Xl/ [ Vip | — —/dV p—— o/ _— (17)

| (dpo/dr) (dQ/dr)™" | | (dpo/dr) (d2/dr)™" |
can be combined with Eqs. (13) and (14) to yield a global energy conservation equation,

avy.530 |1 _ _(dpo/dr) (dQ/dr)~!
~dr | (dpo/dr) (d02/dr)™" |

d —
E(EM+EK+EP) =/

—n/dVJ%—upm/dVUz

| Vip|?
T X / dV| (dpo/dr) (dQ/dv) ™" | (18)
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If (dpo /dr) (dn2/ dr’)_1 < 0, the first term in Eq. (18) drives the energy while the other
three dissipate total energy. If (dpo/dr) (d}/dr)™' > 0, there are no driving terms. It
is clear from this discussion that the only source of free energy for the instability is the
pressure gradient in the bad curvature region. If this term is kept constant in time, a
steady state is only possible by balancing the driving term with dissipative terms. As

the latter are only effective for small scale lengths, energy transfer through a turbulent

spectrum is required to attain such a steady state. Conversely, without dissipative terms,

no steady-state situation can be attained.




III. LINEAR STABILITY PROPERTIES

The linear stability properties of resistive interchange modes are discussed in this
section. Special emphasis is given to the effect of dissipative terms because of the impact
they have on nonlinear stability properties and their role in determining the attainability
of steady-state turbulence.

The resistive interchange modes are radially localized.!? Therefore, a sheared-slab

approximation gives a good description of their linear stability properties. In the linear

approximation, the eigenfunctions can be expressed as
~ . z
@ = Pm(r)sin <m0 + n———> ,
Ry

P = Pm(r) cos <m0 -+ n-—z~—>
Ry

Setting x = r — rs, where r; is the radial position of the singular surface, ¢(rs) = m/n, the

linearized form of Eqgs. (8) and (9) is .

2 ~ ~ 1 dOm m? BZ z? .

— (V38m) =0V~ =2+ 19
ot ( 1Pm UV 1ém o dr Tspm + n meS qug Pm (19)
Opm m dpg ~ 2~ .
9Pm _ Mo v . 20
ot re dr mt X, ViPm , | (20)

Here Ly =| (1/q) (dg/dr) |~! and all radial derivatives are taken at r = r;. The 6perator

V3 in the present approximation is given by

dZ m2
2 - _
Vi dz? 2 , (21)

Tt is convenient to write Egs. (19) and (20) in dimensionless form by changing the variables
in the following way: X = mz/rs, Pm = pmm (dpo/dr) ' r71, and ®,, = ¢mrr/a?. Here,
a is the radius of the cylinder and rg = a®uo/n is the resistive skin time. Then Egs. (19)

and (20) become

14@ o d2@m _ _ K XZ) ) KP, =0 (22)
K dXx4 _(’Y"f‘ M) 1X2 l () i 2 ! .
_ d2P — —




with ¥, = rrx,/a®, B = tru/a?, and 7 = r2y7g/(a®*m?). The coefficients Ky and K

are

| [ dQ r\* Po [ —a dpo ‘
r= (o) () 25 () = e

6 ( a \? 5 (a0
Ko = m? T & 2 { @ Ko
3=m (am) <qu> s < TR ) ’ (25)

where S = 7r/7hp is the ratio of the Tesistive time to the poloidal Alfvén time, 7, =
Ro+/topm /Bo. The parameter € = a/Ry is the inverse aspect ratio of the cylinder, and
Bo = 2uopo(0)/B2 is the peak beta value. Equations (22) and (23), together with the
boundary condition on P,, and ®,,, define a sixth-order eigenvalue problem with 5 the
eigenvalue. The problem can be simplified using cosine Fourier transforms. In this way, the

system of Egs. (22) and (23) is reduced to the following second-order eigenvalue problem:

A3 1

dy? ~ K

K A _
, 26)
Y+ %, (1+y2) bm (26)

[ﬂ(1+y2)2+7(1+y2)-

where

Pm(y) = /0 " ix & (X) cos(Xy) . (27)

The eigenvalue problem (26) can be solved by the WKB approximation. It is, in general,

a two-turning-point problem. Therefore, the eigenvalue condition can be written as

2 /yo Kl Y
dyy | —— — Al +y?) = g1+ y2)? = = 28
with yo being the positive real root of the integrand, that is, the solution of
Ax. (L+90)° + A+ X)L +95)* + 7 (L + o) = K1 (29)

This equation can be viewed as a cubic equation for §o = (1+y2). The condition equivalent
to the instability condition is K; > 0; for large enough K, the cubic equation has a positive
real root. Therefore, under these conditions, when 7o > 1 there is a single real positive

value of yo satisfying Eq. (29), and Eq. (26) is a two-turning-point problem. Let us first
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consider the case with only resistive dissipation, that is, # = ¥, = 0. In this case, the

integral in Eq. (28) can be calculated, and Eq. (28) yields the dispersion relation
3
—Sr?)z + 'VST?)QK2 — Kl . (30)

The supérscript (0) in the growth rate refers to the & = ¥, = O case. For high S values

and low m modes, K; > 1 and Ky > 1. Therefore, the second term on the left-hand

1
side of Eq. (30) dominates the first, and 39~ (K%/K;)®. In this limit, we recover
the well-known 7725? growth rate for the resistive interchange mode. In terms of physical

parameters, the growth rate is

L 2
() — (BN \* [Bo ( dO) [ —a dp) mglg |®

—~—-——————For-very high-m-modes; the-first-term-in-the left-hand-side-of-Fiq:- (26)-dominates-the—~-———- R

L
second one. In this limit, f‘y,(,g) ~ K7, this growth rate corresponds to the so-called fast
(0)

interchange mode. In terms of the physical parameters, v,’ is given by

(0) _ [Bo (4 (_—a_dpo ]_ —1
™ —[262 (“dr><po(0) dr) T (32)

The growth rate of the mode no longer depends on resistivity in this limit. We have

plotted the growth rates given by the dispersion relation Eq. (28), and by the two limiting
expressions, Egs. (31) and (32), in Fig. 1a. The growth rates have been calculated using
the equi‘lib‘rium parameters in Table I, with 8y/2¢Z = 0.0125 and S = 10°. The dispersio}n
relation (28) gives a good description of the resistive interchange instability in the limit
of o = )’( . = 0. For the more general case, the dispersion relation has been tested by
comparing the growth rate given by Eq. (28) with the numerically calculated value obtained
from the linearized equations (1)~(3) solved by KITE.!? In Fig. 1b, the results of this
comparison are plotted. The calculations are done for the same parameters as in Fig. 1a.

Figure 1b shows that the high-m mode can be stable if both & and x, are different
from zero. This is a general result, which is important because it has implications bearing

on the nonlinear evolution of the resistive interchange turbulence. To reach a saturated
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steady state, it is necessary to have an effective energy sink at high-m. This energy sink
oﬁly exists if the high-m modes, above a critical m value m., are linearly stable. The value
of m, is finite only if both fi and ¥, are different from zero. For a given mode number m,
the values of u and x, to stabilize this mode can be calculated from Eq. (28), by setting

4 = 0 in that equation:

1
Vi /Kz 2 ‘
. U .1.,_1,_‘?;2- 2 - { 33\
4 \ \//J,X_L 1+ y? ( ) N

Given either fi or ¥, , this equation can be regarded as the eigenvalue condition for the
1

other. In this limit, yo = [(Kl /Bx l)% - 1] “. It is clear from the expressions for yo

that unless 2 and ¥, are both nonzero, there is no solution to Eq. (33). The integral in

Eq. (33) cannot, in general, be calculated in a simple way. However, for a relevant range of

parameters high S and low m, (Ki/@x. l) > 1, the integral in Eq. (33) can be calculated

in an approximate way and yields

' 1 2
K | 4 < K >E '
Yie=21dZm]2(- . 34
X1 KZ{W [ X cle :|} ( )

The subscript ¢ indicates that the ¥, and & values are the critical values for marginal

stability. The ratio K;/K» can be calculated from Egs. (24) and (25),

Ky Bo ( d0) ([ —a dpo) (glq ’ TR
Ky 2€2 dr po(0) dr r a? o

=AW e

Here, 'y( ) and W,(,? ) are the linear growth rate and Width.:(i)f the linear eigenfunction in
absence of dissipation (m=%,=0 case) fy,(n) is the solution of Eq. (28), and W( ) can
be calculated by balancing the inertia term with the field line bending term in Eq. (19),

L/ 272\ 3
(0) - | Bo (,90) (_—a dpo R L\ (¢71g
W [262 <a dr) <p0(0) dr a?uo S mar | © (36)

The term oW¢ could be considered the logical estimate for ¥, ., based on dimen-

yielding:

Q=

sional analysis. The extra dimensionless factor in Eq. (34) strongly enhances the value
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of 'yéo) W,S? )2 at low m and low values of dissipation. The enhancement factor is approxi-
mately an order of magnitude. In spife of its logarithmic functional dependence, it gives
a strong m dependence to ¥ Lc (Fig. 2).

The stabilization of the high m modes, m > m., results not from radial dissipation
effects but from the poloidal dissipation. For the case with ,n‘ # 0 and x, # 0, the radial

scale length W is larger than W,%O ), due to the broadening of the eigenfunction caused by

radial diffusion. At high m, W > r/m, which corresponds to the fast interchange regime.
Therefore, retaining only the poloidal scale length in Egs. (19) and (20), it is possible to

derive the value of m for marginal stability, m.:

me | () 15 (%) oy izi)] | 37)

— “““f‘It’* is~again-clear-from- this-expression-thatunless both-7i-and- | are-different-from-zero;

the resistive interchange modes are linearly unstable for all m values.
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IV. RENORMALIZED THEORY OF RESISTIVE PRESSURE-GRADIENT-
DRIVEN TURBULENCE

In this section, the renormalized theory of resistive pressure-gradient-driven turbulence
is presented. Renormalized response equations for resistive pressure-gradient-driven modes
are derived. The consistency of the renormalized theory with constraints and conservation

laws derived from the basic dynamical equations is discussed, and physical interpretations

of the various nonlinear terms are préposed. A simplified set of renormalized equations
that describe the dynamics of resistive pressure-gradient-driven modes is derived.

The simplest possible model of resistive pressure-gradient-driven turbulence is electro-
static and consists of the evolution equations for the vorticity U and pressure fluctuation

p [Egs. (8) and (9)]. In this model the equation for evolution of the kinetic energy, Fk, is

dt n

It differs from Eq. (14) in that the .coupling to the magnetic energy appears as a resistive

field line diffusion term. The pressure fluctuation equation (15) remains unchanged. In

deriving Egs. (15) and (38), the relations

AEx =AE,=0 , (39)
where
AEg = /dvqs(vm x 2.V U) (40)
and
AE, :/de)(quS xz-Vip) , (41)

were used. Equation (39) implies that although the nonlinearities of Eqgs. (8) and (9)
redistribute energy among various spatial scales, they do not enter the total energy balance
of resistive pressure-gradient-driven turbulence. However, since the sources and sinks of
energy act at disparate spatial scales, nonlinear energy transfer is required to achieve

stationary turbulence.

14
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As will be demonst_rated, resistive fluid turbulence saturates by the mechanism of non-
linear transfer of energy from large to small scales. An analytical theory of such a process
requires a renormalized two-point theory of the fluctuation spectrum to describe the non-
linear coupling of the region containing low-m energy to the large-m dissipation range.
In the case when a few low-m modes dominate the energy spectrum, an alternative, more

tractable calculation is to determine the energy outflow from the low-m modes required for

saturation. Such a tactic is implemented by deriving low-m renormalized response equa~
tions and then determining the level of diffusion, representative of the spectrum-averaged
rate of coupling to smaller scales, required for low-m saturation. The latter method is
used for the study of resistive pressure-gradient-driven turbulence discussed in this paper.

Of course, this calculation of energy outflow from the low-m modes is only meaningful if

. there is sufficient large-m dissipation so_that a saturated state is attainable. It is apparent

from Egs. (38) and (15) that dissipation in both the vorticity and pressure evolution
equations is required for a nontrivial stationary state (dpo/dr # 0). A related, but more
subtle, requirement is that viscous dissipation and resistive diffusion are required in the
vorticity evolution equation. The need for viscous dissipation is a consequence of the fact
that nonlinear transfer to large-m modes ultimately couples to modes with m numbers
for which 7 > ,sf ). Such m numbers correspond to modes in the fast interchange
regime, with (ideal) growth rates given by Eq. (32), for which resistive field line diffusion
is dynamically irrelevant. Thus, substantial viscous dissipation is required for the necessary
stabilization of short-wavelength interchange modes. |
Renormalized response equations, which describe the nonlinear dynamics of resistive
pressure-gradient-driven modes in the presence of turbulence, are now derived. As in the

linear calculation, a sheared-slab approximation is used, with y = r8. Using a Fourier

decomposition,
U Uk IB,t
(é = Z (ék IB,t exp ? (kyy + kzZ) ’ (42)
p x \ Px(z,t
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in Egs. (8) and (9), we obtain

U L Ny — = B~ — ke 43

ey + Nix — uViUx o i[x o dr ky Dy (43)
Opx . .dpo

5t + Nox — X, V_ZLPk = *l—dr kydw , (44)

where ky, = m/r, k; = n/Ro, and kjj = mBox/(RogL,). The nonlinearities N1 and Nay

aregiven by

g
’ le = & I:Z (—Zk;) (¢_kIUk// — U_kl¢kll)]

— ik, [Z <8q;;k' Ut — ag;k' ¢k,,>] , (45)

k’

' a
/N ii“?é—#; [Z(‘—ik;)(&ﬁ_ k' Pri — P! 6515")“} o S
iy '

Oyt R
— thy [Z ( gg zk pwr — 82; ¢k">] ; (46)

kl
Here the wave vector k” = k +k’. The nonlinearities N and Ny are renormalized by it-
eratively substituting U}(j,), qSl(f,,) and 1”71({2,,) , fluctuations driven by the direct beat interaction
of k and k' modes, for their corresponding factors in Eqgs. (45) and (46). The nonlinearly

driven fluctuations are determined by

Plk"Ul(jr) — ;’—;:n—kl’l'z Lzu) + Lm(fl—(}kgﬁl(j:) =B , (47)
P +i2k182) = By | (48)
where the propagdtors [y, Loypn are
Ty = i + Awier — pVi (49)
Coxr = Yxr + Awgr — X Vﬁ_ (50)

Here, 7y is the growth rate of the k” beat mode (which vanishes at saturation), and Awyr
is the recursively defined decorrelation rate, which corresponds to the characteristic rate
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of nonlinear interaction for resistive pressure-gradient-driven turbulence. The beat-mode

sources By and By are

oUy O

By = —ikypr—* + iky——Ux
zkyqskaU“' + k! aa¢kUk, : (51)

By = —ik) s 2% 1 ik, P,
_ikyqﬁk%%—'—i- ik! 3a¢k73k’ . (52)

Explicit calculation of the driven potential ¢]({2,,) requires inversion of the eigenmode
operator and results in complicated spatial convolution contributions to the renormal-

ized response equations. Thus, it is worthwhile to consider possible simplifications of the

- —--——- —renormalized-theory:- One-such-simplification follows-from-the-observation that-since-re~--—-—-m oo

sistive pressure-gradient-driven fluctuations are localized in radius, Ny can be expressed

in terms of Ul({z) alone. In particular, since

L=

m!

it follows that, for a continuum of localized modes,

Z = / dm'l——n%,' / dz’ (53)

d m d

i mide (54)
Thus, an integration by parts in Eq. (45) yields
7] . m? + 2mm/ 2
Nix = 3z [Z (—tky) ¢_se <—m"2 > UIA(:H)]
kl
) Bp_w [ mMm? + 2mm/ 7@
— ik, [Z - < i Uyt (55)
kl
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Thus, since N1y can be calculated using U, (,,) alone, and since qﬁk;, contributions are spa-
tially smooth in comparison to the more singular Uliu) ) pl({,z contributions, ¢§{2u) is hereafter

neglected. It follows that
‘ B

v - : 56
k Flk” ( ) :
B = 22 (57)
2%
Finally, substitution of Eqgs. (56) and (57) into Eqs. (45) and (46) yields
d - 0
Ny = _5'—/'61{ Fy 7 Ux “|‘ky/«"ky Uy
9 e
- %Ckm'é;(ék + k0 G (58)
3 Tz 2 fod 2 Yy =
Ny = _B_D PRz + ky Dy’ P s (59) |
|
B SR I S B S .
where .
zz m2 2
Ky = Z mi'2 ky <¢ >k'r1k” ) . (60)
K/ .
9¢ _
Mi]‘y = Z m!'2 < <<9:z:> )k'rlkl" ’ (61)
K/
2
e m
Ok’ = Z "2 y<( ¢) 1T 1k” ’ (62)
kl
m 0%¢
o =% (=) [<<a_> e+ k(52 >k’] = %9
kl
D;x = Ek k'F 2K (64)

D = T((28) wrst G

Here, terms of the form ), , ¢_x' (O¢x/dz), etc. vanish due to symmetry considerations.
In order to gain physical insight into the structure of the renormalized response

equations, it is useful to examine the comsistency of the theory with the constraints
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AFEg = AE, = 0. In particular, using a local representation for brevity and clarity,
AEg and AE, may be written as

ABg =Y [k (&' x 2)] ($-xb-wUH — d-1U_w8))

X,k

~ Y la-(d' x2)]$—qU_gdll (66)

q+q'=

__incoherent (q) mode coupling terms generated by qb _interation contributions, while U5/

By = Y [kx (K x2)] (Poscboscbls) — ool

k,k’

- ¥ la-(d x8)]p-ab-aBPy - (67)

a+a’'=k

Thus, the renormalized theory preserves AEx = 0 via cancellation of coherent (k) and

AS,

contributions vanish by symmetry. Similarly, AE, = 0 is preserved by the cancellation
of coherent and incoherent mode coupling terms generated by p(2) contributions, while

¢£z") contributions vanish by symmetry. Note that systematic application of the approxi-

mation ¢£2u) = 0 is consistent with the constraints AEx = AE, = 0. It follows that the

renormalized response equations do not, and in fact cannot, conserve Ey and E,. Indeed,
the problem of the nonlinear interaction of a long-wavelength mode with turbulence is not
one for which energy conservation is a crucial issue. However, the renormalized two-point
theory can and must be consistent with energy conservation, as it is concerned with the
nonlinear transfer of energy among different wave numbers.

A second noteworthy feature‘of the renormalized equations is the fact that Ny, — 0 as
m — 0. This‘is a consequence of direct relation of the vorticity U to the fluid that advects

it. In particular, using a local representation it follows directly that

Nix = Z [k . (kl X Z)] (¢—k'Uk“ - U—k'¢k//)
2 !
= Y[k (i x 2)] (L) (6otie) (68)
kl

19




Thus, the k — 0 limit behavior of Ny is a conSequence of the competition between the °
reaction and the backreaction of the turbulent velocity field on the vorticity. Also, it is
interesting to compare the structure of Ngj with Njj. In the latter cas‘e., since there is no
simple link between p and ¢, the representation of Noj as the diffusioﬁ of a (nonlinearly)
passive scalar p is possible.

Physical interpretations of the various terms of Ny and Njy are now proposed. Not-

ing that, apart from the factor m?/m’? induced by back-reactions, N1y is determined by
energy-conserving U](j,) contributions, it follows that ui® and ui’{y correspond to (back-
reaction corrected) radial and poloidal diffusion of vorticity, that is, turbulent viscosity
coefficients. Similarly, C{¥ and C£® conserve energy pairwise with ,uﬁ’i and u¥Y, respec-

tively. Indeed, note that while uZ* and ulY are viscous energy sinks, CZ* and CyY are
Kk k k k

. destabilizing energy source counterterms. Finally, DE® and DY correspond to radial and

poloidal pressure diffusivities.
Further simplification of Ny and Ngj is possible in the (interesting) limit of long
wavelength, that is, for |m |« (m?2)3, where (m?) refers to the rms poloidal mode number,

defined according to

(m?) = S mA 8/ T (% | (69)

In the long-wavelength limit k,W < 1, and using the resistive layer width Wy(r? ) for W,
kyW,Sf) )~ kf . Thus, the spatial anisotropy of the spectrum is more pronounced at long

wavelength. Hence, it follows that

5} 5} (m?)

_ézuﬁmgy'k ~ W oy (70)
kgl Uy ~ W ax (71)
kZCY e ~ T:%: o (73)
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where

R 4

and W is the mode width corresponding to m = (m2)%. Thus, since m?/(r?W,{")?) <
(m?)/ (rZWZ), radial viscous diffusion [Eq. (70)] dominates poloidal diffusion [Eq. (71)]

and its energy conserving counterterm CZ®. Also, since m?/ (r2W4) < (m?)/(r2W%) for

e -~«m'<~~(~m3),¥the~term~in-E q-(73)-is-alse-negligible—Finally;for-similar-reasons;

o i
— —_pe=s’fk
” 8z ¥ 9z

| > [k, DYl | - (75)
The validity and accuracy of these approximations have been studied and confirmed using
the results of the numerical calculations.

Having exploited the possibilities for simplification in the limit where m < (mz)é‘,

we find that the renormalized response equafiéhs for stationary, long—wa,veié}i_g»_t‘h resistive

interchange modes are

1 ¢ dQ
2U. ~ Vipgs ViU = —kidy — ——kyD 76
MVJ_ k N V, U ﬂpmk”¢k o drkypk ; A ( )
2 - . .dpo '
—X. VJ_pk —V1DzVipy = _z"c‘ir_ky¢k ) (77)

where

De= ¥ () (urs (78)

Tt VT
‘ m\2 (m"* 2 -1
pee= Y ()" (%) (@t (19)

In the following section, the nonlinear diffusivities D, and p, at saturation will be
obtained by solving Eqgs. (76) and (77), assuming a relationship between p;, and Dy, and

treating D, as the eigenvalue to be determined.
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V. SOLUTION OF THE RENORMALIZED EQUATIONS FOR THE
RESISTIVE PRESSURE-GRADIENT-DRIVEN TURBULENCE

In this section, an analytic solution to the renormalized equations is determined. This
solution gives the necessary level of diffusion induced by the resistive pressure-gradient-
driven turbulence required for saturation. From this result, the saturation level of the

turbulence can be estimated.

The renormalized equations derived in Sec. IV generalize previous results,” but their
structure is not essentially different. The most important results of the present paper which
differ from previous results, arise from the way the saturation condition is defined. In

previous calculations, the condition for saturated turbulence was established by balancing

the 8p/8t term with the nonlinear diffusion term for the lowest m unstable mode.3’4’§
This leads to the mixing length result ;

Dy ~ '77(7?)W7$«?)2 . (80)

5

This result can also be dérived from the invariance condition on the basic sef of equations,
Egs: (1)—(3), for the case p = x, =0.

Here, an accurate saturation condition is imposed by setting all time derivatives equal
to zero. This definition is only valid if dissipation terms are included in the equations, so
that they balance driving terms. The form of the renormalized equations is very similar to
that of the linear stability equations. Therefore, the renormalized equations can be written

in a dimensionless form by performing a change of variables analogous to that in Sec. IIIL

We obtain
| d4®,, _d*®, -
=2 4 G = APy + BX O (81)
d? Py,
dX? =Pp+ %, , (82)
with
Bo dQ —a dpo r \4 atS?
_ | Bo [ dd apo\ | (T 83
A [262 “r po(0) dr <am) 7% (Daz + X, ) (Moz + 1) (83)
B z<a2M0> ( r )632< e >2 o’ (84)
=m e .
RN ) \am ¢Lg) TR (Mas + 1)
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Note that . )
A_ VW) (85)
B Dgs + x 1

Assuming that there is a known relationship between u,, and Dz, Egs. (81) and (82)

define an eigenvalue problem, the solution of which gives a relationship between A and B.

That is, A = F(B) where F is the function to be found by solving the eigenvalue problem.

Such a relation implies that

Das +x, =7OW2k(B) (86)

where F(B) = B/F(B). This expression shows that a correction factor, weakly dependent
on B and the driving terms, multiplies the mixing length result. We can explicitly calculate

this factor in some relevant limits. In particular, for high S and low m, we can proceed

" to solve the eigenvalue problem Eqgs. ‘(‘8’1’)"5.?1‘(1’“(82’)“i’r'1 “the saime way as the linear problem:

This limit is probably the most relevant one for applications to magnetically confined
plasmas. By carrying out the same type of calculation as in Sec. III, we can derive an

equation analogous to Eq. (34),

2 6404 K, 2
Deg+x, = ,(,S)W,§$)2{—1n[ ]} , 87
X: =1 31" | 72(Den + x.) (om0 &7)

where K; is given by Eq. (24). From this expression, it is clear that if the collisional
dissipation is small in comparison to the turbulence induced diffusion, which is in general
the case for the low-m modes (1 < fge and x, < Dgzz), we can neglect x, and u. This
means that.for low m modes the level of nonlinear dissipation necessary for stationary
resistive pressure-gradient-driven turbulence is independent of the collisional dissipation.
It is important to note that no saturation is possible if the collisional dissipation is zero.
The collisional dissipatién is needed to produce a sink of energy at high m and thus provide
a stabilization mechanism for the high-m fluctuations. As the spectrum of fluctuation is
dominated by the low-m modes and D, is large for these m values, the level of saturation

is not so sensitive to the dissipation parameters.
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The following are the main properties of the nonlinear diffusion coefficient D, (1)
The scaling with 8 is very close to linear, as in the mixing length prediction (Fig. 3).
(2) For realistic values of the dissipation coefficients, the size of Dy, is about an order of
magnitude larger than the mixing length result (Fig. 3). (3) The correction factor gives a
weak dependence on m, close to m™!, but the validity of Eq. (87) is limited to the low-m

range. (4) The dependence on p and x, is weak (Fig. 3) for realistic values of these

parameters.

Once the relation between the coefficients Dy, and py, is known, we can go further and
estimate the turbulence level at saturation. This calculation requires further assumptions.
First, we can estimate the decorrelation rate in the propagators, Egs. (49) and (50), in the

following way:

(89)

Here A,, and §,, are the characteristic scale lengths of the potential and pressure
fluctuations respectively. Using Eqs. (78) and (79), we can find a relation between the

ez and Dy, coefficients,

m* A¢m)
Moz = ——D T - (90
<m2> 5(m) )
Similarly, an estimate for the mean-square turbulent radial velocity,
<‘7r2> = Df:m/6(2m) . (91)

It is now necessary to evaluate the two basic nonlinear scale lengths appearing in Egs. (90)
and (91). The nonlinear width A, of the radial velocity fluctuations can be estimated by
balancing the viscosity term with the field line bending term. This yields

1 1
[ 3
A,, = 11 (TR“” TR”) LY <—qu> a . (92)

1
m a? a*uo) S3 \ @

The pressure fluctuation level and its nonlinear width can be evaluated from two other
relations: first, balancing the nonlinear diffusion with the driving term in the pressure
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equation; second, and for z =~ 0, balancing the curvature term with the nonlinear viscosity

term in the momentum balance equation. This yields the two relations

I A dpo 6(2m) ~ o\ L |
(P>2=|—[—1§:—<Vr)2 ; (93)

As by & & @ _qipﬂ ®
(m)%m) = 19¢2 adr po(0) dr

2 L
o x 5% (”fi”) 8 (ﬂgrﬂ)) i (94)

Using Egs. (90)-(94), one obtains an estimate for all the physics parameters relevant to

resistive pressure-gradient-driven turbulence. They are:

Am ZWOAT (95)
S R 5m___u_,_wr.§g),A.%_.,__.__ S e (96)
(VA 2O WS (97)
)% = oW OAF | (98)
Da =0 ( W) 4 (99)
Hes = Ty )782)( (m)>> A - (100)

where

A

2 Bo —a dpo r \* 64at52
3_l [——( W) <po(0) dr) <amo> TﬁDzzuzJ ' (101,)

The results shown in Eqs. (95)—(100) are those expected from mixing length theory multi-
plied by the enhancement factor A to a power. For realistic parameters, A > 1. Therefofe,
the previous relations imply that the pressure fluctuation scale length is larger than that of
the velocity fluctuations, 6m > Ay,. The nonlinearly induced pressure diffusion coefficient
is also larger than the nonlinearly induced viscosity, and the predicted fluctuation levels

are higher than the mixing length theory predictions.
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VI. THREE-DIMENSIONAL NUMERICAL CALCULATIONS OF RESISTIVE
PRESSURE-GRADIENT-DRIVEN TURBULENCE

In this section, the results of the three-dimensional numerical calculations are pre-
sented. It is shown that a state of stationary turbulence in the presence of a nonzero
average pressure gradient is attained. The effects of collisional dissipation are discussed

and the scaling of the saturation levels is presented.

The numerical calcilations hiave been performed tsing equilibrium parametersrelevant
to stellarator devices. However, the basic model used in this paper has been simplified to
maximize the understanding of the dynamical mechanisms. The numerical results are not
intended to be a simulation of a stellarator plasma. The rotational transform has been

parametrized as

¢(r) = 0.53 +0.50 ( g) 2 : MI(102)

and Q is such that a localized region of bad curvature (0.35 < r/a < 0.65) exists away
from the wall. With this choice of parameters, the unstable region exists for values of the
transform 0.59 < ¢ < 0.75. The lowest m resonant mode is the (m = 3; n = 2) mode. |
At the resonant surface of this mode, the physical parameters are those given in Table
I. The main reason for restricting the unstable region to one-third of the plasma minor
radius is to maximize resolution in the numerical calculations. The pressure profile chosen
is po(r) = po(0)(¢(r)/ z,b(O))z, and the expression for the poloidal flux ¢ can be calculated
from Eq. (92). For these equilibrium parameters, the threshold for ideal pressure driven
instabilities is at Bo/2¢? = 0.037 (Fig. 4). In this paper, the nonlinear calculations for
resistive pressure-driven instabilities have been performed fér values of 3 well below the
ideal threshold. The highest § value coﬁsidered is Bo/2€? = 0.0125, and [ has been varied
between this upper limit and Bo/2¢? = 0.0025. For these different § values the dissipation
coefficients 7 and ¥, have been chosen in such a way that the linearly unstable mode
with the shortest wavelength had an m value below 70 (F1g 5). This restriction is due

to the number of modes that can be retained in the nonlinear numerical calculations,
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which is limited to 800. Table II gives the values of these parameters used for the present
calculations. The S value has been set at S = 10° for all the calculations presented here.‘

The three-dimensional nonlinear calculations have been done using the KITE code,!?
an initial value code that solves Eqs. (1)~(3) using a Fourier expansion in the angles §
and ¢ = z/Ro and finite differences in the radial variable. For details of the numerical

scheme, see Ref. 11. For the present calculations, radial grid spacings Ar = 2.4 X 10~3

have been routinely used. Convergence has been tested by varying the Ar grid spacing up
to Ar = 1.2 x 10~3. With this grid, even the highest m modes included in the calculation
are well resolved. The number of Fourier components used for most calculations has
been 244 or 548. For convergence testing, up to 750 modes have been used. In all the
calculations discussed here, the modes included in the calculation were all initialized at

the same amplitude.

Let us consider the case with 8o/2¢2 = 0.0125 as a paradigm and discuss the main
features of the time evolution of the instabilities. It is important first to point out that if
the modes included in the nonlinear calculation are all linearly unstable, then no steady-
state solution is ever reached. This is, of course, logical, because in such cases there is
no sink of energy to balance the instability-driving terms. This situation is equivalent to
the zero dissipation case. As more Fourier components are added to the calculation, and
the range of linearly stable modes is increased, the fluctuations saturate at a finite level
(Fig. 6). In this particular case, about 244 modes are enough to give a converged solution.
When 548 modes are included, the same level of fluctuations is reached. This convergenée
must be understood in a time-averaged sense. The results shown in Fig. 7 were obtained
with 7 = 0.2 and X, = 0.05. Increasiﬁg these parameters to # = 0.26 and X, = 0.065
did not change the saturated level of the fluctuations. Furthermore, while the role of the
dissipation is important for producing a high m energy sink, it should weakly affect the
low m saturation level. This was tested by excluding the viscosity and cross-field transport
(% =0 and X, =0) for all components with m < 12. The time evolution changes (Fig. 7)

because the linear growth rates of the m < 12 modes are affected by the dissipative terms
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(Fig. 'lb).- However, the saturation level of the fluctuations reached is the same as in the
case with 7 # 0 and X, # O for all modes.
In the numerical calculations, the pressure equation includes a term that is not present

in Eq. (3). The pressure equation is written as

d ) .
—V,,% +x, V35+x,Vip (103)

% _
dt

The last term in Eq. (103) has been included to control the width of the pressure fluctua-
tvion in the nonlinear evolution. In the calculation, the value for x, is chosen so that it does
not change the radial width of the low-m linear eigenfunctions. The value x, = 10°R3/7r
is used in most of the calculations. This value has been varied by two orders of magni-

tude, weakly affecting the saturation level of the velocity fluctuation. Ta,ble III gives the

_rms values _of the radial velocity, pressure, and potential fluctuations resulting from these

calculations. The value of 3 is fo/2¢ = 0.01, and § = 10°. The values are time averaged
over the steady-state period, and the errors are based on the standard deviation over these
mean values. The effect of x, is more important for the very low m modes because of their
large nonlinear widths. The contribution of the lowest m-mode has not been included in
the values given in Table III. Therefore, it is clear that the x, term in Eq. (103) does not
strongly affect the dynamical evolution of the resistive pressure-gradient-driven turbulence
for the range of values considered in these calculations.

It is clear that the x, effect is important in the nonlinear regime only when 6,, ~ A

Here A is the characteristic length associated with the x| term and is given by
TRD gz i TRX) . qu
_ 9lq _ 04
a- (%) (&) (W) 109
Therefore, x, must fulfill the condition
(e \F[Bo (40 (e dpo\]® (rmn T
X mrs 2¢2 \ dr ) \ po(0) dr a?uo

8
’ 4 -5 272\ p2
X lln 64_&51__ S% q_q & (105)
3 T2

m D:c:c,u'z:c a? TR

FNC
=

Q=

28




to avoid affecting the dynamical evolution of the pressure-gradient-driven turbulence.
The nonlinear stability of a sequence of equilibria with different values of 8o/ 2¢? has
been numerically studied (see Table II). The values of the V. and p fluctuations at satu-
ration are given in Fig. 8. These values have been calculated by averaging the local values
at r; = 0.523a over a time. The error bar corresponds to one standard deviation. The

crosses (x) are the analytical results, calculated with Egs. (97) and (98). The values for

___factor is 8.5.

(m?) used in these equations are those from the numerical results. The scaling with 3 is
very well reproduced by the aﬁalytical model, and the agreement shown in Fig. 8 is good.
The importance of the logarithmic factor in modifying the mixing length is clear. At the
lowest beta value (Bo/2¢* = 0.0025), the mixing length prediction for (17,2) is a factor of
4.5 smaller than that given by Eq. (97). At the highest 8 value (fo/ 2¢2 = 0.0125), the

The presssure diffusion coefficient has also been calculated from the numerical results,

using the expression -

dpo,—1,4 ~
D= =27 (V.h) . (106)

The analytic prediction, Eq. (99), agrees well with the numerical results (Fig. 9). The
analytic result gives the correct 8 scaling and magnitude. The discrepancy from the

mixing length prediction is quite clearly shown in the figure.
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_—— has-been-studied, and the existence_of_a.range of stable large-m_modes has been

VII. CONCLUSIONS

Detailed study of resistive pressure-gradient-driven turbulence using a simple model

has unveiled some new and interesting features of the dynamics of these problems. The

main results obtained are as follows.

(1)

(2)

The linear stability of resistive interchange modes with viscosity and thermal diffusivity

demonstrated.

The existence of well-converged, saturated turbulent states with fixed pressure gradient
has been demonstrated using the numerical calculations.

A well-defined saturation criterion is proposed, and a renormalized theory of resistive

pressure-gradient-driven turbulence is presented. The predicted pressure diffusivity at

saturation is

4 2
D,y =4O @2 | 2, (S47Ks
moem 3 T]%cha:l"a:a:

_ Po (8 (_=a dpo) (4Lq * ran
2¢2 \ dr / \po(0) dr T a?uo
2 Bo [ dQ —a dpo r \4 64a452‘
X {37rln [62 (a dr) <p0(0) dr> (am) T2 1z D - (10

The results of the numerical calculations are in good agreement with theoretical pre-

dictions.

While the leading parameter scaling of Dy, agrees with the simple mixing length pre-
dictions, significant quantitative enhancement and additional parameter dependence
are predicted. The enhancement effects over the simple mixing length predictions can
have important implications for the previously derived transport coefficients.®~® To
discusé these implications, it is necessary to use a more realistic model and consider
the effects of the magnetic fluctuations. This is beyond the scope of this paper. How-
ever, modifications comparable to those discussed here would probably carry over.
This could imply transport enhancement up to one order of magnitude over previous
results.
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FIGURE CAPTIONS

FIG. 1.

FIG. 2.

FIG. 3.

Linear growth rates of resistive interchange modes as a function of the mode
number.

Critical value of X for stabilization of the resistive interchange mode as a func-

tion of m.

Scaling of the nonlinear diffusion coefficient D, with So/ 2¢?, for different values

FIG. 4.

FIG. 7. .

FIG. 8.

FIG. 9.

of the dissipation coefficients. The calculated value of D, using Eq. (87) is
compared with the mixing length prediction.

Linear growth rate of the (m = 3;n = 2) interchange mode as a function of
Bo/2€*. Comparison between the resistive (S = 10°) and the ideal (S = o)

growth rates.

. __ Linear growth rate vs m of the resistive interchange mode for the different equi-

librium parameter given in Table 2.

Nonlinear evolution of (V;2)% for §/2¢* = 0.0125 case. Comparison between
different sets of modes included in the calculation.

Nonlinear evolution of (V2)3 for 8o/2¢* = 0.010 case, showing the effect of
eliminating the collisional dissipation terms for the low m (m < 12) modes. |
Comparison between the analytical and numerical results for the fluctuation
levels of the resistive pressure-gradient-driven turbulence.

Comparison between the analytical and numerical values of the nonlinear diffu-

sion coefficient. Both show clear discrepancy with the mixing length predictions.
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Physical parameters at ¢(r;) = g’- relevant to the resistive interchange stability

Table 1

calculations presented in this paper

Parameters Values
s 0.5228

q 1.5
L, 1.275a
a‘fi—ﬂ 0.436

r

po(rs) 0.6246
a_dPo | _j 4197

po(()) dr ’




Table 2

Parametérs used in the nonlinear numerical calculations discussed in Sec. VI together
with the obtained rms values of m and the corresponding dominant mo value

Bo/26* 7 X, mo (m?)%

0.0025 | 00294 | 0.008 12 | 11.7£03
0.0050 | 0.0676 | 0.0175 6 8.8 1.4
0.0075 | 0.110 0.0275 3 4.0+ 0.4
00100 | 0.154 0.0385 3 4706
00125 | 0.20 0.050 3 4.64 0.7




Effect of the x| on the saturation level of the resistive pressure driven turbulence

Table 3

2 (vr)rms 2\4 (i’)rms (a’)rms
X Bo/mr peak (m) peak peak
10® 115 + 23 5.5+ 0.9 0.118 & 0.016 3.241.2
10* 110 £ 12 4.9+0.8 0.117 £ 0.012 35+%1.2
105 ~—064+-23——|—4:7-+-0:6—-—(8:5—+0:9)10=2——2.9-+0:6




