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==~ -=-=-——Thehistory of the building of a base of understanditig i plasma physics may be examined
by categorizing our efforts into the divisions of linear or nonlinear physics, and by the use
of fluid (usually magnetohydrodynamic) or kinetic models as illustrated in Table 1.1, which
summarizes when the major thrust of effort took place. Our basic underst anding of the linear
physics using a fluid model arose primarily in the 50’ with the efforts connected through
Project Sherwood and on into the 60’s. The fluid model has since been extended into the
nonlinear regime in the 70’s and 80’s. A recent article by R.B. White reviews both the linear
and nonlinear theory of MHD modes including resistive effects. Accompanying the analytical
advances were advances in computer simulation techniques with applications to nonlinear

= = evolution of the resistive mode and using sophisticated techniqiies. For some phenomena the
fluid treatment remains inadequate. The consideration of the velocity distribution function
for each species as well as transport phenomena leads to treatment of the plasma in a kinetic
model. The kinetic model in the linear regime developed throughout the 60’s to the 80’s.
The inclusion of nonlinear effects into the kinetic model is only recently appearing in the
theoretical picture. The technique of particle simulation enables the study of nonlinear
effects in a kinetic model in detail.
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CHAPTER 1.
INTRODUCTION

The history of the building of a base of understanding in plasma

physics may be examined by categorizing our efforts into the divisions of

linear or nonlinear physics and by the use ofﬁuld (usu;ﬂ]y maénetohydrody-
namic) or kinetic models as illustrated in Table 1.1 which summarizes when
the major thrust of effort took place. Our basic understanding of the linear
physics using a fluid model arose primarily in the 50’s with the eforts con-
nected through Project Sherwood® and on into the 60’s. The fliid model has
_ since been extended into the nonlinear regime in the 70’s and 80’s. A recent
article by R.B. White? reviews both the linear and nonlinear theory of MHD
modes including resistive effects. Accompanying the analytical advances were
advances in computer simulation techniques with applications to nonlinear
evolution of the resistive mode® and using sophisticated techniques?. For
some phenomena the fluid treatment remains inadequate. The considera-
tion of the velocity distribution function for each species as well as transport
phenomena leads to treatment of the plasma in a kinetic model. The kinetic
model in the linear regime developed throughout the 60’s to 80’s. The inclu-
sion of nonlinear effects into the kinetic model is only recently appearing in
the theoretical picture®. The technique of particle simulation® enables the

study of nonlinear effects in a kinetic model in detail.

The tools of particle simulation of plasmas have become more
sophisticated over the past twenty-five years® enabling more complex physical
processes to be studied. The necessity for these complications in the sim-
ulation process occurs because of the multiple spatial and temporal scales
on which plasma phenomena occur. The lack of sufficient speed and mem-

ory to economically simulate large scale, low frequency phenomena, such as

1
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kink modes, using realistic models forces us to examine techniques which
avoid direct confrontation with these obstacles. One such approach, that
of a three- dimensional magnetoinductive particle code with guiding center

electrons is described herein and its application to kink and twist-kink modes

is presented.

One of the fastest time scales associated with a plasma is that
due to the gyromotion of the electrons in a magnetic feld. A guiding center
model may be appropriately employed when the motion consists of a fast
oscillatory motion plus another slower motion. The electron motion may

_then be separated into a gyromotion with characteristic frequency, 2., plus
a slower E x B drift of the guiding center’, or center of the gyro-orbit and
other drifts including higher order motions. However, one crucial drift is the
E x B drift which retains the self consistency. (The other is the polarization
drift in the higher order, which is not discussed in the present work.) Such
a model was developed as a 2%-dimensional electrostatic particle code in a

slab geometry by W. W. Lee and H. Okuda®.

The inclusion of electromagnetic effects in addition to electro-
static introduces a wider range of processes available to more realistically

simulate a plasma system. In particular, the inclusion of light wave propaga-

tion introduces a fast time scale. This time scale which must now be included -

when Maxwell’s equations appear is of the temporal scale, At =~ (kc)™?,
where k is the wavenumber describing the spatial scale used and ¢ is the
speed of light. Since the speed of light is so large while the required spatial
scale length is so small, the resolution in time must be quite small. Thus even
though the physics we may wish to study is on a large time scale, the sim-
ulation becomes uneconomical or impossible to do with an electromagnetic

model. The elimination of light wave propagation in the plasma model could




4

then greatly extend the range of the tools of particle simulation. This can
be done by dropping the transverse displacement current term in Ampere’s
equation. Such a magnetoinductive or Darwin® model can provide greater

computational efficiency for the study of subluminous waves in plasmas. Im-

plementations of this model have been done by Nielson and Lewis!® and by
Busnardo-Neto, et el.!?
Plasma phenomena are often simulated by models which only

utilize one or two spatial dimensions. As we look at more complex systems,

the inclusion of all three dimensions becomes important. The inclusion of

__the additional degree of freedom provided by this inclusion enables more re- -

alistic modelling of plasma configurations. For some studies the full three
dimensions are not only desired but necessary, for example, the nonlinear
kink modes. The straightforward extension of two dimensional models by
just doing the same process in the third direction as done in the first two
makes excessive if not impossible demands on the computational facilities.
In a magnetied plasma, generally the dynamics along one direction parallel
to the magnetic field and that along the other two directions are quite dis-
tinct. For example, the typical wavelengths in the parallel direction and in
the perpendicular directions are distictively different. For the typical gridded
models which are extended into three dimensions, a stretching of the grid
in the third direction along with a higher order partiéle-grid interpolation
scheme becomes necessary. Another approach is an eigenfunction expansion
in the third direction as in a spectral code. This hybrid!? allows very dis-
parate length differences between the two gridden dimensions to the third
dimension. For a small number of modes, say N < 20, this code may be

more efficient to use than a fully gridded model.

Combining the two techniques of the magnetoinductive and
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guiding center electron approximations in a simulation code has been applied
to the long time scale process of Alfvén wave heating by Geary et. al.® The
inclusion of a third dimension into this model via mode expansion allows the

study of long time scale processes in inherently three dimensional systems.

Such a model is described in chapter two. Examples of such processes are

tandem mirrors and coronal loops.

The impulsive phase of some solar flares occur on a time scale
much faster than the typical resistive instabilities, explosively releasing en-
ergy stored in the lower corona. Direct observations of emitted soft x-rays!?
--show -the- existence of ’mu]tfple coronal-loops~in ‘the active regions. These "
loops may carry plasma currents. It was noted in 19645-1€ that the high
intensity and short life of the impulsive solar flare indicates that it is caused
by a nonlinear instability. The processes of reconnection of magnetic field
lines is believed to take place due to a small but finite resistivity. In order to
rai)idly convert magnetic energy into kinetic by a substantial amount that
is accountable for the observed flare phenomena, it seems necessary that the
bulk of the magnetic energy has to participate in the conversion process: the
resistive heating at the x-point alone is too meager. This is because the avail-
able magnetic energy at the x-point is small by itself. On the other hand,
the ideal MHD instabilities such as the kink instability and the coalescense
instability are the processes that involve the bulk current redistribution on
the order of the Alfvén time scale. Simulation of the tearing and coalescense
instabilities presented in chapter three present essentially a two-dimensional
picture that still exposes fast reconnection processes. The inclusion of a
third dimension allows for the possiblity of kink instabilities which are also

discussed in chapter three.

In the preflare stage active regions exhibit photospheric shear
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motion along the magnetic neutral line several hours prior to the onset of
the flare. The photospheric shear motion induces plasma currents along the
potential magnetic field of the sunspots near the active region. As the shear

motion proceeds, the current density increases and the current loops move

up. A recent computer simulation by Wu'? suggests that in the modeling
of arcade-like preflare stage the current tends to localize. With increasing
current density the current constriction takes place toward the center of the
loop. If the current density continues to increase further, the poloidal field

becomes sufficiently large so that the field line azimuthally rotates more than

_ one revolution within the length of the loop plasma. then the kink modes

may develop and induce multiple currents. These intertwining current fila-
ments can coalesce with each other, leaving a current filament with different
helicity. Mirror confinement of plasma is one of the oldest concepts in fusion.
To overcome the fundamental leakage of plasma from a mirror, the tandem
mirror concept was introduced?®®. This concept introduces additional mag-
netic mirrors at the ends of a central mirror cell to electrostatically plug the
ends. An ambipolar potential barrier is thus introduced. The axial variation
of the potential profile leads to a differential twisting of the plasma column.
Poloidal rotation of the plasma in tokamaks also occurs?®, Although ex-
plicit applications have not been sought, twist-kink modes may play a role in
plasmas of reverse field pinches, spheromacs, and in the formative stages of
tokamaks. A simulation study of the twist-kink mode is presented in chapter

four. Chapter five presents conclusions.




CHAPTER 2.
SIMULATION MODEL

2.1 General Remarks

~—Simulation-techniques-have-enabled—us—to-extend-our under-——

standing of physical systems by complementing‘ the knowledge we have gained
through analytical and experimental methodologies. In this approach, a com-
puter is programmed with an algorithm based upon a mathematical model
describing the physical system. The computer is then instructed to perform
numerical experiments utilizing this algorithm. Associated diagnostics can
—examine in -total detail the progress-of this experiment. - The behavior of -
plasmas may be fruitfully studied by this approach.

Plasma simulation algorithms may bé considered. to consist of
two groups, particle models and fluid models. A fluid model uses a set of
fluid equations to describe the physical system while in a particle model, a
large number of charged particles are followed in their self consistent electro-
magnetic fields. The approach we have utilized is a type of particle model.
Particle simulation techniques are reviewed by Hockney and Eastwood?!,
Birdsall and Langdon??, and by Dawson® who give a good overview of the
particle simulation way of thinking. '

Particle simulation techniques have both advantages and limi-
tations. The primary characteristic of particle fechniques is that it directly
models the many-body system whose distribution function obeys the Liou-

ville equation

oF OF  OF o\ _
E-{-Z(E'V,-Fx-ai)—ﬂ (2.1)

i
where v; = X; and a7 ‘is the total acceleration acting on the i’th particle.

On the other hand, the fluid models deal with quantities, the moments of

7
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a one-body distribution function ,derived by integrating the Liouville equa-
tion over all but one particle, thus largely eliminating kinetic effects. Thus
we retain more detailed information of the system evolution in the particle

simulation. This advantage accompanies disadvantages at the same time.

Because of the constraints of finite computational speed and memory, the
number of particles which we can follow is limited. The particles interact via
the intermediary of the fields which are only defined at a limited number of
locations. Accuracy is lost in the interpolation of physical quantities between

particle locations and field locations.

_ _An outline of an electrostatic particle simulation is as follows.
The initial positions and velocities of the simulation particles are assigned
so as to give the desired density and velocity profiles appropriate for the
phenomenon to be studied. The time step cycle then begins by interpolation
of the particle positions via charge weighting to the grid locations. The
potential or electric field is then solved for only on the mesh. The resultant
force used to accelerate the particles is interpolated back to the particle
location from this gridded representation. The particle velocities can thus
be extrapolated forward in time by use of the finite difference form for the
force equation. The particles may then be stepped forward to their new
positions. The time step cycle is then repeated (perhaps thousands of times)

as the simulation plasma evolves.

By following far fewer particles than the actual physical system
the particle representation overemphasizes the kinetic or individual aspect
of plasmas as compared to the fluid aspects of plasmas. For example, the
particle method gives rise to a high level of collisions. The effect of collisions
may be decreased by the use of particles which have finite size and can inter-

penetrate each other. For particle separations larger than the particle size
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the interaction force is similar to that of point particles, but as they overlap
their interaction force decreases. Since the collective effects are primarily
determined by long range forces, collisionless plasma phenomenon may be

accurately simulated by relatively few computational particles through this

method.

The efficiency of a particle simulation is enhanced by the use of
the intermediary of electromagnetic fields defined on a spatial mesh or grid
rather than directly calculating interactions between particles. Once the par-

ticle quantities are interpolated to a grid, several methods are available to

solve for the fields defined on the grid. One of the most_efficient and con-.

venient for the grids we use is the Fast Fourier Transform (FFT) technique.
In this technique, the spatial differential operations become simply algebraic

operations; the overhead cost is in the transform to and from Fourier space.

Particle simulations have other limitations which afe harder to
ameliorate. The time scale of the physical system which we wish to describe
may have much lower frequencies than our computational algorithm can pro-
vide economically. The spatial scale of the physical system may not be able
to be accomodated within the available memory of the current generation
of computers. The simulation technique discussed in this dissertation makes
some progress in extending the accessible range of temporal and spatial scales

we can study in the particle simulation.

In a particle simulation model the time scales which can be
modeled are constrained by the maximum time step for which the system is
numerically stable. For the typical electromagnetic codes with a relativistic
Lorentz particle motion and the full set of Maxwell’s equations, this time step
is determined by the electron plasma frequency via, wpe A t < 1, the electron

cyclotron frequency via, 2. A t < 1, and by light propagation across the grid
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via kcA t < 1, where k is the relevant wavenumber. For phenomenon with
frequencies in the range of typical Alfvén waves, this restriction makes it
uneconomical as well as too "noisy” for study with such a code. The typical'

particle simulation code are constrained in spatial scales by the combination

of the limited number o?gfid points which can be contained in memory and
by the need to satisfy the stability condition, kpmazVmaezA t < 1 so that the

particle moves less than one grid spacing per time step.

2.2 The Hybrid Spatial Model

 The spatlalsca]esmplasrnas*wnh a‘ magnetlcﬁeld ca.n ﬁry '
greatly between phenomenon along the field and perpendicular to it. The im-
portant collective oscillations along the field lines are of comparatively longer
wavelength. This indicates that a hybrid model, which uses the standard grid
methods perpendicular to the magnetic field combined with a spectral ex-
pansion method which uses only the long wavelength oscillations along the
magnetic field, is appropriate to many topics of current interest because of
its accuracy and numerical stability. An electrostatic model of this type has
been used by Cheng and Okuda'? to study drift instabilities in cylindrical

and toroidal models.

Let us consider an electrostatic rectangular cylindrical model.

The finite size particle is given a Gaussian shape factor

1 (-2 (W-y)®  (z—%)
Sx—x;) = (2m)%/%a,aya, rp [_ ( 2a:2.7 + 2a,2 + 2(12g ()} )
2.2

where (x;,y;,2;) is the particle center location and a,,a,,and a, are the char-

acteristic length scales for the particle shape. The charge density is therefore
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given by
p(z,y,2) = quS(x - X;). (2.3)
J

The normal mode expansion is applied to both the charge den-
sity and the longitudinal electric field. -

)= Y oulesvienn (2222) (2.4

n=—N
and :
N 12mzn
Bi(ey2)= 3 Bun(eear (220 (2.5
n=—-N z

for a system length in the z direction of L,. Since the number of modes .

required is typically small (N < 10), the computer memory required for the
simulation is less than that required for a typical three dimensional grid type
of code. Another advantage is that the mode number expression is readily
interpreted by theory.

Poisson’s equation,
V.Ep = 4mp, (2.6)

may be solved by a superposition of solutions for each mode number, n. The
method of solution is, for each n, to first Fourier transform the two dimension
grid using standard FFT methods. The solution for each Ey, (k) is obtained.
The inverse transform is then applied. The field may then be interpolated
to the particle position by summing over the contributions of each mode, n.

The necessity of interpolating the charge of the finite size par-
ticles from each x; to a regular lattice, is accomplished by a Taylor éxpansion

on the two dimensional grid about the nearest grid point,

quS(X - xj)emp(—ikzzj)
J
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= g;[S(x = %) + Axy - Vo S(x — x,)] ezp(—ik,z;)
J
= M(xg)S(x —x,) + D(x,) - Vo S(x — x,), (2.7)
keeping only through the dipole terms. This is often a resonable approxi-

mation when finite size particles are used. To-obviate the need to-perform -~ — —

additional Fourier transforms to evaluate the dipole term, the derivative is
replaced by it’s finite difference representation,

S(zg41) = S(zg-1)+ S(y 1) — S (yg-1)
e > ot . (28)

S'(x —x,) =

The charge density of the n** mode accumulated to the grid

~may then be expressed o
2k2
1 emp‘(—‘——iz )
Pn(Zg,Yg) =27razay A S(x —xg)[M (z,) +

L
D, (zg+l) - D, (mg-—l) + D, (yg-H) - D, (yg—l)]- (2.9)

In Fourier space,

_?kZ
1 e:rp(—"au) k:,k Neg3 7!

27a.a, Lz Z Z M(a:g

pn(kza ky) =
=0 m=0

D, (zg+1) — D, (zg—1) + D, (yg+1) - Dv (yg-1)]ezp(ik - Xg). (2.10)

In Fourier space, Poisson’s equation,

Ak
Epn(ks ky) = =i palke, ky) (2.11)

determines the longitudinal electric field which is then inverse transformed

to give Ep,(z,y).
Both the finite particle size and the fact that the particle is not
necessarily located directly at a grid position must be accounted for again.

The force on a finite size particle due to the longitudinal electric field

F(z;,y;,2;) = qj/EL(m,y,z)S(m - Z;,Y — Yj, z — 2;)dzdydz (2.12)
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is known to us on the two dimensional grid

q; al —kZ2a? .
F(zg,yg,2;) = 2 Z e:cp( 2‘ z)e:z:p(zk,z.,v)

“dzdy. (2.13)

2maza, eyt
— )2

A multipole expansion about the particle position of the force
is similarly kept up to the dipole terms using finite difference approximations

for the derivatives to yield

6 6
Fn(wjayj) = Fn(“’g’yg) + AmiEFn(wg’yg) + ijEFn(zy’yg)- (2.14)

contributions of each mode

N .
Flews) = Y Fuleaear (2. (2.15)

n=-N z

The equations of motion are then used to advance the particle positions.

2.3 Advancing the Particles

The temporal scales which can be treated in a particle sim-
ulation code are limited by the characteristic frequencies of the dynamics
included in the model. In a magnetized plasma, the frequency of the elec-
tron gyromotion often determines one of the shortest time scales. Since we
wish to treat much longer time scales, it is useful to approximate the elec-
tron motion in the direction perpendicular to the magnetic field by a guiding
center model (Alfvén?).

Consider the nonrelativistic Lorentz equation of motion for a
charged point particle of spécies o in a magnetic field

dv

Mo = go (E+ 2% x B). (2.16)

dt

" The force may be interpolated to the particle position by summing overthe = =~~~ 7 7
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Assuming that the spatial scale lengths of electromagnetic fields felt by the
particle are much larger than the the gyroradius (kp, < 1) and that the fre-
quencies of interest are low in comparison to the gyrofrequency (w/f2, < 1).

To Jowest order, the electron motion breaks into multiple time scales, the fast

gyro motion with characteristic frequency, 2., and the slower E x B drift
of the guiding center obtained by time averaging over a cyclotron period.
The electron motion is then decoupled into components perpendicular and

parallel to B,

dx, . ExB
g o Vie= C—ET, (2.17)
dt = V” e = ;E” ' (218)

The computational solution of the particle equations of motion
are contrasted below for the ions and electrons. The full jon dynamics are
kept, thus keeping ion inertial effects required for Alfvén waves. The standard

time centered leap frog method?? is used to approximate equation (2.16).
g P

vitl— v gEnt/2  yndlgyn 9 ¢:;B

2 2.19
At m; + 2 m; ’ ( )
n+3/2 n+1/2
Y = vt (2.20)

where the superscripts indicate the time step at which the quantity is known.
Equation (2.19) may be rewritten in a form which displays the cyclotron time

scale more explicitly

v{"“ —vitl x wci% =v] —vlXx wci? + gl—';z—Ai, (2.21)
i

or,

. n-};1/2
vt =vI R (w,At) + LAt ‘R (wciézf) . (2:22)

m,
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This indicates that the new velocity is obtained by rotating the old velocity
through an angle, (w.;At), around B, and adding the velocity change due to

E rotated through (wci%). The new ion position can then be advanced,

x'{1+3/2 _ x1“1-{—1/2

-1

At !

The electron guiding center motion parallel to B may also be
advanced by the leapfrog technique

V:-H - v;t B qun+1/2

2.
At Me (2.24)
" If a leap frog is attempted for the perpendicular direction,” "~ =
+3/2 +1/2
X = Ba(xt?) xB (2.25)
At _Le B2 ? ¢

a numerical instability occurs due to the lack of time centering. A different
technique is required to push x, a predictor-corrector method is used. For

an equation of the form
%ﬁ = I'(t,x1), (2.26)

the simplest form of the predictor-corrector can be expressed as

X rea = X1 + A", (2.27)
n 1 n
xJ.+:orr = 5 [x1+;red + xJ_] . ] . (228)

The disadvantage of this technique is that it requires the field equations to
be solved twice per time step. On the other hand, however, the time scale

of {2, is eliminated as a restriction on the size of the time step. -

2.4 Magnetoinductive Model

=vith (2:23)
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The magnetoinductive model uses Darwin’s approximation for
Maxwell’s equations which neglects the transverse component of the displace-
ment current. To obtain a Lagrangian description of a field-particle system

as a function of instantaneous velocities and coordinates (as required in the -

24 neglected retardation effects. This has

conventional formalism), Darwin
the effect of removing radiation from consideration in the system.

Maxwell’s equations may be written in the form

16B '
1E e e
VxB_—J—i—c - (2:30)
V.E=4np (2.31)
V.B=0. (2.32)

Let L denote the curl-free (longitudinal) and T denote the divergence-free

(transverse) components. Equation (2.30) may then be written

10Er

VxB= ——JT + Pl (Ampere's law)(2.33)
c
8
0=4nJy + - ! 21‘ (conservation of charge)(2.34)
c

The neglect of dE7 /8t in Ampere’s law
VxB= flchT , (2.35)

removes the explicit time dependent particle-field coupling and thus removes
retardation and radiation effects. The explicit time dependent field-field
coupling of Faraday’s law is kept and inductive effects are therefore retained.

Thus the model is denoted as magnetoinductive.
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The modification by neglect of this one term in Maxwell’s equa-
tions alters the numerical form of the equation set from hyperbolic to elliptic.
The time derivatives in the full set of Maxwell’s equations

6E
5t

— =cV xB-47J (2.36) -

%? =—cVXE (2.37)

are readily advanced in time in a time-centered fashion. Neglecting SE1 /8t
removes the symmetry and thus the stability due to the time centeredness.
The solution uses the coupling of the particles to the fields to determine Ex

in terms of 8J1 /81 via

where 8J 1 /8t is expressed only in terms of present values of particle positions
and velocities. |

The solution of the longitudinal electric field has already been
discussed in section 2.2 to illustrate the mode expansion technique. The

solution of the magnetic field is obtained from the modified Ampere’s law
4
VxB=—"J; (2.39)
c

with

I(x) = Z ;v S(x — x;). (2.40)

The application of the normal mode expansion to the current density and

the magnetic field gives the expressions,

12mzn
J(z,y,z Z J.(z,y) ea:p( 7 ) (2.41)
n=-—N z

and

12mzn
z,Y,2 Z B.( ,y)ewp( I, ) (2.42)

n=—N

VEr = — 5 (2.38)




18

Formal substitution for ¢; in Eq. (2.7) with g;v;) gives an expression for
the current density which upon substitution into Eq. (2.40) in terms of grid

values for the n-th mode

1 ezrp(—a 2k2/2)

Tn/ ; o M;; N
Jalzgrvs)= 27ra,ay I, S(x= xg)[ (mg)'*'

Doz (2g+1) = Doz (2g-1) + Doy (yg+1) — Day (yg-1))(2.43)
The Fourier representation of Ampere’s law is

ik x B(k) = %JT(k). (2.44)

. Upon taici_xig the E;'oss- prddll-ét Qith kand usmg kB =A0; the-iﬁégnetié field

may be expressed as

ATk T (ko ky)

- X (2.44)

B, (ks k) =

The solution for the transverse component of the electric field

Er is to be obtained from
VEp = =2z (2.45)

The removal of the explicit time dependent particle field coupling to neglect
retardation effects is also to be applied here since solving for 8J1/8t by
time extrapolation of J is numerically inconsistent with our elliptic set of
equations and unstable!®. The path as shown by Busnardo-Neto, et. al
around this difficulty is to express 8Jr /8t in terms of particle quantities
given at the time step of the solution. '

The Vlasov equation for a given particle species a,

8fe , v-0fa , 8fa
& et <E+ B> 3= =0 (2.46)
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can be used to express the time derivative of the current density due to

species a,

8Jq fa
—ét— qa (Te—t‘)

= /qav( )d +m2a (2.47)
Va=—/qav( af:)dv

qQVVfad3 (2.48)

Let

8
6x
The time scales targeted for our model indicates that the guid-

ing center approximation for the electron response is appropriate. The elec-

tron kinetic equation apph'cable is then the drift-kinetic equation,

of. E x B
o == (orvufe+ S V) SE Vel (a9)

The expression for the time derivative of the current may now be written in

terms of particle quantities at the present time,

g = -V. V(x) -n—jne( )E”(X) + E—-ni(x)E(X) +

[4
) 1Y ——J,' x B(X) (2.50)

Mec

with the identification of the current transfer function, V = Vi — V.. Substi-
tuting into Eq. (2.45)

szzET =—47nV. V,(x) + wgeE”T(x) + wf,,.ET(x) + 4n$2;J; x B (2.51)

The first term on the right hand side is the divergence of the current transfer
tensor, the second term the bulk electron acceleration along the magnetic
field lines, the third term the bulk ion acceleration and the last term repre-

sents the ion flux across the magnetic field.
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In the particle simulation we have already noted the current is

given by
I(x) = q;v;S(x — x;). (2.40).
J

Taking the partial derivative with respect to time in the particle’s reference—~—— .

frame is equivalent to the total derivative in the grid frame,

?6_.: = ZQj [d—v—jS(x —X;) —v;v;-VS(x ~ xj)] (2.52)

where the second term on the right hand side is equivalent to the cur-

rent transfer tensor mentioned above. The particle acceleration is replaced

- through the appropriate equations of motion to give ~ = -

o tons

% =i 56 x) [ [Bx)+ Y x B@)] s — ;)

2 electrons
+ fn; Z - S(x~- xj)/ [B(x’) . E(x')l:)(x')] S(x' - x;)dz'
j .

all
particles

-v. 3 g;v;iviS(x —x;), (2.53)
j

which matches Eq. (2.47) obtained by the Vlasov approach. The use of
the guiding center equation of motion for the electrons removes the electron
cyclotron time scale considerations from the simulation model in addition to
the removal of the radiativ'e effects.

The integro-differential equation for the transverse electric

. ﬁeld,

—ciV"’E ;—_6—2 “’Z"’ S(x — x;) [E(x') + Y B(x')] S(x' — x;)d=z’'
4n ™M F ’ c ’

elecirons
62

T Z S(x ~ xj)/ [B(x’) : E(X')B(X')] S(x' — x;)dz'

m
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.all
particles

-V. Z qJ'VJ'VJ'S(X - XJ'), (254)
J

is most readily solved in its Fourier representation. The implementation

of the solution method is done for the transverse electric force rather than
the transverse electric field. The acceleration integrals need special treat-
ment. These integrals may be expressed as matrices with a wavenumber k
dependence upon summations over a second wavenumber k'.. Since these
summations contain the transverse electric force, a m by m (m being the
number of modes) matrix needs to be inverted. Direct inversion of this ma-
trix is computationally prohibitive in cost and thus-an indirect technique, a
renormalization method is utilized. This is a preferred method when the off-
diagonal terms of a matrix are of a smaller order than the diagonal elements
(here by O(én/n,) ). The Fourier representation of the transverse electric
field equation can be written

k%c2 N

k?

c |5
= Sr(k). (2.55)

= _ % [Z U;(k') x Fg(k — k’)} + dwpe [k - V(k)],
T

The iterative technique keeps only the k = 0 terms of Er on
the left hand side and places the remaining terms on the right hand side.
The initial estimate for Fr only uses Sr. This is substituted back into
the right hand side and new iterative estimates for Fr are solved for until

the desired convergence achieved. Busnardo-Neto et. al!! have shown that

this procedure breaks down when the maximum density exceeded twice the |

backround density. The further approximation of a low beta, incompressible

system is made and thus only the z component of the transverse electric field

V2|5(k)|? VFET (k) + wpe [Z ne(k')FE" (k - k'):, + wyi [Z ni(k')Pg(k — k')]
T k!

T
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is computed and B, is taken as constant. The details of the application of
this method to the hybrid three dimensional model are presented in Appendix
A.

2.5 Time Advancement

The time advancement of the coupled particle-field equations
can now be described in detail. At time t=0, the program dgposits initial
values for the particle velocities and positions, set all plasma de;rived electro-

magnetic fields to zero, and inserts the desired backround fields. The particle

~ positions are then advanced to time A?/2 by.

=xJ + volt v (2.56)

X i3

7

where the superscripts denote the time in units of At, t* = nAt. Following
this initialization the main time loop is cycled through as the computer
experiment evolves.

The ion and parallel electron evolution equations are of the

form
dv
5= F(z) + G(z,v). (2.57a)
dz
- =V , (2.57b)

where F is derived from the longitudinal electric field and G is derived from
the transverse fields. These equations are pushed using a variant of the

leap-frog method,

==z

Al
n—1/2 n<*
+v >

gn - g(mn,vn)
At

g™ tl/2 = g " 2
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}'n+1/2 —_ J:(mn-i-l/Z)
g_n+1/2 — 3/2 gn _ 1/2 g'n.—l

vn+1 = v”+At(,’7~"’"+1/2+g-"+]/2).

The leap frog technique is commonly used because it is simple and stable
for small time step due to its time centered form. Since G can only be
evaluated on the integer time grid, it is extrapolated forward to restore time
centering. This extrapolation of G should not create any méjor problems
in the algorithm when the magnitudes of the longitudinal electric fields due
to charge separation are large compared to the current-produced transverse
electric fields and the plasma-induced magnetic fields are small compared to
the backround magnetic field. The principal components of the fields are
then time centered. The extrapolation should thus be sufﬁcie;ltly accurate.

The electron perpendicular evolution equations are in the form

v = F(z) +G(z,v) (2.584)
dz
d_t = 7. (258b)

To provide for time centering of these difference equations a form of the

predictor-corrector technique is used. For the case of G = 0 this scheme,
zn+1/2 — zn—1/2 + v AL

}-n+1/2 = f(mn+1/2)

22 gne1/2 g g Ay

” n+3/2
fprtg/z = ‘F(zpred/ )

n+1 f;:j/z + Fnt1/2
T = 5 ,
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has been successfully applied to an electrostatic case by Lee and Okuda®.
To include the functionality represented by G, forward extrapolation is again

required to preserve the virtual time-centering.

" = z"1/2 +vn£
2 —_
gn — g(mn,vn)
mn+1/2 = " +vn£
2

FrHIf2 2 p(gntis)
g_n+1/2 — 3/2 gr — 1/2 g'n-——]
'z;j;j/‘;ﬂ-_—' 12 4 2At(§-‘_"4‘/2 + gnt1/2)

n=+3/2 +3/2
fpred/ = f(m:rcd/ )

g_n-}-l — zgn _ gn—l

1 n o
=L (o ) o

n+l _ _n+1/2 =
z 4= +vpred 2

pre

gn—}-l — g(vn-i-] mn+1)

pred pred’ “pred
n+3/2 | rnt1/2
"t = }-pred +F" +gntl
- 2 pred

Information at the present n = 1,n,n + % time locations are used to predict
future values of the particle and field quantities. The predicted fields are then

used to advance the electron velocity in a virtual time-centered manner.

2.6 Dispersion and Fluctuation Analysis
An electromechanical system consisting of particles with inter-

acting forces and fields exhibits various normal modes of oscillation. The
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frequency, w, and wavenumber, k, response provides information about the
particle-field interaction. The fluctuations in the electromagnetic fields are
created by the thermal particle motion of a plasma. In turn the plasma par-

ticle motion is influenced by the fluctuating electromagnetic fields. Thus a

particular-electromagnetic mode amplitude that isimmersed in-the heat bath
of many modes interacting with each other through the particles establishes
its own average “thermal” level of amplitude. This should be proportional
to the thermal level of the particles and to the strength of :the coupling
between the fields and particles. The coupling strength is related to the dis-

sipative nature of the plasma. This relation manifests itself in the theorem

- of fluctuation-dissipation?®. The-fluctuation spectra of simulation plasmas -

should exhibit these features as should any many-body statistical physical
system. This section discusses the mode diagnostics, the theoretical disper-
sion relations appropriate for the model, the fluctuations of modes, and the
simulation results to compare with predictions.

For the case of stationary random processes, F, the basis for

spectrum analysis is provided by the autocorrelation function
C(r) = E[F()F(t + 7))}, (2.59)

where E is the expectation operator. The quantity of interest is the power
distribution with frequency. The Wiener-Khinchin relation®® provides the
power spectral density, P, in terms of the Fourier transform of the autocor-

relation function,
o0
'P'=/ C(7)exp(—iwT)dT. (2.60)

Replacing ensemble averages by time averages, the autocorrelation function

becomes

.1 (7
o) = Jim — /: PP+ ) (2.61)
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which is then substituted to determine P.

The required field quantities for the desired wavenumbers are

written at each time step to external storage over the course of the run. The"

_ discrete nature of our knowledge of the field data requires us to replace the

- autocorrelation integral for the chosen wavenumber by a summation esti-
mate. The most obvious choice is the unbiased estimator

1 N~—r

Cue(rat) = +— Y FnAtF(n+r)At], r=0,1,..m (262)

N

where 7 At is the lag time, mAt is the maximum lag time, and N is the num-

~ ber of data points. Blackman and Tukey?’ proposed the spectral estimate -

as
m

Pi(w) = At Z Cx(rAt)exp(—iwrAt). (2.63)

r=—m
To reduce possible statistical errors in the estimate of Cy the maximum lag
time is constrained to 7 < NAt/4.

Data windowing is employed to improve the frequency resolu-
tion of the power spectral density estimates. Spurious high frequency com-
ponents which have been included due to the finite sample size may thus
be filtered out. The convolution of the window transform with that of the
actual signal transform means that the most narrow spectral response of the
resultant transform is limited to that of the main-lobe width of the window

transform. We have chosen to use the Parzen window function 28

1—-6(r/m)?+6(r/m)® r=0,1,...,m/2
W(TAt) = {2(1-—r/m)3 r=m/2+ 1,...,m (264)
0 r>m

to produce a smooth estimate of the power spectral density via

Pr(w) = At Z Ci(r)W (rAt)exp(—iwr At). . (2.65)

T=——m
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This discrete transform produces Py at discrete frequencies, w = jAw, where
Aw = 21 /mAt. By choosing m < N, statistical errors in P are reduced,
however the spectral resolution is lessened by reduction of the number of

datapoints in the lag interval, m. These competing requirements constrain

the analysis.
The dispersion relation for linear waves may be derived from
our modified set of Maxwell’s equations plus equations for the particle distri-

bution functions. The electric field may be expressed in terms of the current

density as
—4mi
vi; Ej = = J; (2.66)
where
kik;
vi; = (n® + 1)__;97,7 ~n?§;;

with n? = k?c?/w? and §;; is a Kronecker delta. Using linearized Vlasov
‘theory, the Fourier transformed plasma current of particle species o can be
expressed as a linear function of the electric field through the susceptibility

tensor x7};

Ji (w, k) = —twx{;(w, k) Ej(w, k). ‘ (2.67)

The current densities of all species can be summed and substituted into
Eq. (2.67) to yield
Aij(w,k)E;(w,k) =0 (2.68)

where A;; is the dispersion tensor defined by
Aij = vij +4mxi;

and xi; = Exf; The dispersion relation is obtained from setting the de-

[= 4
terminant of the dispersion tensor to zero
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The roots of Eq. (2.69) for a given set (w,k) determine the normal modes of
oscillation.
In the cold fluid approximation the elements of the susceptibil:

ity tensor may be determined directly from the particle equations of motion. -

For a coordinate system with axes defined such that
B = Bok

k=kyi+k k= k(sin #1 + cos d>i)

where ¢ is the angle between k and By the electron conductivity tensor

elements are given by

0 e g
amxs, = | (2.70)
Xig = | o 0 0 :
0 0 w2 /u?

Using Eq. (2.16) for the ion equation of motion, the ion conductivity tensor

is given by
_""Ezi - 2; ""'22"
w3 -1 1'_1:'1 wi-N¢ 0
. 2 2
= 12, Wyi —Wgy
4mx;; #F;Ln‘, S 0 (2.71).
“’21'
0 o -

Finite size particle effects are be included in the conductivity tensor by re-

placing w ; and w . by w e~*e* and wiee""?“2 respectively.

The dlspersmn relation for a cold, homogeneous plasma in the
magnetoinductive model with perpendicular guiding center electron motion

can now be expressed as

-+ ) [5 - i) (5 + i)
o) | e —meamy | |or T meem

(E%I:Z) [(l - wzw_:}yg) L w;’ 7 (1 + -z’,)] (2.72)

tan? ¢ =
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where w2 = w2, +w2;. This relation may be expressed as a cubic polynomial
in w?. The roots of this polynomial yield the eigenfrequencies of the normal
modes of oscillation.

Settmg ¢ = 0in Eq (2 72) yle]ds three parallel propagat-

mg solutJOns, long1tud1na.l plasma osc11]at10ns, whistler waves, and Alfvén
waves. For ¢ = 90°, the compressional Alfvén - lower hybrid and ion cy-
clotron waves are expected. The upper hybrid wave which appears in a fully
electromagnetic model here reduces to a constant term.

When ¢ = 90° the warm plasma theory predicts spectral peaks
in the vicinity of the lower hybrid frequency, w? H= w i+ .(22, ‘and at har-
‘monics of thp iop C);slo-rtrop‘vfreé;lsns&. These ion Bemstem modes have, for

¢ = 90°, the dispersion relation?!®

—k%q3 oo
k2 v Z I.(B:)e Qi =0, (2.74)
where f3; = k2 T; /M 022, I,, is the modified Bessel function of the first kind,
and M}, =T;/M wzi. The first simulation investigation of the electron Bern-
stein modes for the full dynamics electron model has been done by Kamimura
et. al*°. An example power spectrum for mode (k; = 3,k, = 0,k, = 0) of
the longitudinal electric field from our code is shown in Fig. 2.1. The param-
eters for this run are L, x L, x L, = 324 x 324 x 32004, a, = a, = 1.54,
a, = 3004, vre = 1.00p. A, M/m = 625.0, T;/T, = 1.0, 2, /wpe = 10.0. The
dispersion relation admits several solutions for w as a function of k. These
are drawn along with the points determined from the simulation in good cor-
respondence in Fig. 2.2. For higher harmonics, the simulation modes with
low wavenumbers become too weak to observe. We note that Eq. (2.74) fails
to yield roots there as well.

| The electromagnetic modes predicted for ¢ = 0 are the whistler

waves and shear Alfvén waves. These waves are circularly polarized. The
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Figure 2.1 E; mode spectrum from simulation for mode
(k; = 3,k; = 0,k, = 0). Peaks labeled A-E correspond to points similarly
labeled in Fig. 2.2.
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Figure 2.2 Theoretical dispersion curves for ion Bernstein modes with simu-

lation points. Points labeled A-E correspond to the peaks similarly labeled

in Fig. 2.1.
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whistler wave rotates in the same direction as the electron cyclotron motion.
Since we lack thermal electron motion perpendicular to the field we do not
expect this mode to be excited from initially thermal conditions. The shear

Alfvén wave, however, can be excited since ions carry perpendicular thermal

k2'l7124 ka2 4!22 k2a2 ]/2
= a i gmk'a ~1]. 2.75
wsa = Sole (1 + ek ) (2.75)

This has a small k limit, w = kv, and the large k limit, w = £. Warm
plasma effects may be included by use of Vlasov theory. The dispersion

function required is,

E]

k2c2 )
A(k,w) =1~ -w—2
" L_v_f,_e w 7 w+ 2.
w? \2kjpre  V2kpvre
2
w*. - 0.
yom_2 w — 1 (2.76)

Z .
w? 2kyvr; ( V2k|vor;

For a strongly magnetized plasma £2, > w, and in the magnetoinductive
approximation, kﬁc2 Jw? > 1. This gives a result
k2c? wﬁe “% w w — £2;

Alk,w) = —— + 2 4 2
( 'UJ) w? w.Qe w? \/ék“vT,' \/ik”'UT,’

), (2.77)

whose roots determine the frequency response at give wavenumbers. This
curve is displayed in Fig. 2.3 along with results from a simulation run with
parameters L, x L, x L, = 324 x32Ax 18334, a, = a, = 1.54, a, = 3004,
vre = 1.0wpe A, M/m = 625.0, T; /T, = 1.0, £, /wpe = 10.0, and an angle
between B and the z-axis of 1°. This tilt of the magnetic field is required
to obtain the shear Alfvén wave since a component of Ez perpendicular to

the magnetic field is involved and only the component Er, is kept in this

motion. In-the cold plasma limit the shear Alfvén wave frequency is given as
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incompressible model. The error bars indicate the width of the spectral peaks
which is limited by the length of the run.

The distribution of energies among the various modes of a sys-

tem-provides another comparison between the-simulation- model-and-the-the-
oretical predictions from statistical mechanics. Application of the classical

2% can predict the ensemble averaged (here

_ fluctuation-dissipation theorem
replaced by time averaged) levels of fluctuation in the electromagnetic fields
for a homogeneous plasma in thermal equilibrium. This thec;rem says that
if the system response to a weak external field may be described by a linear

response function, the ensemble averaged fluctuation energy in each mode is-
completely determined by the system’s dissipation properties.
In a periodic system with Gaussian shaped particles, the fluc-

tuation spectra for the longitudinal electric field component is predicted by
Langdon and Birdsall®! to be

(B )\ T
V= PN e (2.78)

where ( ) denotes an ensemble averaging and V is the simulation volume.
This is tested in a triply periodic system with parameters L, X Ly X L, =
32A x 324 x 32004, a, = a; = 1.54, a, = 3004, vr, = 1.0w,. A, M/m =
125.0, T; /T, = 1.0, §2, /wpe = 10.0. This is displayed in Fig. 2.4.

The fluctuations in the magnetic field are dependent upon the
angle ¢ between B and k. In the simulation model, only the components of '
B produced by the plasma in the x-y plane are calculated while the large
backround B is along or nearly along the z-axis. Only the case for ¢ = 90°
is presented here. The resultant equation has been reported by Dawson® for

this case including finite size particle effects and periodic boundary conditions
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Figure 2.4 Longitudinal electric field fluctuation spectrum.
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to be ,
B .
1% (B ) = 1 = (2.79)
anT — p 4 Klelede

pPe

Simulation results are shown in Fig. 2.5 for the parameters L, x L, x

L, =324 %324 % 32004, a; = a, = 154, a,; = 3004, v7. = 1.0w,. 4,
M/m = 625.0, T;/T. = 1.0, 2. /wp, = 10.0. The fluctuation spectrum is
somewhat noisier than the electrostatic fluctuation épectmm displayed in
Fig. 2.4 since magnetic field fluctuations can take longer to equilibrate, but

good agreement is shown.
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A

Time Step Cycle
* Accumulate ch;a.rt'gerdeﬁéir’(_:y for 'ea.,chrkz mode
Pk, from X2
Calculate longitudinal electric field for each &, mode
v. Ez+l/2(kz) = 4mpnt1/2
Backstep particle positions 1/2 time step
x" = x"+1/2 _y" AL /2

Accumulate current, number, and 2nd order current densities

for each k, mode

J*,n", (vv)" from x",v"
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|

Calculate magnetic fields for each k,

4
- V.x B"=—J},
c

|

Calculate transverse electric fields for each k,

Use iterative procedure

W _ATIR L oo ;LB
-V’E =-C_2WT[A7J1'7B 7ne’ni7<vv>'n§ L 2 L "'ET

Calculate E and B at the n +1/2 time step for each k,
E"t/2 = E]1Y/? 4 3/2ER — 1/2E0!

B"tY/2 = 3/2B™ — 1/2B"!

|

Leap-frog ion velocities and positions

3 1 =_iEn+1/2_ € (V?+1+V?)
At M Mec 2

x;{t+3/2 — x:t+1/2 + v?""At

Leap-frog parallel electron velocity

x Bn+1/2

Vn+1 = 'V:l” -+ "e-Ellrll+]/2At
m

ell




Calculate predictor electron position

2c

X432 (pred) = x1H1/2 yntl py vl At + 73-1'«3"“/2 x BoAt

2

e||
0

l
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J

Calculate predicted charge density for each k,

n+3/2 n+3/2 _n43/2
Poreq  from x| L x2H3/%(

|

Calculate predicted E;, for each k,

pred)

n+3/2
V' Ep(prea) = 4mp 05

|

Calculated predicted electron perpendicular velocity

-+1 — -1

(B ey + B

n+1 _ ¢ n+1 L(pred)
Vel(pred) = B? Erorea) + >

|

Backstep positions 1/2 time step

XBQ

n+l _ _n+3/2 n+1
x; 7 =x; - v T At/2

Xl hrey = X2 — (VI (pred) + V) At/f2
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Accumulate predicted current, number and 2nd order current densities

for each k,

J;+1, nn-}-]’ <W>n+1

p

Calculate predicted magnetic fields for each k,

47
n+1 __ +1
Vv x Bpred - :—J;(pred)

|

Calculate prédicted transverse electric field for each k,

47 O
2@+l n+1) gn+1 yn+1 pn+l
v ET(pred) = ?EJT {JA 2 J; ’B(prcd)’

n

n+1
e(pred)?® ni(pred)’ <W>pred ’ 2 T(pred)

|

Corrector step for electron perpendicular velocities and positions
n+1 . C EnH

n+3/2 n+1/2
n+1 n+1 (EL(PNC‘) +E; ) Er+! }
’

n+3/2 n+1/2
[EL(pred) +Eg ] B
Vel = B—g T'(pred) 2 X Bo

x"8/2 — yn+1/2 (v:‘_]_“ + vn+l) At

ell

Back to A




CHAPTER 8.
THE COALESCENSE AND M=1 KINK INSTABILITIES

8.1 Introduction A

~—- The coalescense-and m=1 kink instabilities aretwo examples
of current driven instabilities. A common interesting characteristic for these
processes is that in both cases the bulk current may be redistributed on
a time scale on the order of the Alfvén time. The examples of tokamak
confinement and solar flares are but two of the many applications where

these phenomena may appear.

"7 7 77 Magnetic surfaces can break up into thin filaments, magnetic

islands, due to tearing mode instabilities. The time scale of the tearing is
much longer than the Alfvén time32. The coalescense instability33-*4 provides
a mechanism whereby the magnetic field lines can reconnect on a time scale
possibly much shorter than that for tearing. The current filaments which
produce these magnetic islands attract each other in a plasma as do two par-
allel wires with currents in the same direction. Under appropriate conditions
the islands tend to move -together and coalescense. Although the coalescense
instability is essentially an ideal MHD instability in the linear theoretical
sense, it would not nonlinearly evolve unless there is a resistive (non-ideal
MHD) effect, since the magnetic flux which would pile up between the two
islands would act to repell the islands. The interesting results3® obtained
from this essentially two dimensional current driven instability has us ask
what sorts of phenomenon appear when a variation in the third direction is
allowed. Although in two dimensions the configuration of the coalescence is
perhaps one of the simplest that could involve a fast reconnection, when the
third dimensional variation is allowed we may be able to consider a simpler

current distribution that may undergo a fast reconnection of the order of the

42
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Alfvén time scale rather than the tearing time scale. Such a configuration is

simply a single toroidal magnetic field for the kink instabilities,

The m=1 kink instability has been extensively studied in both

a.na.]yt:cal theory and simulation®®37-38, This type of _instability is driven

by current parallel to the magnetic field as may be illustrated in terms of
the following models. As one model, first consider a wire or thin plasma
aligned initially in the z direction with a current I through it surrounded
by a magnetic field, B,. This current produces an azimuthal xﬁagnetic field.

If the plasma tube undergoes a small perturbation, as shown in Fig. 3.1,

the lines of azmmthal magnetic induction become bunched together on one

side of the column compared to the other. The magnetic pressure changes
so that the distortion is mcreased, the I x B becomes non-zero from this

perturbation, and an unopposed destabilizing force acts upon the plasma.

Another model, described by J. L. Johnson, et al., 3° considers
a fat plasma column as in Fig. 3.2. Suppose we perturb this column by a
m=1 helical shift while retaining rigid cross sections. Look at two of these
cross sections kA = 7 /2 apart. If the equilibrium magnetic field sweeps out
more than 90° about the axis, the perturbed field Wiil then subtend an even
larger angle. In order to traverse this larger angle, the poloidal component of
the magnetic field must be increased by the perturbation. This increases the
magnetic pressure on one side and accelerates the instability. If, however, the
equilibrium magnetic field subtends an angle less than 90°, the perturbation
is opposed. This condition on angle is equivalent to a condition on the safety
factor, q; ¢ < 1 — unstable, g > 1 — stable. This condition is commonly
denoted as the Shafranov stability criterion®. To determine if a region of
Plasma is unstable to a kink perturbation, we can calculate a q=1 surface.

The region where q is less than one is where we will look for instabilities.
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Figure 3.1 Thin plasma kink model.
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Figure 3.2 Fat plasma column kink model.
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3.2 Simulation Initialization
We look at simulation of the these instabilities as an initial
value problem. For both the coalescense instability and the m=1 kink, the

initial current distribution (among other factors) determines the quality of -

the simulation. The addition of a quiet start technique for the current pro-
vides a smoothed initial current density to provide an initially smoéth az-
imuthal magnetic field.

A quiet start for the current is obtained by an iterative tech-
nique. The particle velocities are initially distributed thermally without re-
gard for their position. This leads to spatially nonuniform distribution of the
current density, which taken globally averages to zero. The current density
and particle density are accumulated on the grid by use of the subtracted

dipole scheme, as in the main body of the code.

n(zg,yy) =27T:zay S(x —xg)[M () +
D, (zig+l) = D; (zg-1) + Dy (yg+1) — Dy (y5-1)).  (3.1)
J(zg,yy) =21ra=ay S(x —xg)[M, (z4) +

D,. ($g+1) - sz (:1:9_1) +IDvy (yg-!-l) - Dvy (yg—l)]' (3'2)

We wish to have the local current density at each grid node to be zero, so an
amount is subtracted from each electron velocity equal to the current density
at the nearest grid point to the particle (NGP) divided by the particle density
at that same grid point,.

u2 (i) = v2(3) - [J.(NGP)/n(NGP) (3.3)

. This does not provide a very smoothed current density since the reaction

back to the particle velocities is of lower order than the accumulation to the
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grid. To further smooth the local variations in the current density, the above
process is iterated, in our case for ten times, so that the desired smoothness
in the backround current density is achieved. The applied current density is

then loaded into the particle velocities as a position dependent quantity.

3.8 Simulations of the tearing instability

The tearing instability is the tendency for a plasma to break up
into magnetic islands so as to reduce the magnetic energy in thg regions away
from the islands. Consider a sheared magnetic field embeddea in a plasma.

In a slab geometry, the magnetic field may be taken to be of the form, B =

By(z)j+ B.2. The elimination of the magnetic shear in some region of space . .

reduces the free energy in that region. Faraday’s law, V x E = —1 /c 6B/,
and Ohm’s law J = ¢(E + v/c x B), may be combined to give

oB .
—— = — . 3.
5 Vx(va)+47mVB (3.4)

If the system is then perturbed, then in the region where k- B = 0 the
magnetic field diffusion is largest.

We simulation the evolution of the tearing instability in the
collisionless regime?>4® by use of a standard 2 1/2 dimensional electromag-
netic particle code?344 with slab geometry. The initial sheared magnetic
field is of the form

B, = o | B | tanh(z/L) (3.5).

The corresponding parallel current is thus of the form

Jo Lo |BEsech(f)

= i (3.6)
o (Bp-p)t L

The simulation parameters are L, x L, = 644 x 644, At /w,, = 0.1, M/m =
16.0,Ap./A = 1.0,2./wpe = 1.5, T;/T. = 1.0, c/wpeA = 10.0,a =
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0.0435,L = 7.36A. The initial magnetic field profile and current distri-
bution are show in Fig. 3.3. Contours of the projection of the magnetic field
into the x-y plane in Fig. 3.4 show the evolution of a magnetic island. The

growth rate of the modes in the linear regime are compared with theoretical

predictions-obtained-by-solving

25 _ 1 3 k 3 2 avzo A
=gl (=) & (0 -na) 2]
with |
by = B |2 sech? (z)
Teng L
and - )

1 I V— ;0 I
fo= =P\~
(MivT€> TE

as an eigenvalue problem via a shooting method code. The growth rates
of the magnetic flux thus derived are compared with the simulation results
in Fig. 3.5 obtained from the previously described simulation and also for
the results of a simulation using an implicit electromagnetic code?344, The
evolution of the magnetic island width is also displayed for the implicit run

in Fig. 3.6 for the sake of comparison.

3.4 Simulations of the coalescense instability

The process of magnetic field reconnection which attempts to
lower the free energy of magnetic island configurations may be carried out
by the coalescense instability. We study the coalescense instability by con-
sidering a small perturbation applied to an initial magnetohydrodynamic

equilibrium consisting of a chain of magnetic islands of the form given by
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Fadeev, et al.*” This equilibrium is characterized by the current localization

parameter €¢,. The equilibrium current is taken to be

1

J. = Byok(1 - € : : 3.8
vok( e'“')(coshk:z:«}- eccosky)? (3-8)
The corresponding magnetic field is o

e.sinky

B = Byo coshkz + e.cosky’ (3.9)
sinhkz

=B .10

By ¥ coshkz + €c.cosky’ (3.10)

B B2,(1—¢€ ! B? :
LR [__yO( _;ec.,)(coshkm + €.cosky)? + .‘.OJ... T

The parameter €. varies from 0 to 1 with small €. corresponding to a weak
localization and €. close to unity corresponding to a strong localization; in
the limit of ¢, — 1 the current distribution becomes a delta function. The
particle density is taken as initially uniform.

The particle simulation model used here to model the coa-
lescense instability is a standard electromagneticlpa.rticle code®®4 Let us
consider two cases which were simulated. The simulation parameters for
the first case are L, x L, = 64A x 1284, At/w,. = 0.1, M/m = 16.0,
Ape/A = 1.0, 2. /wpe = 1.5, T; /T, = 1.0, c/yip,A = 10.0, B,o/B,0 = 0.233,
€. = 0.7. The initial current distribution in the z direction is shown in Fig.
3.7. Contours of the projection of the magnetic field onto the x-y plane are
shown in ‘Fig. 3.8. The MHD equilibrium is perturbed slightly at the start
of the simulation by pushing the islands together with an initial velocity of
a fraction of vy.. The two initial islands come together and form one island.

The second simulation has parameters L, x L, = 644 x 1284,
Atfwye = 0.1, M/m = 16.0, Ap./A = 1.0, 2 /wpe = 3.0, T;/T, = 1.0,
¢/wpeA = 5.0, Byo/B,o = 0.233, ¢ = 0.3. The initial current distribution

Lemo
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is seen in Fig. 3.9 to be not as sharply peaked as the previous case. The
magnetic field contours are displayed in Fig. 3.10 and are seen to be much
broader than the previous case. The magnetic islands, as they approach each

other, do not do so along their initial line of symmetry. Since this run has a

to coalesce.

3.5 Simulations of the m=1 kink instability

These 2% dimensional simulations in sections 3.'3 and 3.4 ex-
hibit some characteristics of interest in the modeling of fusion devices and of
solar flares. They are restricted to single helicity simulation. They are also
limited by the restrictions of the electromagnetic model. This model follows
the fast time scales of light wave propagation and £2.. The restrictions are
removed by the use of a three dimensional magnetoinductive model. We have
described such a model in the previous chapter. The m=1 kink mode has
been the subject of much study and is an essentially three dimensional dy-
namical mode and was thus selected as the first instability to apply our code
to. It is also a basis of investigation that link the two dimensional driven
instabilities such as the coalescence and three dimensional drive instabilities.

The initial current profile for the kink simulations is taken as?®

2 3
Jz=J,0(1—( z ) ) . (3.12)
Tminor

The azimuthal magnetic field is to be determined through the plasma current

density which is obtained by the accumulation of the particle velocities to
the grid locations. Two cases are discussed in this section. In the first
case the simulation parameters are L, x L, x L, = 324 x 324 x 32004,
Atfwpe = 10.0, M/m = 625.0, Ap. /A = 1.0, 2, /wpe = 10.0, T;/T. = 1.0,
c/wpeA = 4.0, J;0/Awpe = 2.0. In Fig. 3.11 the initial inagnetic field

strong ”toroidal” magnetic field the two islands begin to rotate as they try —
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Figure 3.9 The initial current distribution in the z direction for coalescense

simulation Case 2.
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is contoured at several cross sectional slices along z. The g = 1 surface
encloses a large portion of the plasma volume. The plasma evolves from
these initial conditions by the generation of azimuthal electron flow, as seen

in Fig. 3.12, and by the development of a kink structure in the magnetic

field.-The magnetic field contours at time 1500w, are presented in Fig. 3.13
along wifh a perspective view of some field lines in Fig. 3.14. For the second
case, the current amplitude is decreased to J;o = 0.5. The ¢ = 1 surface
does not exist in this simulation and the m=1 kink mode does not seem to
appear. A perspective view of magnetic field lines both at the beginning
of the simulation and at a time after the other simulations observed kink
- behavior are displayed in Fig. 3.15. .

These results are not inconsistent with the linear Shafranov
theory of the kink instability. The simulation code which we have developed
thus appears able to model the physics associated with kink-type instabilities

due to its enhanced time scale and the inclusion of three full dimensions.
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Figure 3.11 Magnetic field contours at the begining of the kink simulation
Case 1 at several cross sectional slices along z. The g = 1 surface encloses a

large portion of the plasma volume.
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Figure 3.13 Magnetic field contours for Case 1 at time=1500 w_;el.
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Figure 3.14 Perspective view of magnetic field lines for Case 1 at time=1500

-1
wpe
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Figure 3.15 Perspective view of magnetic field lines for Case 2 initially (A) -

and at long times (B).




CHAPTER 4.
THE TWIST-KINK INSTABILITY

4.1 Introduction

Tl}e introduction of diflerential rotation of a plasma about an

axis paralle]l to the backround magnetic field can produce a variant of the
kink mode which we denote as the twist-kink instability. Recent interest has
appeared in the application of twisting of a plasma column to instabilities
associated with the tandem mirror®?° and with solar flares51'52,

53 | axial variation in the equilibrium E x

In a tandem mirror
B velocity occurs for even the simplest model consisting of two regions,
i.e. a central cell and end cells. Since the electrons escépe through the
. magnetic mirrors much faster than the ions do, because of Coulomb pitch-
angle scattering, an ambipolar electric field is established in the plasma. The

profile of the ambipolar potential is related to the ion profile via Boltzmann’s

law

¢(7‘, z) — ¢o
gnize 4.1)

ni(r, z) = npezp

Since the plasma has thus acquired a net positive charge,. a radial electric
field which is on the order of E,(z) = —¢(z,r = 0)/a is induced. Since the
density varies axially, the potential does also. Sample density and potential
profiles along with the corresponding magnetic field profile are shown in F)g
4.1. The E, x B, plasma rotation thus varies along z.

The eruption of flux from the photospheric region of the sun
to form coronal loops is a complex phenomenon. A schematic diagram of
this occurence is show in Fig. 4.2. This situation is further complicated by
the recognition that photospheric shear motion at the feet of the loop acts

to twist the column as shown in Fig. 4.3.
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Figure 4.1 Sample profiles of magnetic field, potential and density for a tan-

dem mirror.
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RPIT/ZNNY

Figure 4.2 A schematic diagram of the eruption of flux from the photospheric

region of the sun to form coronal loops.
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.Figure 4.3 Photospheric shear motion at the feet of a coronal loop acts to

twist the column.
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The MHD description of the mechanism whereby the differen-
tial twisting of a plasma column develops a kink structure is deécribed by
the following equations. The azimuthal velocity of the twisting motion about
the magnetic field gives rise to an increase in the azimuthal component of

the magnetic field.

(—8—B—é—tﬁz—))o =V, x (vg(r,z) x B;), (4.2)

This increase in the magnetic field corresponds to an increase in current

along the column.

J.(r,2) = —V, x Be(r, z) (4.3)

4
This current eventually can build up to sufficient current, for long enough
. twisting times, to cause kink type instabilities. However, this current is

function of z so that it exceeds a threshold for kink motion only locally in z.

4.2 Simulation Results

These rotations are generated by imposing an external radial
electric field on the plasma column. The plasma is assumed to be strongly
magnetized so that B, is constant (incompressible toroidal magnetic field).
The twistiﬁg electric fields, constant in tﬁne, are given externally as

E.(r, 2) = Erosin® (%r) cos (%ﬁ) (r < o). (4.4)

z

This radial field gives rise to an azimuthal flow of electrons and ions both
with vg(r, 2) = cE,(r, z) x B, /B2. This azimuthal flow v peaks at r = ro/2,
having a shear (dw/dr #). In the vicinity of 7 = 0 the azimuthal flow is close
to the rigid body rotation when € = 1. As r increases, the shear in the flow
increases. The plasma eiperiences no externally imposed azimuthal flow

beyond r > ro. The largest amount of differential rotation takes place at
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2mz/L, = m/2 and 37 /2. We expect that the twisting of the plasma induces
a field aligned current (J,) due to the injected helicity, a pinching of the
plasma column, and an eventual kink instability due to the large induced

axial current.

Several different cases were simulated. The first simulation is
set up with the following parameters: M/m = 125, vp. = wp A, 2; /wp; =
va/c = 0.4, ; = 8 x 1072wy, p; = 1.14, v4 = 1.6wpe A, L, = L, = 324,
L, = 32004, wp. At = 10. The plasma f is 1.25 x 1073 and thus the use
of our low beta model is appropriate. The applied radial electric field has
peak magnitude E,o = O.ST?nAwf,e with an € = .1 radial dependence with
" maximum radial distance ro = 14A. The plasma is initially uniform in
density and contains only a constant B, field.

A perspective view of five fadiaily distributed magnetic field
lines are shown in Fig. 4.4(a) at the first time step. At the relatively ga.rly
time of 200w;e’, a similar perspective plot, Fig. 4.4(b) shows a twisting of
the magnetic field developing. Figures 4.5 and 4.6 refer to time 200w,
The k, = 2n /L, Fourier component of the applied radial electric field plus
the electric field due to electrostatic charge separation are combined in Fig.
4.5(a). The applied field is clearly dominant. A clear pattern of plasma
rotation due to the external twisting E, x B, is seen in the velocity flow
diagram of Fig. 4.5(b). As the plasma twist continues, the plasma is pinched
and the density increases near the r=0 axis and the field aligned current, J,,
is induced, (Fig. 4.6(a)). This produces the poloidal magnetic field, By, as
seen in Fig. 4.6(b).

The current is peaked near r=0 and so is By. Thus the total
magnetic field B starts to acquire shear in the radial direction. The sheared

magnetic field structure may be best illustrated by the analysis of the mag-
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Figure 4.4 Perspective view of five radially distributed magnetic field lines at
time=10 w;f (A) and at time=200w,.! (B), shows a twisting of the magnetic
field developing.
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Figure 4.6 Contours of J, (A), Bs (B), and g (C) in a cross sectional slice at
z = 400A at time=200u),',;1 for Case 1.
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netic fields in terms of the local rotational transform (angle) ¢(r,z) and its

associated so-called safety factor g(r, z) = 27/t locally defined as

( _ rB,
q T',Z) - RBg(x)’

where R = L, /2. Its contours are illustrated in Fig. 4.6(c). Here the usual
definition of the (global) safety factor g(r) and rotational transform «(r) is
independent of z, while the present ones are locally defined quantities for
convenience. Since the twist is a function of z, the “rotational transform”

and the safety factor are functions of 2 and are thus local (z) quantities.

When g¢ is, for example, 3 at z=z(, the magnetic field is spiraling in the

azimuthal direction with a pitch of 3L,. This would amount to a winding

in the poloidal direction of the particular field line once while winding three
times in the toroidal direction (in the periodicity of z) if this local g=3 was
held for all z. Such a local g is depicted in Fig. 4.6(c). From Shafranov’s
theory® the kink instability is expected when g becomes less than unity.
The results presented in Fig 4.7 for the electric field and flow pattern and
in Fig. 4.8 for the azimuthal magnetic field, local q and current due to this
magnetic field are for time 400wp'e1 and in similarly in Figures 4.9 and 4.10
for time SOOw;;l. As the twisting continues, the magnetic field lines become
more wrapped showing a wider area with ¢ < 1 (Fig. 4.8(c)). Figure 4.8(b)
shows an m=1 distortion as exemplified by a c;escent-shaped island and by
a dipole structure. At this point it turns out that the system has achieved
its maximum twist. It seems, in fact, that at this time the strong anticipated
kink mode sets in, although the above conjecture is based on the analysis
of the locally defined q. This strong kink mode makes the plasma unstable
and shows a turbulent plasma motion. At t=800w;el, the flow pattern is

re-established and the central structure of By indicate that the plasma has

somewhat relaxed. The time histories (Fig. 4.11) correlate well with the
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magnetic field energy undergoing rapid growth until about time 400w;,' and
then decreasing such that the energy stored in the magnetic field at time
800w, is nearly the same as at the earlier time of 200w;.'. The growth of

the electron kinetic energy is seen to occur at the same times as the growth

-of the magnetic field energy.

A second simulation differs from the first case by having a
reduced magnitude of the applied radial electric field, eE,q /'nuu:eA = 0.2.
Figures 4.12 and 4.13 are for ¢ = 200w;.!. The velocity ﬁelé:l seen in Fig
4.12(a) is not as clearly organized at t = 200w, as the previous case. The
contour plots of J, , Fig. 4.12(b) have a maximum contour level of 32.0,
~ down almost an order of magnjtﬁdé from Case 1. The peakinﬂg of the current
is, however, still clearly visible. The n=1 component of the electric field is
shown in Fig. 4.13(a). The contoured slice at z = 400 of the azimuthal
component of the magnetic field shown in Fig. 4.13(b) has a much smaller
regions enclosed by the q=1 contour seen in Fig. 4.13(c). At t = SOOw;e1
the diagrams of Fig. 4.14 and 4.15 show behavior similar to that of Case
1. The perspective field line diagram in Fig. 4.16 shows the field line twist

€

field (Fig. 4.17(a)) and the n=1 vector field diagram in Fig. 4.18(b) for

at ¢ = 500w;.! in (a) and a relaxation in (b) at ¢ = 800w,,!. The velocity

the electric field show m=1 structure retained as the field is relaxing. In
Fig. 4.17(b), J. is seen to be highly localized and it’s magnitude comparable
to that of Case 1. The contour plots of the azimuthal magnetic field (Fig.
4.18(b) and it’s associated q contours (Fig. 4.18(c)) also show the m=1
structure. The energy time histories show a reduced magnitude especially in

the first peak of the magnetic field energy as seen in Fig. 4.19.

A third simulation differs from the first case by having the

radial dependence of the electric field vary as sin? (or € = 2) instead of sin
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Figure 4.16 Perpective view of magnetic field lines at time=500w;¢’ (A) and

at time=800w,,! (B) for Case 2.
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(or € = 1). The results are essentially the same as Case 1. A perspective
view of magnetic field lines is shown in Fig. 4.20 for times t = 10w} (a),

t = 100w;,! (b), and ¢ = 200w}," (c).

4.8 Discussion

7 The pinching of plasma near r = 0 and increase of the i)lasma
density are not inconsistent with Zweibel and Boozer’s twist equilibrium*®.
Also pinching and twisting were observed in a 2D azimuthally symmetric
MHD simulation by Steinolfson and Tajima®, consistent with the present
result. In their runs when the field lines wrapped around azimuthally more
than one revolution, there appears a bifurcation of magnetic field config-
muratior—l-,; yiélding a field reversed conﬁézraﬁon that resembles Strauss and
Van Hoven’s runs in a 2D azimuthally symmetric MHD simulation. In the
latter®> the initial toroidal current J, is given and thus the initial pdloidal
flux 9 is imposed, which undergoes the m = 0 tearing.

In our 3D study, however, the system is allowed to undergo mo-
tions with another degree of freedom (a third dimension, i.e. the azimuthal
direction in this case). Instead of the system being forced to behave with
m=0 distortion and bifurcation, the plasma column now developes azimuthal
modulation, exhibiting the (local) kink mode. By this azimuthal symmetry
breaking the system is now allowed to reach a new magnetic configuration
which should have lower free energy than those observed by Steinolfson and

Tajima®? and Strauss and Van Hoven5®,
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Figure 4.20 Perspective view of magnetic field lines at time t=10 w;cl (A),

at time t=100 w,.! (B), and at time t=200 wy.! (C) for Case 3.




CHAPTER 5.
CONCLUSIONS

We have developed a computational model which extends the

applicability of particle simulation to lower frequencies with the inclusion of

three dimensional geometry. This allows us much needed flexibility to tackle
classes of problems which are important but never before tried because of
their computational difficulty. The approximations of a Darvgin radiation-
less formulation of the electromagnetic field equations and of guiding center

electrons allow a relaxation of the constraint on the time step thereby al-

lowing us to simulate longer time scale processes. The inclusion of the third

dimension obviously permits investigations of phenomena in the full three
dimensions. However, in order to carry out meaningful simulations within
feasible computational resources, it behooves us to separate the treatment
of fields and particles along the external magnetic field and across it. In the
third dimension, an eigenfunction expansion is adopted, while in the cross
field directions a standard gridded technique is used. A development of this
model] and tests thereof are presented in Chapter 2. These tests show results
for the thermal excited properties of a homogeneous magnetized plasma in
agreement with theoretical expectations for both the spectra and distribution

of energy among modes.

Two of the plasma processes involving the bulk current redis-
tribution and release of magnetic energy into kinetic which occur on the
order of the Alfvén time scale, the kink instability and the coalescense insta-
bility of multiple current channels, have been simulated. Two dimensional
electromagnetic particle simulations explain some aspects of the physics but
are limited by the restrictions of: (1) single helicity and (2) the short time

step required. Within this two dimensional framework, the tearing and co-

91
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alescense instabilities provide some insight into the basic reconnection pro-
cesses. The kink instability, which is also a current driven instability, requires
the inclusion of three dimensions for physically interesting results. The sim-

ulation method described in this dissertation provides a tool which allows

kink mode development due to its three dimensional nature and also allows
simulation of the low frequency time scales of interest. The simulation code
which we have developed thus appears able to model the physics associated
with kink-type instabilities, showing kink development not inconsistent with

Shafranov’s linear theory.

This tool was then applied to the study of twist-kink modes
Jn a piasmé ‘colum@ As .artw‘isting”ofr therplasrr;a colurﬁn continues, we
observe that the plasma is constricted toward the center of the loop and the
axial current density also increases in this vicinity. As the current density
continues to increase further, the poloidal field becomes sufficiently large so
that the field line azimuthally rotates more than one revolution within the
length of the loop plasma. Then the plasma column is observed to kink.
Relaxation of the twist then follows and the process repeats as the twist
continues to be applied. The observation of this kink induced by twist is the
major finding of this dissertation. The pinching of plasma near r = 0 and
increase of the plasma density are not inconsistent v;rith Zweibel and Boozer’s

twist equilibrium result?®.

The inclusion of the third dimension in the present study makes
a marked diflference from previous two dimensional results. In Steinolfson,
et al.>!, the simulation system is two dimensional (MHD) in the r and z
directions. As a result of an applied twist, the current, J,, increases and
constriction of the axial magnetic field toward the center are observed similar

to the present study. As further twisting is applied, the 2D plasma exhibits
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a reversal of the axial magnetic field within a cylindrical shell apparently
because of the azimuthal symmetry constraint. Thus we suspect that the
difference in development beyond +(z) > 1 is due to the additional freedom
in the 3D model to break the symmetry which allows the system to relax via

-a-"lower-energy route”,

Twisting of a plasma column appears in various physical situ-
ations. On the solar surface during the preflare stage, active regions exhibit
photospheric twist motion at the feet of a coronal loop several hours prior to
the onset of the flare. We surmise that such a preflare motion stores mag-

netic energy through the axial current induction with the coronal plasma

- eventually becomes unstable releasing this energy into other forms through -

the mechanism observed in our simulations. In a tandem mirror, the addition
of end cells into a mirror geometry creates an axial variation in the ambipolar

potential profile which leads to a diflerential twisting of the plasma column.




_ the same procedure as outlined in Busnardo-Neto et. al!! The transverse

APPENDIX A.
SOLUTION FOR THE TRANSVERSE ELECTRIC FIELD

The details of deriving the method of solution for the transverse

electric field are presented in this appendix. The method of solution follows

electric field is to be calculated from the time derivative of the transverse

current which is to be determined via the particle equations of motion.

s dn (83
VET—C2 5 ), (A1)

For finite size particles the current due to plasma particles is

No No
- J(x) =g, [Eij(x— Xj) — Zv,-S(x —x,-):l T (A2)

i=1
where: The j sum is over the electrons, the i sum is over the ions, S (x)
is the finite size particle form factor, g, = engV'/Ny, ng is the particle
density, Ny is the total number of quasiparticles of one species, V' is the
volume containing particles, and the charge on the electron is defined here
as positive. The partial time derivative of the current as seen in the particle’s

reference frame is

83 (x) 8 8 8
B =qp{ ; [5;":'5(’( - X;) + Vg% "g&js(x - xj)]

- Z [Bta-v;S(x -x;)+ Vi%’(i : -é%s(x - x,-)] } (A3)

The time derivative of the perpendicular component of the electron velocity

may be neglected due to a guiding center massless electron approximation,

83 (x) o 8 LN
5 =qp{ ; av”jS(x - x;)— 2 aviS(x - x;)

No No
- [Evjvj'Vs(x—xj)—zvivi'vs(X—xi) } (A4)

j=1 =1
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Next the particle equations of motion are to be utilized. The

equation of motion for a point particle is given by
d 1
—"£=5(E+—vax3).
dt m c

The inclusion of finite size particle eflects makes the equation for the ion 3

motion
BV,' dV,' dp

=T “m_,,’;_; S(x' - x;) [B(x') + 2 xB(x)|ax'.  (45)

The equation for the parallel component of the electron motion becomes

Bvy; dvy; g ' "o
5 @ = m—p/S(x —x;)E;(x')dx'. (A6)

The perpendicular electron motion is assumed to be dominated by the guxd—

ing center E x B motion

c[[E(x' x—dex] [[B(x' S(x-x,)dx]
[0S0 )T

The approximation is made that the magnetic field varies little over the

(A7)

Vi =

region containing the finite size particle, a/L, <« 1 where L, is a typical
magnetic field shear length. The perpendicular velocity of the j’th electron

can then be described as

Vi~ ecg—((-% x [ / E(x')S(x' -x,-)dx'] . (A8)

For the solution of Eq. (A4), we neglect &v ; /8 since it is zero to first order

in w/f and neglect the polarization drift since it is second order in w/f2.

Upon substitution of (A5) and (A6) into Eq. (A4) we obtain

2 No
) ,‘,’;’p > st ) / S =)y (x')dx
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Equation (A9) is the sum of three terms. Look at the second
term. Define

No .
A(x) = _An_; ZS(X - x,-)/S(x' - X;) [E(x') + % X B(x')] dx. (A10)

Fourier expand the shape factor
S(x' —xi) =Y S(k')e* )
k/
and similarly for the quantity in the brackets. Substitution back into Eq.
(A10) gives ‘

“Zs}; xi)

i=1

/ZS kl ik’ (x~x;) E [ kn i B(kn)] eik“-x'dx.

kll

Rearranging the exponentials

m No
=37 Z S(x —x;)
3 s [ Ek") + 2 x B(k")] g (x=x:) f ) x gy (A11)

kl kll

Note that the Kronecker delta appears
- ' 1 (% ik-K)x
bk-k')=— € dx
27 J_ oo

which will eliminate the integral. Also Fourier expand S(x — x;).

- ZZS k)etk {x—x;)

s—l

55 ) [ 4 X x B Rk K)o (412
k' k”
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Use the delta function to collapse one sum,

A(x) =V— ZZS il (x=xi)

:—1 k

WC

- S k"[ (") + i B(k")] £ (A13)

where V is the volume containing the fields.
Since we want to get away from individual particle quantities
and work on a (two dimensional) grid, collect the terms with an i dependence

so that we can do a Taylor expansion about the nearest grid point.

=V 3> S(-k")etx
No

> [B") + 2 < Bk")] e (A14)

i=1

Define k' = k — k'’ There are two sums over i in Eq. (A14),

Ng » No .
Z e"** and Zvie—’k X, (A15)
i=1 i=1

Rewrite the sums over i as a sum over all the particles whose closest two
dimensional grid point is g and then a sum over all of these two dimensional
grid points,

LYY

_ =1 g s€g
Look at the first of the two sums in Eq. (A15). Define a quantity, A,

N
A= ZO e ik'x = Z Z ek x, (A16)

i=1 9 i€g
For notational convience let x = (x_, z) where x, = (z,y). Expand A4 in a
two dimensional Taylor series about the nearest grid point,

l
A=Y S s xsg) ( &ig) eKx (417),

g 1i€g l=0
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where the notation of x,; = (x4, 2;) is used.

The implementation into a computer code truncates the sum
over | at the dipole term and approximates the derivative using a centered
finite difference scheme, the subtracted dipole scheme (SUDS). For the two

dimensional expansion this is explicitly,

6 -1k’ .
A=) > [1 + (Xt —X1g) axlg] g™ xe (418),

9 i€y
or in expanded form,

A=Y Y [+ e-anp| o

mmni€m.n

J e—ik,’,zme—ik;yne—ik;zg
n

(A19).

- Note that the z dependency is not expanded and retains an i dependence.

The derivatives are approximated by centered finite differences,

9
e

e—ik:.tm.*.; — e—ik;zm_i e—ik;zm+1 — e—ik_’,z,,.-;

—tklzm
- - 4
m : Tmt+1 — Tm—1 24

and similarly for y,

8 iy e"ikLIIn“ - e—fk;,yn-x e—ik;vn+1 _ e-ik;yn—I
— | e t¥n ~ = -
Oy n Ynt1 — Yn-1 24

Substitute this into the expression for A.

A=Z Z [e—ik,’,zme—ik;y"e—ik;z;

m.nit€m.n

+ (Z,’ - zm)e—ik;yne—ik;z;(e—ik;zm.;.l _ e—ik:.::,,._1)
2
+ (yi ; yn)e—ik;zme—ik;z;(e—ik;yn“ _ e—ik;y...q )] i (A20)

Shift the dummy indicies term by term, for example,

Z i — Ty e—ik;y"e—ik;z.‘e—ik;zm.;.:L =

. 24

t€Em.n

Z Zi—Tm-1 e—ik;yn e—ik;zie—ik;SM.
24

tEm—1.n
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Apply this shifting to all of the four terms required in Eq. (A20).

4= Z e—ik;zme-ik;yﬂ[ Z e—ikizi

t€Em.n
mm (& = Zm-1) _iktz, (zi — Tmt1) _ints,
R oyl
N iIEm=1n tEm+1n
n Z i~ yn— e-—ikiz,- _ Z (v: —;n+1)e—ik;z,~]_ (421)
tEm.n-1 t€m.n+1

The term in [ ] is the (ion) number density, n; for the particular k, mode.
A= Z e~ ke ""e_ik;'y"ni(mm, Yn, ko) (A22)
m.n
In vector notation,

A=Y emHixon(x,, k) (423)

m.n

Similarly, the second summation of Eq. (A15). Define D,

D= Ev e x = ZZV, — ik (A24)

g 1i€g

The approximations and expansions proceed as for A.

vy / .
D= Z —ik! zme—:k [ z vie—tk‘z.

i€Em.n
t€Em—1.n i€m+1l.n
+ Y (yi — yn—:) s Y .(_y_i:ay_nil_)v‘.e-fkih'].(,‘azs)
i€Em.n—1 t€Em.n+1

The term in [ ] is the (ion) velocity density, V; for the particular k, mode.

D= z e’ik"r"“e'ik;fy"vi(mm,yn,k;) (A26)

m.n
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In vector notation,

D=3 e %oV (x,, k) (427)

m.n

Substitute Eq. (A24) and (A27) back into Eq. (A14).

A=V S §S(k>s<—k">e**'*;{E(k")[Mn,(xlg,k')]

1 ik’ %
+ z [—Mvi(x_Lg,k'z)] X B(k”)}e k, xg (A28)

Recall that k' = k — k" and also note that Eg F(x,)e %1% = VLF(K'),
where V; is the area of the two dimensional grid. Substitution yields,

A(x) =VV2%'¥;5(1<)5'(R' ~ k)
{E(k — K)ni(K') + %V,-(k') « B(k — k')} &R (429)
Note that A(x) = 3, A(k)e™* so that we may rewrite Eq. (A29) as,
A(k) =vv2% 2:‘ RZ S(k)S(k' ~ k)

{E(k —K')ny (k') + %V,—(k') x B(k — k')} . (A30)

Look at the third term of Eq. (A9).

No No.- -
gV - [Zvjij(x - Xj) — Z viviS(x — x,-):'

j:] =1
Define I,
2No
I'(x)= ) evavaS(x —xa), (A31)
a=1
where

e._{‘l’l, lfC!SNo;

-1, otherwise.
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Continue as before. Expand S in a two-dimensional Taylor series about
the nearest grid point and truncate at the dipole term. Use centered finite
differences for the derivatives. Split up S into separate grid and particle

pieces,

This lets us write,
T0=Y Y evava |14 Gamen)ar| 4G -v)n| |
“ « Oz 9y,

mn aEm.n m

- So(z — T,y — yn)Sz(z - 24). (A33)
Shift indicies as before and Fourier expand,
S.(z — za) ZS’ (k. )ezp{ik.(z — z4)}.

These actions yield

T = Z S tkzz Z: 52 m - T,y — yn [ Z EVoVae —~tkyzq

aeEm.n
+ Y vaveertnnlazEna) gy e (fe - 2nn)
aEm-—1.n atm+l.n
—ik;za (Ya = Yn-1) —ik, zq (Yo = Yn+1)
~+ Z €EVaVaE T - Z EVa V€ —~—2—-A——] .
agm.n~-1 at€m.n+1
(434)

The term in [ ] is (a2 modified) product of electron velocities minus the (mod-

ified) product of ion velocities at each grid point. Define

‘I’(m, n, kz) = (vava)e(m,n, kz) - <Vavcz)i(m’na kz)’
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where ( ) denotes the modified quantity averaged to the grid points for a
given k. Using this definition, rewrite Eq. (A34) as

T,Y,2 ZS ik‘z ZSZ(:C — Tm,Y — Yn)¥(m,n, kZ)a (A35)
I'k) = V25(k)\1’(k). (A36)

Look at the first term of Eq. (A9). Define

No
®@=) Sx-x) / S(x' — x;)Ey(x")dx’. (A37)

o=

The procedure is similar to that followed for the second term. Comparing to

Eq. (A29) and (A30) leads us to
V2 ) Y S(K)S(KK —k) [Ej(k — K)n(k')] e*= (438)
k K

or

=VV Zs k) [Ej(k - k')n (k)] (439)

Gather equations (A29), (A35), and (A38) and substitute back
into Eq. (A9) to find the partical time derivative of the current,

;J sz > > sk k) [By(k — k')n.(k')] x>
k k/
+—————va ) sx)sk’
k k/

{E(k - k')ni(k') + zv,(k') X B(k _ k')} ikex

—iquV2 Z Sz(kz )eik,z Z 52(1’ —Tm Y — yn)‘I’(man’ kz) (A40)
k,

m.n
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In Fourier space this may be represented more compactly as,

;J(k) “"’Vv2 ZS ~ k) [Ej(k - K')n.(k")]

2
+———VV2—S Zs (k' — k)

my M kT
{E(k —k")ni(k') + ;Vi(k') x B(k - k’)}
—ig,k Vo S(k)¥(K). | (A41)

The motivation is to determine Er from equation (A1l). The
implementation into a computer program is more efficient if we instead de-
termine Fr, the transverse electric force. The forces which correspond to

the various field components are defined
Fr(k) = VS(k)Er(k)

F)(k) = VS(k)E)(k)
Fr(k) = VS(k)Ep(k)
Fg(k)=Fr(k)+Fr(k)
Fa(k) = VS(k)B(k).
Using these definitions, using a Gaussian shape factor V S(k) = ezp(—kZa?),
and noting that V,V = L, we have

k%’%&’“’FT(k)

{ S [Fille = K)ne(k') + TFp(k - Kni(K)] }
Jr

kl

={____Zv,(k ) x Fp(k — k')} +1[k - ¥)p = Sy(k). (A42)
; _
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The right hand side of Eq. (A42) consists of known quantities
and is therefore a source term which we call S. This source term is accumu-
lated on the grid from the particle velocities. Eq. (A42) may be expressed

in matrix form as

[£)[Fr]=[S].

which has the formal solution of
[Fr]=[£]7[S].
This inversion of £ is prohibitively expensive to perform at evéry time step

for the dimensions of the simulation arrays involved here. An interative pro-

cedure is adopted instead to solve Eq. (A42). This limits the simulation

model to fluctuations in the fields and densities to roughly twice the back-

round quantities. This technique involves the separation of the k' = 0 terms
from the summations involving Fr and transposing the k' # 0 terms to the
other side of the equation in Eq. (A42). As a first approximation, these
k' # 0 terms are set equal to zero. A solution for Fr is then obtained which
is then reinserted into the k' # 0 terms and Fr obtained again with this
process iterated until convergence is sufficient. This methodology is similar
to the renormalization procedures ‘used to describe weak turbulence.

There are two terms on the left hand side of equation (A42)
which involve a convolution with Fr. Look first at the term with the ion

number density dependence,

%: % {Fe(k —K')n;i(k'")} 1 ={ %nOFE(k.)

+ =% FE(k—k')ni(k')} . (A43)
M < T
k’'#0
The implementations of the convolutions over k' # 0 are done by a hybrid

method which uses two-dimensional Fourier transformations to an x-y rep-

resentation for each k, wavenumber. This reduces the k; — k, convolutions
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into matrix multiplies with the overhead left in the Fourier transforms. This
is combined with a convolution which only concerns the k, dependencies.
The evaluation of the other term is more complicated due to the fact that

the parallel component of the electric force contains contributions from both

- the transverse and longitudinal electric forces,
Fy(x) = b(x) [b(x) - F(x)] , (A44)

which both must be used to perform the convolutions,

k' )

Pulling the longitudinal terms to the right hand side, denote a new “source”
term, S' = S+ new longitudinal terms,

Mo 2,42 m -

= Sr(k) —no [(F1) |llr
> o)y k= K)nek)]_+ T 3 [P~ Kni(k)]

k' #0 k70
=8 (A46)

Next we examine Eq. (A46) for the case where B is in the y-z

plane and makes a angle, 6, with respect to the z axis. For a small angle,

D {F(k—K)n(k)}, ={noF”(k) + ) Fyk- k’)n,(k’)} . (A45) .
‘ : T
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Neglect terms of order (L,,/L,) and higher, assume incompressible, and note
that k, < k., k, for our simulation parameters. Thus, only the z component
of the transverse electric force is solved for with the result,

[k2 2 _k3a? fle*' -]\_Jn,o,-':no] FTz(k) = SC’I‘z (k)

- [% Z Fp(k - k')ni(k) + Z (Fo)y(k=k)me(k')|  (k).(A447)

k/#0 k’'#0 Ta

Expansion of Sy, and using the aforementioned approximations yields the

explicit form for the solution of Frp,,

2 -1
Fr.(k) ='[k2026k2° no + %no*i- no] .

{(—%%> [(.’fg%kz) <§viz(k')FBy(k-—k')_

> vy (k') Fpa(k - k’))

kl

+ () w005, + (T ) wiori]

+i] (k- )vzvz)+(k= )<v,vz>+( ::)mvy)]

~ ng (cos?6 Fy,(x) + sinf cosh Fry(x)) (k)

- g;; (—A—l-vzt k') + ne(k')) Fr.(k-k')

_Z(-Mn,k)+n,(k'))FTz(k k’)} © (A48)

k/#0

The simulation code solves Eq. (A48) for the z component of the transverse
electric force. The terms on the right hand side involving the transverse
electric force are set to zero for the initial solution. The iterated solution is

replaced into the right hand side until convergence.
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