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The effects of energetic particles are of interest since fast
ions are present in neutral-beam and rf-heated tokamaks and will
occur in ignition dev‘ices in the form of alpha particles. Moreover, it
may be desirable to create such particles by auxiliary heating in
order to exploit their‘stabilizing properties and thus attain a high
beta plasma. Here a range of issues related to the stabilization of
MHD ballooning mode in tokamaks by the use of energetic particles is

investigated analytically and numerically.

The presence of a highly energetic plasma component can
stabilize MHD ballooning modes in tokamaks and may allow direct

access to the high-beta second stability regime. Here, an improved
vii




estimate of such stability has been obtained, in the large-aspect-
ratio circular limit, by means of a variational refinement of the

lower bound for the 'energetic particle potential energy. We also

investigate the effect of various profiles for thehot particle pressure

on stability, and we explore the stability of off-angle modes.

Moderately energetic particles, however, can destabilize

the plasma through resonant interaction at their curvature drift

frequency. We study these so-called “balloon-bone” modes, usinga

delta function model for their resonant response. The complete forms
of the Mercier solutions in the MHD region are obtained analytically |
and numerically. Matched onto the inertia' layer, these solutions give a
dispersion relation valid for finite shear and poloidal beta values,
which then is analyzed by the Nyquist technique. Results are

presented for the limit in which Alfvenic effects are negligible,

namely, Wy<< w, . where W, is the curvature drift frequency and
W, is the Alfven frequency, and in which the energetic particles are

modeled with a slowing-down distribution 'in energy.

Finally, we investigated the effect introduced by the presence
of a nonresonant, highly energetic species on the stability of

resistive baliooning modes, including parallel compressibility and
viii




cross field transport. A dispersion relation is obtained by matching
the solutions in the ideal, resistive, and deeply resistive regions.
Compressional effects associated with the hot particles are found to

be partially stabilizing.
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CHAPTER I

INTRODUCTION

Ballooning modes in a tokamak plasma are magnetohydro-
dynamic (MHD) pressure gradient-driven perturbations localized in the
unfavorable curvature region of the torus. The linear stability

analysis of these pérturbations in the high-toroidal-mode-number

~-limit- is—reduced-to-the—study ~of -a-perturbation-on a-single flux —

‘surface and its variation along a field line. It is known that if the
shear (associated with the change in helical pitch of the magnetic

field from one flux surface to another) is fixed while the plasma beta

(defined as the dimensionless ratio of the pressure to the magnetic
field energy density) is varied, the mode is stable for small beta
~values, but becomes unstable as the beta value is increased.
However, if the beta is increased even more, the mode is predicted to
become stable again. This high-beta stable regime is called the

second stable region for ballooning modes. ! 2

‘The existence of the unstable zone between the low-beta first
and high-beta second stability regions constrains the maximum value
of the plasma beta. It would be quite advantageous to provide a bridge
between the low-beta regime of first stability and the high-beta

1




second stable regime, because then there would be no constraint on
the maximum power, proportional to beta, that can be obtained from

a fusion reactor. Thus, accessing the second stable regime for

ballooning modes,~and-thereby-attaining -a-stable high-beta plasma,-is

a problem of fundamental importance.

One effort toward stabilizing these modes in tokamaks is to

shape the plasma by indenting its cross section, to produce D and

---bean=shape cross .sections.3=4. In-this.work we will-not-employ this- ... o ..

approach for stabilizing ballooning modes: instead we will focus
theoretical study on another approach, which attempts to stabilize
these modes by means of the introduction of a very energetic species
into the tokamak. The tokamak plasma then consists of two
populations, one being the core plasma or thermal plasma, which in an
ignited tokamak would be the fusion plasma, and another being the
energetic particle population. The study of the role of hot particles in
stability is by itself an important problem because suprathermal
alpha particles will be present as a product of fusion reactions in the
upcoming generation of ignited tokamaks. This is a major reason for
the increased interest in this topic in the last few years. Moreover;
during the process of supplying auxiliary heating to the plasma by
neutral beams of rf-waves in present-day tokamaks, the stability role

of the energetic population has to be well understood. In fact,




experimental evidence of the excitation of MHD modes by
beam-injected hot ions has been observed in the Princeton PDX

tokamak.S These reasons constitute the motivation for the theoretical

work presented-here:

Plasma stabilization by energetic particles has been
previously proposed and analyzed in the Astron® and ion ring

devices’~3 and in the ELMO bumpy torus.'0 More recently it has also

-been--proposed - that -the - intentional --introduction--of - a-—superhot - - o

component into a tokamak could enhance MHD stability.!' Although
there are significant differencés between nﬁirrors and tokamaks
—e.g, tokamaks have rotational transform and shear, and their
magnetic field lines are not closed except at rational surfaces — ,
nevertheless the stabilizing mechanism of energetic particles for MHD
modes in both systems is similar. In order to act essentially as a
passive current and thus provide stabilization, the energy of these
particles must be high enough that their magnetic drift frequency,

Wy, + 1S larger than approximately the growth rate, ¥, for MHD
interchange instability. In the mirror literature, the ratio w /¥,

has been referred to as the “decoupling” coefficient,'? where w, is

~the curvature drift frequency of the hot particles. If the value of this

ratio is larger than about unity, the energetic particles may be
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considered to be noninterécting. We shall see later that this condition
is roughly the condition for the energetic particles to be nonresonant:

W4>>w, where w i5 the frequency of the MHD mode under

consideration.

Historically, however, there has been a difference in how the
behavior of the energetic particles was interpreted in mirror-type

systems as compared to tokamaks. For instance, in the Eimo Bumpy

‘Torus experiment, which consisted of 24 simple mirrors linked

toroidally, it was traditionally thought that hot electrons created by |
microwave heating were digging a deep enough magnetic well to
reverse the avefage gradient-B drift and thereby stabilize the |
background plasma against interchange instability.'S When the
non-tMHD kinetic response of the hot electrons was acounted for,14 it
was found that although the fluid response of drift-reversed
energetic particles was favorable for stability, their non-fluid
compressional response still allowed for a negative energy
perturbation, which could lead to instability, for example above the
Lee-Van Dam threshold or due to interactions with positive energy
waves or with dissipative response.'S-17 when the idea of using
energetic particle stabilization was transplanted to tokamaks, it was
natural to consider the non-drift-reversed limit, tokamaks being

relatively low in beta compared to mirror plasmas. In this case the




negative energy perturbation theorem of Ref. 15 does not apply and it
may be possible in principle to obtain absolute stability.

In the non-reversed case the hot particles’ fluid contribution
is destabilizing, whereas their compressional non-fluid response is

stabilizing for the MHD mode. Moreover, theoretical calculations

- showed that the compressional terms stabilized the fluid behavior, at

least for not too large values of the global shear.!! Subsequently, the

‘ballooning stability for EBT was redone, in the non-drift-reversed

limit: however, no significant stabilization was obta'.ined.'8 we may
possibly attribute the difference between this unsuccessful attempt
and the successful enhancement predicted in a tokamak to the nature
of the two machines. That is, a tokamak, by virtue of its sheared
magnetic field, already possesses first and second stability regimes
and a relatively small intermediate unstable zone. The presence of
energetic particles then tends to shrink the instability zone. In
contrast, an EBT device is unstable without hot electrons to begin
with, and therefore it is more difficult to achieve parameters for

stable operation.

At this point, it may bé helpful to give a simplified picture!®
of the special dynamics of highly energetic particles, which can

contribute to the stabilization of MHD modes. Let us fifst describe




their behavior from a single-particle point of view, in which
individual particles execute motion around, along, and across a

magnetic field line: The gyromotion around a field line is

characterized by the cyclotron frequency Q,=e, B/M, c, where e, and
M, are the charge and mass of an energetic particle, B is the magnetic
field strength, and ¢ is the speed of light: the longitudinal motion

along a field line is characterized by a bounce frequency w ,, &V, /L, .

“where the“velocitg":v;‘"s ﬁm is related to 'their”energg"'Th and” T T T T

where the typical parallel scale length in a tokamak is L, & @R,

with R the major radius of the takamak and q 2 I”BT/F{Bp ~ O(1) the

safety factor, with By and B, the toroidal and poloidal magnetic

fields; and the transverse motion across field lines is characterized

by the guiding center magnetic curvatufe-gradient-B drift frequency

wg & (k,pp) (Vi/R), where k, & nq/r is the perpend‘i_cular wave
number, with n the toroidal mode number and r the minor radius, and
Py = VW/Q, is the Larmor radius, of a hot particle. Note that the

various frequencies are related to each other as w,/w,, ~ k,p, and

W/ ~ py/L, - Thus, if we take the finite Larmor radius effects of

the hot particles to be negligible (as we will throughout this work),

we have the ordering w ,,<<w,,<<Q, .




The interesting and unusual feature of highly energetic

particles is that their magnetic drift frequency w, can be

modes like ballooning and kink modes. This is unusual since in the
normal fluid and fluid-like kinetic guiding center descriptions, the

opposite limit of Wy <<w is assumed. These fluid descriptions are

generally based on the idea that the plasma is "frozen in” with the

___Mmagnetic field and, therefore, that particle drift off a field line is

negligible in the time scale of interest. Highly energetic particles
that satisfy the opposite limit of w,>>w, however, ‘are rapidiy
drifting across field lines; for such particles, the usual fluid
description is inadequate. It has been shown'® that in this limit the
behavior of very hot particles is now governed by the conservation of
the third, or flux, adiabatic invariant, in addition to the usual first

two invariants of magnetic moment and longitudinal action. The
situation becomes even more interesting when w, & w , since then

the particle motion can interact resonantly with that of MHD waves.

Now let us move from a guiding center particle picture to a

fluid/kinetic picture. For the sake of simplicity, we will focus on the

highly energetic, nonresonant limit of w, >> w. It is well known that




the low frequency MHD ballooning modes with small transverse
wavelength are described by the vorticity equation 20

- k S *,,v, wz k,A ,g,_,hm ,,,,,,,
BV [LB—;- BVS |+ [——é—"—]@ - (amw/8? ¢ (Bxx)k, (BB ))=0.
(1.1)

This equation is equivalent to quasi-charge neutrality. Here ¢ is the

perturbed electrostatic potential, related to the electric field by

-E &1k ®;-the parallel component of -the electric field-is-zero for MHD - - -~ -

modes: V,= B/\/4TU NM, ™ Is the Alfven velocity, with N, and M, the
density and mass of the background plasma ions: x=(b-V)b, with
b=B/B, is the magnetic field line curvature; and PP & 2P+F, is
the sum of the perturbed total pressure components, where the core
plasma is assumed to be isotropic and the hot particle species is
assumed to be trapped and anisotropic (P.h/P m<<1). The first term in
Eq. (1.1) describes the bending of a field line as shear Alfven waves
propagate along it; the second term arises from the ion polarization
drift motion; and the third term represents the free energy of

interchange motion. To obtain the perturbed pressures in this third

term, we note that the core plasma behaves like a warm fluid, whose

basic response is that of ExB convection: thus, -iwﬁgV-VPc:O, with

V = c (E xB)/B?, gives




_[ c(BxVP)k, ] §

— (1.2)

The energetic particles, on the ot'her hand, respond pooriy to

the ExB motion. Their response is nonhydrodynamic and requires a

kinetic treatment. For the low frequency (w << wy) fluctuations

considered here, the drift kinetic equation for the hot particle

distribution function f, is dominated by their grad-B drift term:

viB x VB
B2

’th&'O. . ' (].3)

(Here, for simplicity we ignore the fact that Eq. (1.3) should be
‘bounce averaged.) By linearizing Eq. (1.3) and integrating it over all
velocities, we obtain an expression for the hot electron perturbed

transverse pressure:

(bxvB)-k, P z(bxVP,) k B (1.4)
or ‘
_ B Wepy
Bt 5o [wan ] 88, . (1.5)
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Here, wy, = (cT /e, B?) (b x VB) * k| is the grad—B drift frequency of

the hot particles, w., = (ch/ehB) (bxV 2n Pm)-kl is their

Equation (1.4) or (1.5) shows that the very energetic electrons
respond not to displacements of the field line, but to changes in the
field strength, in such a way as to preserve the magnetic flux through
their magnetic drift precessional orbits.

We can relate the paralle! perturbed magnetic field B}, to &

by the use of the quasi-static condition for transverse perturbed

pressure balance:
BE +dn(F,+F.)=0 . | (1.6)

This relationéhip holds for low frequency modes whose perpendicular
wavelength is much smaller than both the parallel wavelength and any
equilibrium scale length. Equation (1.6) can be understood as the
condition for ahnihilating the fast compressional Alfven wave.
Combining Eqs. (1.4)-(1.6), and introducing equilibrium pressure

balance

2 2
v, [TEF"PL] = _%er—_ ' (.7)

diamagnet,i,cmf,requencg._and,,,B,m,jueirl?mlsz_i s_their_beta value. |




B

we find that the hot particle pressure can be expressed as

Bz [ ] (b xwpy )k,

wB3—

bxVP.)-k, &
( ) ks ] (1.8)

(bxx )k, -4 (bx VP, ) -k /B2

Finally, we . use local. approximations. such- rthat«,-(DXVPC)-k,l/kl-t-v--1.--7-7- R ——

dP/dr, (b x x) k /K ~1/R, (B-V)2 » -B.%/(R)’, and we define the
Alfyén frequency w,= VA/qR and a normalized pressure gradient

o=-q?R(dB/dr) > 0. This yields the following dispersion relation:

[Eg]u-mc‘[w—————-—zqz_% ] (1.9)

Note that if we replace d/dr = r" , With r the minor radius, we findv
that « & eBp . where the poloidal beta value is related to the toroidal
beta by Bp = B; (q/e)2>> 81 . since the inverse aspect ratio, € = r/R ,
is small. Tgpicallg,' the beta threshold for ideal ballooning

instability s o« & O(1), a can be seen from Eq. (1.9)
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without any hot particles. The presence of the super energetic
species tends to reduce the effect of the destabilizing free energy

represented by e . In particular, if o< is near its threshold value, the

hot particle term is enhanced and can effectively stabilize the mode.
However, when oq and o, become too large such that RNV 5 2¢2,
the stabilizing effect is lost: this corresponds to drift reversal, /e

(bxVB) - k, changes sign due to high beta. Interestingly, this simple

__analysis shows that hot particles trapped in a region of unfavorable =~ .

curvature contribute a stabilizing effect; although counterintuitive to
what would be expected from a fluid stability description, this
stabilization results from the nonhydromagnetic response of the very
energetic component. Fihallg. Eq. (1.9) ~indicates the existence of

another core beta limit, o 2 2q2. which has been previously

examined in the bumpy torus context.2!:22 This limit, which occurs
for <, values above drift reversal, indicates that the mode becomes

primarily magnetic. Other studies have shown that a magnetic

compressional instability can occur here.?3

The first clear indication that energetic particles could play a
stabi!izing role in tokamaks came from a study by Connor et 3/ 2% of

the effect of beam ions on ballooning modes. This study was done




13

in the low bounce frequency limit, w,, << w g W, , in which trapped

particles cannot be distinguished from circulating ones. A window of
stability was found when the beam ion energy was sufficiently high.

A subsequent study by Rosenbluth ef &/ 1! of low-frequency

modes in the high bounce frequency limit, w << wy << w,, , Clearly

showed the enhancement of ballooning stability when highly energetic

. particles are present. Their results indicated the possibility of stable ... .. .

access into the high-beta regime of second stability with respect to

ballooning modes.

About the same time, experimental observations on the PDX
tokémak indicated that moderately energetic beam ions, /e , not
energetic enough to satisfy the nonresonant condition, could
resonantly excite MHD instabilities.> These so-cailed *fishbone”
oscillations were theoretically interpreted in this way by Chen et a/.
as beam ion-induced internal kink modes.2:26 An analogous
explanation was also given for the high-frequency precursor
oscillations in terms of resonantly excited ballooning modes.2?-3!
Recently, these resonant theories have been extended to include the

effects of finite resistivity.32-34
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In the present work, we wiil first examine in detail the
stabilizing effect of highly energetic particles. Finite Larmor radius3s
and banana width effects34:36 will be neglected here. We extend the

work of Rosenbluth et &/ 11 by introducing a more accurate bound for
the trapped particle potential energy, which yields a better estimate
of stability. We also compare the relative merit for stability of
various hot particle pressure profiles, and we examine the stability
of modes that peak off the tokamak midplane. This work will be
--gescribed in-Chap.-11, - - o e e

Next, we investigate the resonant destabilization of

ballooning modes by moderately energetic trapped particles. By means

of an asymptotic matching procedure valid when w> W g <<W s re

when the high frequency Alf ven spectrum is unmodified, we obtain an
analytical dispersion relation. The stability properties are given in
terms of the resonant response function and the Mercier information
for the ideal solution. The parameter regime of stability is found to |
be significantly reduced by the resonant ”bélloon bone” instability.
This study will be described in Chap. 111 .

Finally, we generalize the nonresonant theory to include the
effect of resistivity. By successively averaging over the rapid

variation of the ballooning mode equation and matching the solutions
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from the ideal to the resistive to the deeply resistive region, in
which sonic compressibility and cross-field transport are included,

we obtain the dispersion relation for resistive ballooning modes. This

analysis will be-presented-in-Chap. IV~ e

We note here, incidentally, that in Chaps. Il and IlI, the
starting equations that govern the dynamics of the core plasma and

the energetic especies will not be derived, inasmuch as these

- equations_are available in the published literature. These equations - .. . .

will be initially presented here as a quadratic form, from which the
equations of motion can be recovered variationally. In the case of
nonresonant ideal ballooning modes the quadratic form will constitute
. an energy principle for stability. Even in other cases, it is convenient
to use quadratic forms since they provide insight as to which
unstable perturbations might be most dangerous. Also, in quadratic
form, the various terms in the equations can be readily identified and
also manipulated into or approximated by expressions that are
analytically ‘tractable. Occasionally we will make use of trial
functions to estimate stability from a quadratic form. In our study of
resistive ballooning modes in Chap. IV , however, we will present a

detailed derivation of of the fundamental equations.

A concluding summary of our work, with some discussion of

various implications, will be given in Chap. V .




CHAPTER 1l

NON-RESONANT STABILIZATION OF BALLOONING MODES

WITH HIGHLY ENERGETIC PARTICLES

2.1 INTRODUCTION

. Roserbluth ef 2/ 11 have predicted the stabilization of ideal

ballooning modes when hot particles are introduced on the outer side
of a tokamak. They considered a large-aspect-ratio tokamak
described by a model equilibrium with circular flux surfaces and

radially localized pressure gradients. They also considered highly

‘energetic particles whose magnetic curvature drift frequency, W, , is

much larger than the frequency or growth rate, lwl, of the mode
under consideration; Ze., @, >> lwl. This condition will, in fact,

be our definition for a superhot species, and it implies that the hot
particles are drifting in the toroidal direction of the tokamak and
oscillating up and down in the poloidal direction, on the outer side of
the tokamak. The length of the excursions of the hot particles in the
poloidal direction depends on the ratio of their energy E to their
magnetic moment p. Rosenbluth ef a/. used a model in which all
the hot particles were trapped and therefore had an anisotropic

16
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pressure. Working with the low frequency energy principle,14:38
they found that the superhot component makes a negative (/e ,
destabilizing) contribution to the fluid potential of the energy :

because the hot particles are localized on the outer side of the
tokamak where the magnetic curvature is unfavorable, but that it
makes an even larger positive (stabilizing) contribution to the
kinetic part of the enmergy through an enhancement of the magnetic
field compressional response. This constitutes the mechanism for

étabi l<izat-i oh:

In their treatment, the core plasma was described with MHD
fluid equations, whereas the non-MHD hot species was described
with the gyrokinetic equation to obtain its contribution to the

perturbed dynamics. When the condition wy>> lwl is satisfied,

resonant interaction of the hot particles with the core plasma is
avoided, and a positive contribution to the energy is obtained from

the non-local kinetic potential. The energy principle dictates that if

the sum of the local fluid potential energy, 8W; , and the non-local

kinetic potential energy, 8W, , is positive, then the mode will be

stable. This is both a sufficient and a necessary condition for
stability. The kinetic term is very difficult to handle, inasmuch

as it involves multiple integrals of equilibrium quantities and the
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perturbed fields. However, the analysis can be nontrivially simplified

by working with a lower bound, §W,, for the kinetic potential energy:

Le., §W, s8W, . This lower bound is derived by an application of the

Schwartz inequality in the integral over wvelocity space.
Unfortunately, the use of the Schwartz inequality imposes a
maximum value on the hot particle pressure, since it requires that

the hot particles not be drift reversed. Thus, the stability condition
-given by &W,*+ §W, 2 0--in the non-resonant limit- becomes-only a -

sufficient, but not necessary, condition for stability. Therefore
working with a lower bound for the kinetic potential, Rosenbluth
et al. obtained a pessimistic estimate of stability. By SOlViI’\g the
integro-differential equation for the ballooning mode perturbation,
they found that direct access to the high-beta second stable regime
for ballooning modes can be provided bg'the presence of t.he energetic-

particles.

In their treatment, however, an unexpectedly
pessimistic result for the first stability boundary is obtained at
large values of the global shear. This result was a consequence of
using a pessimistic estimate of the total energy, which apparently is
not very realistic at moderately large values of S . In the present
work, we adopt their same assumptions and equilibrium model, but
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we invent a better lower bound for the kinetic potential by using a
weighted Schwartz inequalitg. The difference with respect to the

results of Rosenbluth ef /. becomes remarkable for large values

of the giobal shear S. In this region the method used previously
predicts an unexpected shape for the first stability boundary: this
result was the main motivation for improving the lower bound. With

it, we have now been able to obtain more realistic results.
In addition, we study the effect on stability of varying
the poloidal profile of the hot particle pressure, while maintaining

the constraint of drift nonreversal. We find that a hot particle

pressure profile whose maximum is on the very outside of the

tokamak is the most effective for stabilization.

We also have investigated the stability of modes which
peak off the midplane, with and without the presence of hot particles.
Without hot particles, the first stability region is improved whereas
the second regime is reduced, due to the effect of the geodesic
curvature at high beta values. In the presence of hot particles,
stabilization results are obtained that are similar to those for modes

that peak in the bad curvature region of a tokamak.
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This chapter is divided into eight parts. In Section 2.2 , the
equilibrium model and assumptions are explained. In Section 2.3,
the theoretical method for the wvariational refinement of the

Schwartz inequality is explained, and the ballooning mode equation is
derived. In Section 2.4 the numerical scheme for solving the
balloonin{; equation is explained. In Sections 2.5, 2.6, and 2.7, the

- results are presented, and in Section 2.8 we give our conclusions.

- We investigate the MHD stability of high-mode number modes,
using an eikonal treatment in which the rapid variation across
field lines is given by an eikonal S(x,8). In other words, if $(c,8,2,t)
is a perturbed quantity where « and B are transverse spatial
coordinates and & is the arc length coordinate along a field line, we

assume that it varies as

0[«.B.Q.t]=¢>(ﬂ) exp {i[S(«.B)—wt] } . 2.1)

where

b VS = 0 (2.2)

b= —g— (2.3)
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Here,
B=VoxxV§ | (2.4)

is the magnetic field in the Clebsch representation: o and § are
coordinates in directions perpendicular to the magnetic field: b is a
unit vector along the direction B ; B is the strength of the magnetic
field: L is the coordinate along the magnetic field; and w is the_
frequency of the linearly perturbed mode. In Eq. (2.1), ®(L) gives the

~slow variation of the mode with & and satisfies
[b-van o(8) I<<]V 5| (2.5)

which means that the variation of the pérturbation across the.
magnetic field line is large compared to its variation along b. Inour
analysis of stability we will derive an integro-differential equation
for the variation of the perturbation along the field line, ¢(2), thus
reducing the analysis to a single rational surface. That is possible
because we will be treating high-mode-number perturbations. One of
the first calculations to be done in this chapter will be for VS. As
the preliminary for its calculation, we first discuss the model

equilibrium.
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2.2.a MODEL EQUILIBRIUM

We consider a large aspect ratio tokamak, such that the

inverse aspect ratio €, is very small, / e,

£ —g; << | (2.6)

Here, R, and a are the major and minor radii of the tokamak,
respectively:; see Fig. 2.1 . The energetic particles are assumed to be
trapped on the outer side of the tokamak between the poloidal angles
6, ;: see Fig. 2.2. Thus, they will be mbving along a magnetic field
line, bouncing between the poloidal angles 6, and drifting toroidally
across the field line. The hot particles’ drift is due to their
magnetic gradient-B and curvature drifts, which will be specified
later. We will not consider any effects due to an equilibrium electric
field:3® banana width effects will also be neglected. The hot
particles’ motion is such that they will fill a toroidal ribbon on the
outer side, limited by the poloidal angles 6, . The condition that all
of the hot particles are trapped leads to the ordering

(2.7)
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Fig. 2.1 Tokamak equilibrium
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Mirror-confined
Hot Particles

or electrons
created by
injection or
rf heating)

Tokamak ©=-0
Core Plasma

Fig. 2.2 Picture of hot particles confined
on the outside of the tokamak.

- (e.g.,ions ...




25

where P, and P, are the parallel and perpendicular components of

the hot particle anisotropic pressure. The ordering given in Eq. (2.7)

is a consequence of the shallowness of the magnetic poloidal well of

a tokamak. The core plasma pressure, P, ', however, will be considered

to be isotropic.

The beta values for the core plasma and for the hot particle

- component are definedas- - - - - oo oo T

_ 8P,

b= (2.8)

and

(2.9)

We shall take the core plasma and hot particle beta values to be of

the same order, with both being small compared to unity:
Bo~By<<i, o (2.10)

Thus , the usual firehose and mirror coefficients of anisotropy are

given approximately by




26

P,- P,
6=|"——Bf—zl (2”)
and
] aP.L '
‘E’=1*-B-Wzl, (2.12)

where P, =P +P, and P,=P_+ P, arethe perpendicular and

_parallel components of.the total pressure.

We assume that the flux surfaces are circular and that,
although the beta values are low, the pressure gradients are locally

steepened at the flux surface under consideration:
R%f—~o(1) . (2.13)

The distance, R, from the axis of symmetry can be written in terms

of the radius, r, of the flux surface and the poloidal angle © as
R=Ry* I cose . (2.14)

For an axisymmetric toroidal equilibrium, we can use the

following representation for the magnetic field:
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B=V9xVYy+ IV . (2.15)

Here ¢ is the toroidal angle, ¥ is the poloidal flux, and | = RBy . The
condition of parallel pressure balance requires
PI

D'V—B—'=-[

(P.L- P|)

52 ] b-VB . (2.16)

Thus, P, and P,, must satisfy the equilibrium force balance condition

along a field line:

Pih P
DV_B_'-—BT'DVB 2.17)

By virtue of the axisymmetry, if we use the coordinates ¥, 6, and
u=¢-qo, we find that b'V = (b'Ve) 3/06. Note that since the &

variation of B is of order £ , then Pnn/Pur' 0 (¢) from Eq. (2.17), .

consistent with Eq. (2.7).

As a tractable pressure profile in poloidal angle , we take

P+,;= Pino {A+n(cose-coseo)} H [90- 6] ] (2.18)
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with

Pynsq-=Pino-H-(|©]=60) (2.19)
and ,

Porem = P1ho (c0s6-c0s8g) H(| 8|~ 6p) (2.20)

Thus, ©, gives the angle of localization of the hot particles; /e, all

‘the particles are localized between the poloidal angles -6, and 6 :

see Fig. (2.2). In Eq. (2.18), A and 1 are paramieters that allow us to
vary the hot particle pressure profile. For m = 0, we obtain the
profile used by Rosenbluth e &/ 1! For positive Aand > 0 (n < 0),
a profile with a maximum (minimum) at © = 0 is obtained. The A = 0,
M > 0 profile avoids the problem of having v be singular at 6 = + &g
(although the stability results are not much changed from those for

n= 0). we solve for P, using the parallel pressure balance equation

(2.17). Thus,

Py (8) =€ Pyg H [e,, - lel] A [cose - coseo]

+ [—;]—] [cose -C056, ]2 (2.21)
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Here, ¢ is the toroidal angle (see Fig. 2.1) and

| = RB,., | (2.22)

with B; the toroidal magnetic field strength. The poloidal magnetic

flux, ¥, satisfies the anisotropic Grad equation: 40

BACE - RS CLoN [—‘@]ﬁ S )

Here, G = G(¥) =(1/2) (o RB,)? is a flux function; the partial

derivative is 8/8¥ =(8/3¥)|l g . At this point, we invoke our radially

steepened pressure gradient model in order to retain only radial
gradients in the Grad equation. We propose that ¥ = ¥y(r) + ¥y(r, ©),

where ¥,/¥g ~ O(g); the 6 dependence of ¥, will be determined

algebraically from the form of the reduced Grad equation, viz:

1 9 oYy 1, _d .rp V= oP,
r or [r ar ] gy (G*RPc)=2rR,cos 5y
R% &P
- —n_h (2.24)

oy
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Note that in our sharp gradient model, we have neglected partial
derivatives with respect to 6 in comparison with partial derivatives

with_respect to r. However, to be consistent with the requirement

that ¥, be periodic in @ with period 27, we subtract from Eq. (2.24)

its 6-average. Using the expression for P, given in Eq. (2.21), we

obtain its average as

(Pa/Puer= L [oH(e] ) {Acose-cose) +mE) (cose-coseo]
,h/mo—zje 6o-| 0| { €056-C058g) +1(5") (C056-C056g }
B ¢

= (Lﬂ) {A(sineo-eocoseo) +M [(—é ) [sin(zeg) - 26y coszeo]
. = (sin6g-6g C0OS6g) COSB, ] } | (2.25)

Then the lowest-order equation for ¥, is

18 (rovoe) d OP 1o (¥)
T [ ar ]+d\Po (6 + Fg Pe) + <Py/Pyd MRy — =0,
(2.26)
and the next-order equation for V¥, is
L ey, d*(G+R5 P, ) 8P,
—_— — + —————————e. e —_—
12 [ar J+ ¥ 7 2 1 Ry C0S6 [a%]
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-r Ry [H(eo- le|) {A(cose-coseo) * '} (cose-cosy) }

- <P h/pmo)-l [ a;’ ] (2.27)

To lowest order, Eq. (2.26) gives d¥y/dr = FIBp . Also, in Eq. (2.26),
the ¥42 (G + Rg? P.) /d¥q? term is small (of order A/r, where

A=(danP ,/dr)-1) and may be dropped.
2.2.b CALCULATION OF THE EIKONAL

In general S = S(x, 8), and we can write the perpendicular

wavenumber as

K1=VS(o<,B)=[g—z]V [gi] V8 . (2.28)

We may take « = ¥, the poloidal flux function, since ¥ has the

property that b-'VY¥ = 0. We also note that for high-mode-number'

ballooning modes, we can ignore the radial variation of the mode, at
least to lowest order in a 1/n<<1 expansion, where n is the toroidal

wave number. Thus,

Vs ~ [85

= ] ve . (2.29)
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However, the magnitude of VS cancels out of the ballooning equation,
being a factor common to all terms. Hence, the problem of obtaining

the eikonal reduces to-that of solving for V8.

We solve for this quantity as follows. We take the cross
product of Eq. (2.4) with Vo to obtain

BxVx=-| V«(Vor VB)-VB |Vx]® | = (230)
or
V8 =B x % 4 AV, (2.31)
V]
where
A= Y2V (2.32)
| Vx|

We obtain an equation for A by using

V9 x(B xVo)
2

V(V9xvB)=0=V" [ ]+V' [V‘Px )\V«J

=V [B (V§-Vx) -V (B'VY) ] + (V9 xV) "V . (2.33)




33

Using the fact that V¢V = 0, due to the toroidal symmetry, we
obtain
[ Vo

:
(V9 xV) VA = V- l (B-V¢) v |2J , (2.34)
(v 4

With the choice of poloidal flux ¥ for e« , we note that V¢xVV = Bp

is the poloidal magnetic field; also B'V{ =B, /R . Therefore,

or V¥ ] . (2.35)

By VA=V [ T——
b Sk

- Wenow use B,V =(B,/r) (0A/86) to obtain

(% L) & 8t (2] ow

To obtain A, it is not actually necessary to solve Eq. (2.27) for ¥,.
We need merely substitute Eq. (2.27) directly into Eq. (2.36) for A:

2
() (3] [y ] { el 5
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dP
. [ 0 ] [H(eo—lel){A(cose-coseg) + (—132-) (c0s6-Cos6g) }

- <P,h/Pmo>] }.

Integrating this expression, we obtain

_ [ gq/ar rq?
L Ne)= [ “FB, J (".'ek,)‘_[.RBT B2, } S

{2 [%](sine—sinek) + [dF;lr"o ] [g(e) - g(ek)] ]

The function g(e) is given by

ae) = Alsq (6) + MQery (0)

- (2.37)

(2.38)

(2.39) .

Where
r 6 g ~
slne-(-ﬁ-)frcoseo'rto] ,0<6<89
. 6 ) 5
Gsq(0) = ["(?r_) to . 6p% 8 <216,
sing - [(%)-2] [ﬂcoseo+tg] , 270-60 S 6 < 27 .

(2.40)
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(-é— ) sin (26) - cos8y sin6 + & [(cos-ao)2

-

Osm (6) = 4

—(%)cos(ze,,)-(—,t—TL)J , 0s8<g,

Lad

e ~
[1‘(?)]1’.1 .90$e<2ﬂ‘90

( —é— ) sin (26) - c06, 5iNG + ( § -277 ) [( cos6, )2

-(—l—)cos(zeo)-(-;rt—’) ].27(-90.1§<27r.

(2.41)
Here, & = & modulo 27t and
to = s‘neg - eo COSGO (2.42)
and
t;=( ’é") 5in(26g) - 26¢ cos6g | - tg C0sO, (2.43)

We anticipate that in the ballooning representation & will become the

"extended” poloidal coordinate along a field line, such that - e0< 6< o0,
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In the same way, 6, is the zero of the eikonal; this quantity

approximately indicates where the mode prefers to peak.

Therefore, we obtain

T——

vz
where
S = d(4n g)/d(anr) (2.45)
is the global shear, and
R dP
o =-2¢ [ [£] 4 (2.46)
By dar
R dP '
o= -2¢[— | (2] (2.47)
By dr

e
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Finally,
-1
Vs [%g] =V§ = —E— {é o F n(e)} (2.48)
where
, . xh ~
h(e) = S(6-6,) - e (sin6-sindk) - [-5—] [g(e) - g(ek)] (2.49)

is the integrated local shear. Using the definition for h(e), we can
finally write

-2 2
2 (8512 (9 2
vs|® [55) = (7] 0D (2.50)
2.2.c DISTRIBUTION FUNCTION FOR THE HOT SPECIES.

The hot particle population is described by a distribution

function F (¥, E, p), which we assume can be written in separable

form: 41

F, (¥, E. 1) = ACY) F(E) GO, (@51
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where E is the energy, g = mvf/ZB is the magnetic moment, V, is

the perpendicular component of the velocity, and A = E/y is a pitch

angle type of variable. This expression is consistent with assuming
that the hot particle pressure is an isorrhopic function, /e, P,(¥.B),
with all the 6-dependence subsumed in the dependence on the field
strength B = B(Y, ). In fact, the function G(A) can be obtained from
the form taken for the pressure, given in Eq. (2.18), by use of an

~ Abel transformation. 4 Thus, we obtain

P1no AV |
G(A) = H( Bg-A + 2.52
0= (o) Mo | ot T 252

In Eq. (2.52), H is again the Heaviside step function. For the
- nonresonant theory that we are treating in this chapter, it will not be

necessary to specify F(E) explicitly.
2.2.d DRIFT NONREVERSAL CONDITION

We consider that the hot particles drift across field lines

very rapidly, such that their bounce-averaged drift frequency, @, , is

much larger than the frequency of the mode, w, Ze,
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Wy >> lo|™ MHD growth rate (2.53)

Here,

b x (M, V,) x + uVB) VS

wdh = ”h Qh (2-54)

_ is the mggngtic dr_if_t{requencgﬂ due to the curvature and the gradient

of the field strength. The Dounce—averaged drift frequency @y, is

)

given by
@
§7" g (E, 1, 2)
Wgn E, ) = (2.55)
de
Vll :

Here ¢ dR/V, represents integration along the field line between
the points where the particle’s parallel velocity vanishes. The bounce -
averaged quantity @, (E, ) is_'rclearlg proportional to the energy E
and is a function of the pitch angle variable A= E/u . In Eq. (2.54),

Q, = &, B/M, ¢ is the signed cyclotron frequency of the hot particles.
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We will refer to any population of highly energetic

particles as “superhot” if it satisfies the condition given in Eq.

(2.53).-Particles-satisfying-this—condition —are-unable-to-interact—
resonantly with the plasma. This condition, for reactor parameters,
would require energies on the order of few MeV. Let us make an
estimate of the required energy by using the decoupling condition:
¥, /0y<0.5, where ¥, = 0.25 (N,T,/NM, rR)!/2 is the hot electron
" interchange growth rate and @y, = (m/r) (cT,/eB; R) is the curvature
drift frequency. In this expression, N, is the hot particle density, T,
is the hot particle temperature, N; is the plasma density, B; is the
toroidal field, e is the charge of a proton, and m is the poloidal
mode number. Considering 8, = B, . the decoupling condition yields
T/T, > (fR}/2 /2mp, , where p, is the ion Larmor radius. For

reactor-like parameters, let us say,r=1.5m,R=35m, B;=75T, and

T, = 10 KeV, we obtain T, >3 MeV (for m = 3).

We will now assume that all the hot particles are mirror
confined on the unfavorable-curvature, outer side of the torus and

that their bounce-averaged magnetic drift is not reversed: /e. ,
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Wg (Ag)
—h 0 5, (2.56) .
wﬂh
“ Where -
(b x VF, ) VS
(.Oun = - - h (2-57)
M, Q, (8F,/E)

is their diamagnetic drift frequency. We choose to evaluate @, at -
the pitch angle of those particles that have their turning point at
© = 89, when the pressure vanishes: thus, @y = Wy, (Ag), where

Ao = B(6 = 6g). If these extremal particles are not drift reversed,
none of the hot particles will be. Physically, condition (2.56) means
that the energetic species’ contribution to the fluid part of the
potential energy is negative, whereas their contribution to the kinetic
part is positive (stabilizing). The condition expressed by Eq. (2.56) is
the drift reversal condition. This condition will limit the maximum

value for the hot plasma o, for fixed values of the ‘shear. S, and the

core plasma beta, o . Fortunately, it will be seen that this

limitation on the validity of the lower bound is not severe for
particles trapped in the bad curvature region. It would become a
severe limitation if one wanted to use this approach to explore the
effects of a population of hot particles that mirror on the inner
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side of the tokamak ( /e, 8y > 7/2), analogous to “sloshing” ions in

mirror devices.

The drift non-reversal condition can be expressed as

Ajog + Ag oxe < Az S+ Ag (2.58)

The derivation of Eq. (2.58) will be given in Appendix A, as well as

the expressions for -the coefficients Ay, Ay, Az, and A4, whichcan -~

be written in terms of complete elliptic integrals.

2.3 VARIATIONAL REFINEMENT OF THE SCHWARTZ INEQUALITY AND
THE BALLOONING MODE EQUATION '

Ed

In this section we obtain the ballooning mode equation by

starting from the low frequency (@, >> w) kinetic energy principle

in the high bounce frequency limit (Wyynee >> Wyripy)» With nO finite

Larmor radius effects. The form of the low frequency potential

energy, 8W, ¢ , has been derived elsewhere, %38 and we quote it here:

BW, ;= 8W + 8W, . (2.59)
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x=(b-V)b is the magnetic field curvature, e = VS x b/B, and
V=V-VB (3/0B). The energy principle means that §W,. > 0 is a

sufficient condition for stability. Since the energetic particles
are taken to be trapped in the unfavorable curvature region

where, as described earlier, their magnetic drift is not reversed

By (Ag)/wuy, > 0, then 8W, will be positive and stabilizing whereas

the interchange free energy term in 8W_ can give a negative;

destabilizing contribution.

The exact form for the kinetic potential 8w, , given in Eq.

(2.61), is very difficult to handle, since it involves bounce averages.

Rosenbluth et a/. 11 overcame this difficulty by employing, in place

of &W, , its non-trivial lower bound, §W, , derived by means of the

Schwartz inequality: 8W g &8W, . This substitution allows one to

convert from dealing with an energy distribution average of
microscopic bounce-averaged quantities to dealing with line averages
of macroscopic quantities (such as the pressure). The use of either

8w, or 8W, will lead to a ballooning mode equation of the integro-

differential type; the latter, however, is much more tractable. Also,
since §W; is a lower bound, we are assured that if 8w, + &W, is

positive, then the actual system is indeed stable.
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The fluid part, 8w, of the potential energy is given by

2

1 ]ds

We = | [0|V5|2(D-V¢)2+ ‘c[Q,,-—%Be-x ¢]

218

- (e'x) [e-VP, + %.e'VPl ] 02]

(2.60)

The kinetic part, 8w, , describes only the non-MHD highly

energetic species, assumed to be trapped. In the nonresonant limit,

Wyn>>w , it is given by

Wy = 5 | dEdy (evFy

,

B Vn2 ex

jpevB+ex V,,ZJ

(2.61)

Here, Q, = B*e'VB is the Lagrangian magnetic field

perturbation parallel to the equilibrium magnetic field (whereas B’. is

the usual Eulerian perturbation), & is the perturbed electrostatic

potential, P,  are the components of the total equilibrium pressure,
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The expression for &W, is derived with the use of the

Cauchy-Schwartz inequality <a?/b> g > /<p> it b >0, where in

the case of the lower bound the angle brackets mean [dEdy. From Eq.

(2.61) one then finds the lower bound §W; to be

2

{ [ dEay %] (eVF) GEW [pg, +V,2 exd | }
- . " - o

SW; =

NS

When the function G(E, u) in Eq. (2.62) is set equal to unity, we
obtain the lower bound that was used by Rosenbluth ef &/ In this

case the energy space integrations can be done inmediately to give

r [ Q 1V
{v‘ .déﬁ (-—-B'—)e-VPm+e-xd> (eVPy) }

- B63)
rds [ (eVP,) (e-VB) ] (263
] 'é- B + (e'vplm ) (e'X)

However, as was pointed out earlier, we have found that using the

simple lower bound of Eq.(2.63) leads to an overly pessimistic

dEdy fj\fu(e-vr,,)e2 €0 [peVB +v ex] (262)
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estimate of marginal stability as the value of the global shear is

increased.

This difficulty can be avoided by use of other forms for the
function G. We note that the Schwartz inequality permits an arbitrary
positive function of the energy variables, G(E, ), to be included, as
it was in obtaining Eq. (2.62). This degree of freedom can be
_ exploited in order to obtain a better lower bound. In fact, it is
straightforward to observe that if §W, is varied with respect to its

functional dependence on G, one finds 8W; is maximized when

G=const. x[(ds/V,) ( pQ+ V,,2 e'xd )/ (ds/v, ) ( pe-VB+V,2 e'x ) and
its maximum value is the exact value: swl. max = oW - Since bounce

averages do not depend on both E and p but only on their ratio, we

propose to use a function of the form

G(x)=1+o<[1-—-—] . (2.64)

where By = B; [1-(r/R) cos8y]l is the field at & = 6y , A=E/p is

related to the pitch angle, and { is an exponent which will be
'changed as a free parameter, whereas the coefficient o« will be

determined variationally so as to yield the /Jeast¢ pessimistic

estimate of stability. For < = 0 we reproduce the results inRef. 11
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For finite &, we will obtain an improved estimate of stability, due to
the pitch-angle weighting introduced by the function G.

We now obtain the ballooning equation by varying 8w, + 8W,

with respect to Q, , ¢, and o in each trapped particle region. An

integro-differential ballooning equation is thereby obtained:

B-V[GIVS| @)+ ex [e¥P+ L etp ]

(e'x) (e-VP ) [A+11 (cose-coseo)] x

[Rz Rq"R| Rs‘fq [ Rz R3-Rl R4 ] ]

[ ReZ-RzRs 1

(2.65)

Where, |
t {A+11F( (cose-cos6;) }

- 6, [ BO-B]
{A+11 (cose-coseo)}

UJIO-

R = (eVP, o) l {A+11 (cos6-c0s6y) (e'x)}
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R, = (e- VPmO)J [A+'n Fr(cose- COSeg)] d(e-x)G, [—B-Q—B]

Rz = (VP ,4) J g-g“— [ -g* + %— (cos6-cos6y) ] [B ex - — B

. Rq(e meo[ gs [ BB:; ]Gt [B ﬂB (cose- coseo)] [B e k-e VBP”' ]

By-B 2
Rs = (6P ) l  6f [ : ] { o (cose-cosey)’ {Ff— %(c—

| rlzeg]

A .

!
B /T T2 +1) 67

AT - -
5z (cose-cosey) | 2F; Gy X (@ +1) G2

o 27 }

2L
AL [ ByB) 2 o T (cos6-cos0g) -
. ] 5 [ Be ]G( (e-VP,) {B (cose-cos6yp) R
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[2“_—] &
s NS r(2£+1)6c2} [pox- 5]

rleeg] wfeeg] or (223 )

Grs—mmm ' Fp= ' =
/R T R TG Y /R rest

In the expression (2.65), the first term on the left-hand side
represents the bending stabilizing term, whereas the second one is
the destabilizing interchange term. On the right-hand side is the
stabilizing compressional term due only to the hot particles.

For regions without hot particles, the equation to be solved is

simply given by

v [ clvs::zs;w ] +(ex) [ e VP, +eVP,. ]@ = 0, (2.66)

using our model equilibrium and the ballooning representation we

proceed to solve the ballooning equation.




o0

2.4 NUMERICAL SCHEME FOR SOLVING THE BALLOONING EQUATION

___The ballooning space in_ which we solve the ballooning

equation is divided into trapped and untrapped particle regions. The
centers of the trapped particle regions are at 6 = 27tm, where m is
an integer. These regions have a width of 26,. The untrapped particle
regions are located in the intervals [2mtm+6, , 27t(m+1)-6,). In Fig.
- 2.3, we pictorially show. in the ballooning space a few trapped .and

untrapped particle intervals.

We numerically solve the ballooning equation using a
fourth-order Runge-Kutta method in each trapped region. When

8, = 0, the marginally stable mode corre'sponds to the one that has

even parity about © = 0, is well behaved at infinity, does not change

sign for |g]| <, and whose amplitude asymptotically approaches zero
as © = 0, 2% To find an even solution we begin with the initial

conditions:
d(6=0)=1,

d = Q) =
500=0=0, (2.67)
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L L

- 27 0 2n

Fig. 2.3 Trapped and untrapped particle regions
in ballooning space.
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and solve for ¢ only for positive values of © because of the even

symmetry of &. We start solving for ¢ in the first trapped region,

0 <6565, and get ®(6y) and ¢(6p), which are used as the initial

conditions when solving the differential equation in the succeeding

untrapped particle region, 6y < © s 27 - 6p. Having solved the

differential equation in this untrapped interval, we obtain ¢(27-6)

and ¢°(2m-0,), which are used as initial conditions for the next

trapped partlcle reglon 2 - 6;<OS27+ 6§, ancl soon. Withinthe

n'M trapped region, 27(n-1)-84<6 s27m(n-1)+6,, the solution of the

‘ballooning equation can be written as?

d=0g+Ci0,+Cr 0y,
where ¢g, ¢, and ¢, satisfy the equations
£ %(9) =0

£0(6)= () o [ AT (cose-cosey) | D(e)

£0,0)= () o [Am_ (cose-coseo)] D(6) 24(6),

(2.69)

(2.70)

(2.71)




with the initial conditions

¥y (6.) = 0,
o) =0
¢y (6.) =0
¢, (6.) =0
2(0.) =0

53

—¢ 07—7(9—_—7) —S @l —

(2.72)

(2.73)

(2.74)

Here 6_ = 271 (n -1) - 6y, and &), and &, are the values of ® and ¢’

at 6=6_, obtained by solving the differential equation in the preceding

interval. For the first trapped particle region ©_ = 0 and for the

even mode ¢, = 1 and &), = 0. In Egs. (2.69)-(2.71) for &g, &, and &,,

the operator £ is given by




54

e[ L) (@) (&) o0

x {og[“r;)] .[Am[cose-coseo]] } P Y &5))

Other definitions are

L
2y=0y [cose-coseg ]

D (6) = cos6 + h(6) sind | (2.76)

The quantity D(6) is proportional to the curvature, with the first and
second terms being related to the normal and geodesic curvature,

respectively. Other definitions are as follows:

Cg ={ [Jz 12 (0) - J3 l| (0)] [‘Jzz + J|J3 - J112 (2) + le‘(Z):'

- [lez (0) = J3h (0)] [J2 I1 (]) ‘J1 12 (1)] }/A
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Cz ={ [J22 "J|J3 - lez (]) + J3l‘ (]) ] [J1|2 (0) - J2]1 (0)]

- [J212 0) - Jsl (0)} Jphy(1) = Jy1, (1)] } /0

A= [J22 'J1J3 'Jé]z“) + J3i1(]) ['J22 + J1J3 - J1[2(2) + le‘(Z) ]

- [Jz h (2) -Jz I, (2)] 1y ()= dy Iy (l)]

1 (j) = [de D(e) &) [A'en (cose - coseo)]

12 (j) =Ide D(e) ¢;(e) 24(e) [A+‘r1 Fe (cose-coseo)]
Xe

Jy=1de [D -z—qv;] [Am (COSO'COSQU)]

X
Jp = lde [D- -2—25 ] 2, [A""I] Fy (cos6-cos6p) ]




o6

L5 Gp )

| X
Jy= [“—"][den,z [112 (cos6-c0s6,)° [F - ___]
Xt
+ A2 hey + An (cos6 - cos6p) [ZFC T To (1-hge) ] ]

) e UL L SN A
+ |de [D- ——c] [A (1-he )+ = (C0s6-C0s6 )] 2
l 2q2 £V Gt 0 1

Also, we let hy= 1= T (2L+1/p)/J/R , T(2L+1) G, where T, is the

gamma function.

Note that without improvement (£=0), the ballooning equation
ina trapped particle region reduces to that obtained by Rosenbluth
et al. |

) a D & do

9 2, Y *h - %h Y o Tt

o (1) 55 0+ [oe+ H-] Do = [ 52 ) D= -
P3¢ )




S7

The solution of Eq. (2.77) can be written as

o= d)o + Aq)] R (278)
where
[
40 D &,
A= . (2.79)
[ e

&, is the solution of

%—(wn?)ggw[«cw«%“-]ooo:o. (2.80)
and &, is the solution of

d%(hhz)ge—@ﬁ[o(c'rH 52“—]D¢,=°<2—“D (281
with initial conditions

&g (6.) = &y ¢ (6) = &), (2.82)

¢, (6.)=0, ¢’ (8.) = 0. . (2.83)
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In each untrapped region we have simply

when solving for &, we fixed the values of q, 6g, and S and varied o, .

If & had a zero crossing ( /e, became negative) at a finite value of 6,

the mode is unstable by the oscillation theorem.42

For 6,= 0, the marginal mode is no longer even in ©. It can be

easily seen that the new symmetry property of the eigenfunction is

o(-6, - 6) = ¢ (6, 6,). Inthis case we start the integration of the

differential equation from = - @, where 6>>1, with initial

conditions ¢(-9L) = 0, and (b’(-eL) =1. We shoot forward in the

direction of increasing € , and the mode will be unstable according to

the oscillation theorem if ¢ crosses zero.

£0(6) + o D(8) 8(6) = 0 (84
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PROVEMENT o

In Fig. 24 we plot the results for stability without
improvement ({ = 0). A square profile for the hot particle pressure

profile was chosen, and modes peaking on the midplane were studied

-by choosing 6, = 0. -The safety factor, q, was set equal to 2..- -~

The dashed lines in Fig. 2.4 are the first and second stability
boundaries for ballooning modes without hot particlesQ Also in Fig.
2.4 ére plotted the stability boundaries when hot particles are
included: the stability boundary for 6, = 7t/4 is shown with the
dash-cross line, that for 8, = 37/8 is shown with the dash-dot line

and that for. 8, = 71/2 is shown with the solid line. The maximum
value of o allowed by the drift non-reversal condition has been used
in our results.. This condition is different for different values of 6.
Drift nonreversal for infinitesimal in all o, holds on the left-hand
side of the dotted lines; thus, the dotted lines in the picture
correspond to o, = 0.

Below the large dashed line at S = 2.0 is the region explored

previously by Rosenbluth ef &/ We can see in this region their
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Fig. 2.4 Stability regions for ©g = /4, 3%/8, and n/2
without the Schwartz inequality improvement.
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results for the stabilizing role of the hot particles: there is an
improved first stable region, and a bridge between the first and the

~ second stable regions. Above the line at S = 2.0 we present the

stability boundaries when larger values of S are consideréd. It
appears that the introduction of the hot particles make the plasma
becomes unstable in parameter regimes where it was stable in their

absence. The most dramatic unexpected behavior occurs for 6, = 7/2.

~ This apparent paradox is resolved when the better lower bound of 8w,

is used. In Fig. 2.5, we present the results when the better lower
bound is employed. As it can be seen, the boundaries now have a

reasonable shape. This results from the fact that with the unimproved
lower bound, parameter regimes that are not found to be stable are
not thereby necessarily unstable. In Fig. 2.5, { = 1/, was used; this
value seems to give the best results for various values of ;.
In Fig. 2.6, we show the dependence of the stability
boundaries on { for 6y = 7t/2. In Fig. 2.7, an enlargement: of the area
shown boxed in Fig. 2.6 is presented in order to show a little more
clearly the effect of changing the exponent {. In fact the locus of the
curves for different values of { should be taken to obtain the best
estimate for the true stability boundary. In Figs. 2.8 and 2.9, curves
similar to those in Fig. 2.6 are presented for 6, =371/8 and 6, =7(/4,

respectively. As can be seen, the results for £ =0 are the same as




62

L=1/72,q=2, 6,=0
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First
Stability
3.0

g
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T

Fig. 2.5 Stability regions for 6, = n/4, 3n/8, and x/2
with the improved Schwartz inequality: € = 1/2
was used in all the curves (compare with F ig. 2.4)
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Fig. 2.6 Comparison of stability boundaries for various
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Fig. 2.7 Enlargement of the region inside the
small box in Fig. 2.6
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in Ref. 11, For large values of { the weighting function approaches |
and, thus, the same results as for { =0 are obtained. The best values

were obtained for values of L around 1/2.

For all of the values of 6, that were considered, it was found
that for values of the shear less than 2, the stability boundaries

obtained with various values of { are not much different from the one

obtained with { = 0. For larger values of S, however, different values

of L do give different stability boundaries.

We have been able to predict analytically the onset of the discrepancy
at large S in the limit of small trapped particle width (6 <<1). In
this deeply trapped limit we can analytically obtain the even solution

of the ballooning equation in the first trapped particle region,
0 g © & 9. The square-top hot particle pressure profile, { = 0, and
6,70, were assumed in this caiculation. We obtained ® by usinga
Taylor series, where the n'" derivative of ¢ at zero d" &(0)/de" ,was

calculated from Eqs. (2.78)-(2.81), as follows. For small 65 and © ,
we can write g(6) =6 [1- ABg)/7t], h(6) = 6u , and D(6) = 1+ 6°d .

4

Here we defined

2

0o
A(8g) = ﬂ'[]"‘_} '
’ 2
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Using Eq. (2.80) to obtain the value of d2¢0/062 and the initial

conditions to obtain the value of &5, we find,

¢0=1'S°092 '
here
*h
[ =7
Por 7

Likewise, from Eq. (2.81) and the initial conditions for ¢, , we obtain .

By using the expressions for ¢y and &, , we have

2
6
l*(d“Po)?o

A= :
\%
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with

P O E O .
*n < 24 [' 2@ % 737 T3¢ Te

The eigenfunction ¢ is singular when the denominator V vanishes.
This is the onset for the discrepancy and corresponds to a known
degeneracy for integral equations of the Fredholm type. 45 For small

6y, we can write the drift nonreversal condition (2.58) as

1 s ,o<c._7o<c]]__ o

Using the maximum value for o allowed in the inequality (2.85) in

the equation for V we find that V vanishes when

0.876 - 0.157 =+ 0.0445=0.. (2.86)

where we used the parameters q = 2 and 6, = 71/8. In Fig. (2.10) we
have plotted the linear relationship given in Eq. (2.86) with a dotted
line. In the same picture we have plotted the stability boundaries
without hot particles (dashed lines) and the stability boundary
obtained numerically (solid line). The dotted line representing Eq.
(2.86) compares fairly well with the onset of the discrepancy at

S=12 as displayed in the solid curve.
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Notice that when the denominator V does not vanish, we

obtain

S ——

2

6
0(00) = 1+ 5= {- o= -+ e, (2.87)

~ where the first two terms in the curly bracket come from the

- interchange term and the third term comes from the compressional-

contribution of the hot particles. Using the maximum value for o,

allowed by condition (2.85), we obtain

(o4
¢(90) =1- % 902 +0 (904) . (288)

Thus, Bg comparing Eq. (2.88) with Eq. (2.87) for o, = 0, we see that

when hot particles are introduced the function ¢ decreases more
slowly in the first trapped particle region than in the absence of

energetic particles, which implies enhanced stability
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2.6 ﬂAﬂLlIiBQUNQABJEiEQB_QIEEEBENLEBQEILEiQE_IHE_ﬂQL
PARTICLE PRESSURE

~ InFig. (2.11) we show the effect on stabilization for various
profiles of P, , with 6, = 7t/4. The dash-dot line shows the stability
boundary for the square profile, the solid line that for a concave

profile, and the dash-cross line the results for a convex pressure

profile, with its maximum at © = 0. The results show that even when

~ the fluid part of the potential is larger for a concave profile than for

one with its maximum at 6 = 0, the kinetic part is more stabilizing
for the second case. We also show in Fig. 2.11 the stability boundary
for a smooth hot particle pressure profile (dashed curve).

2.7 OFF-ANGLE MODES

The motivation for studying modes that peak off the midplane
is to test stability for all possible ballooning modes. We have already
stated that the ballooning modes corresponding to marginal stability
have the general property of symmetry,

6(-0,-8,) = 0(6, 6,) .
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Thus, for 6, #z 0, they are no longer symmetric about 6 = 0; in fact

numerical results seem to indicate that they are not even symmetric

- about- the position -of -the maximum.-In-Fig. (2.12), we show the

stability boundaries for off-angle modes with and without hot

particles. The numerical results were obtained for values of the shear

S up to 2.0 and for values of o Up to 4.0. When hot particles were

considered, 6y = 11/4, Q= 2, and { = 0 were used. For comparison, we

- plot the curves corresponding to 6, = 0 that were already shown in

Fig. (2.5). The short dashed lines (----- ) are the stability boundaries
without hot particles, and the long dashed line (— —) is the stability

boundérg with hot particles. With the solid line (——) we have

plotted the results for 6= 37/8 when hot particles were not present;

the stability .boundary when they are present is plotted with a
dot-dashed line (. . —. . ).

We see that, without hot particles, there are two stable
regions for off-angle modes, in the parameters space of S and ..
when 6= 0, stability is less stringent for first stability, but more

stringent for second stability: /e, at a fixed value for the shear, the

marginal o. value increases for off-midplane modes. In fact it can be

seen in Fig. (2.12) that the second stable region is greatly reduced
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when 6, increases from O up to 37/8, without much improvement in

the first stable region. For 6,>37/8, the second stability boundary
does not change significantly in comparison with that for 6= 37/8,

but the first stability boundary does, as can be seen in Fig. 2.13,
where the stability boundaries for 6, = 371/8 and 6, = /2 are
shown. The hot particies have a strong stabilizing role for these
modes, because a large part of the unstable region becomes stable

when hot particles are introduced. The *“clockwise rotation” of the

unstable region in the S versus o«. plane is a consequence of the

change (as 6, is varied) of the minimum of the canonical potential,

which is where the modes corresponding to marginal stability tend to

be localized.2:46 Also the large variation of the second stability

boundary when 6, is increased reflects a large change in the geodesic

curvature for finite 8, -

2.8 CONCLUSIONS

In this chapter we have presented a theoretical description of
the physical behavior of non-resonant, non-drift-reversed highly
energetic particles in tokamak and of their effect on the stability of




77

2.0 .

7 T o

First o,/l 7 iy
stobility —/ 7,/ :
| (B=3m/B) [ ol [/ iy

151

O
0.5
Stobility
:,\ (6 =m/2)
o Drift Reversol
0 2 1
(0] 1.O 2.0 3.0 4.0

Fig. 2.13 The same as Fig. 2.12, for ©,=3n/8

and 9k=7f/2




78

ideal MHD ballooning modes. We have confirmed in detail the result
initially predicted by Rosenbluth ef a/,'" that hot particles whose

pressure is greater than a threshold value which is roughly

comparable to the pressure value of the core plasma are able to
completely stabilize the ideal ballooning mode. The significance of
this result is that it allows for direct stable access into the
high-beta second stability regime of operation.

In elaborating this theory, we noticed that the original
stability estimate of Rosenbluth ef &/, based as it is on a Schwartz
inequality approximation for a lower bound to the potentiai energy,
fails at finite shear values, for example, when S > 2.4 for a hot
trapped particle halfwidth of 7/2. The result from their method is
still valid, since their Schwartz method provides a sufficient
condition for stability. However, it cannot be taken as a reliable
quide to the actual stability boundary, since it indicates that at these
higher values for the global shear, the presence of hot particles is
destabilizing, whereas the energy principle clearly indicates a purely
stabilizing. contribution. We have resolved this discrepancy by
constructing a better lower bound for marginal stability. This was
done by exploiting an additional degree of freedom in the Schwartz
inequality. The resulting stability predictions are both more favorable

and more reasonable. We conjecture, in fact, that at low shear values,
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the Schwartz lower bound is close to the real stability boundary,
whereas at the high shear values, it deviates from the actual

7srituartion, thile the iupperﬂ bound approachesVWinVLVTheWimprroved

Schwartz lower bound, by means of its internal pitch angle weighting,
is able to make the transition from low to finite shear values

~ without significant deviation from the real stability curve.

We also investigated various simple poloidal profiles for the
”pré‘smsﬂr‘e' oTn the' énerirgét'ic” »épecies. “ T”hé svmplesto} 'tﬁrese' is the
square-top profile that was also used by Rosenbluth ez &/ ; formally,
this profile has a problem with the mirror anisotropy coefficient ¢
being singular and even negative at the endpoints of the profile,
although this isolated singular behavior appears not to affect greatly
the global properties of ballooning modes. A smoothed profile that
avoids this question was also studied, as well as a concave type of
- profile with fewer particles on the tokamak midplane than off,
although still not drift reversed. Somewhat better stability was

predicted for those profiles that peak on the midplane. The reason

seems to be that the non-fluid response of highly energetic particles
contributes stabilization when the particles are trapped in a region
of unfavorable curvature. This behavior is quite contrary to usual MHD
dynamics, where bad curvature implies instability, and is a

consequence of the hot particles fesponding not to ExB displacements
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of the magneto-fluid, but instead responding primarily to variations

in the magnetic field strengh, which enters through the perturbation

view, it is clearly preferable to concentrate most of the hot particles
where the curvature is worst. The stability results for the various
profiles, then, differ slightly according to the value of the line

average of the pressure-weighted curvature.

Another point explored numerically in this chapter concerned
the detailed structure of the first and second stability boundaries for
modes that do not necessarilly peak at the tokamak midplane. In a

high-mode-number analysis of ballooning modes localized on a single
flux surface, the zero in poloidal angle, ©, , of the phase eikonal of
perturbed quantities enters as a free parameter. We have numerically

explored how the stability boundaries change as this parameter is

varied. In general, the stability boundary on the first stability side

improves --/ e, the marginal o, value increases, for fixed shear and

with o at its maximum value as allowed by the non-drift-reversal

condition--, whereas it becomes worse as it approaches the second

stability side. A stable avenue from first to second stability still

exists, although at lower shear values than for zero 6, .




CHAPTER Il

RESONANT DESTABILIZATION OF BALLOONING MODES BY -
‘ __ ENERGETIC PARTICLES

3.1 INTRODUCTION

In Chap. II it was shown that ideal ballooning modes can be

‘stabilized by the presence of hot particies in a tokamak plasma. The

energy of the hot particles must be very high in order to satisfy the

nonresonant (Gdh»w) condition of this theory. For example, for

, react’or parameters, it was pointed out that this condition would

require energies on the order of few MeV. Hot particles produced by
currently available neutral beam injection or rf heating methods may
not be this energetic. Moreover, even if highly energetic particles are
created by fusion processes or by other means, they will eventually
be slowed down by collisions with the backgrouﬁd plasma and have
their energy reduced. Also, their pitch angle distribution function will
be broadened if the energy is not sufficiéhtlg high.*® Thus it is
important to study the interaction of the core plasma with
moderately energetic particles, for which the nonresonant decoupling

condition is not satisfied.
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Indeed, experimental observations on the PDX tokamak seem
to indicate that, for certain parameters, beam-injected hot ions are

able to excite ideal ballooning modes through wave-particle resonant

frequency.5+47 Fig. 3.1 reproduces the experimental results, presented
in Ref. 47, for the excitation of MHD modes when moderately
energetic ions were introduced into the PDX tokamak with nearly

perpendicular injection. The excitations were recorded as time-

-varying fluctuations in the poloidal magnetic field, as measured with

a Mirnov loop diagnostic during the process of heating the plasma. In
the observed oscillations, it was possible to distinguish two modes
with different frequencies. The }dominant mode usually occurred at a
frequency of 15-20 KHZ. There was also a higher-frequency
“precu‘rsor” mode at frequencies of around 80-100 KHz. The lower-
f requehcg oscillations were dubbed *fishbone oscillations” on account
of the shape of their Mirnov signal and were later interpreted by Chen
et a/.2° as beam-ion-induced excitations of the m=n=1 internal kink
mode. The higher frequency precursor oscillations also had the

fishbone feature that the oscillation frequency was close to the
curvature drift frequency of the beam ions, w 25«1 . In fact, the
ratio of the precursor frequency to the frequency of the n =1

fishbones was close to the measured toroidal mode number n = 4-6

of the precursor. However, the high-frequency oscillations tended to
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occur at beam heating powers higher than the threshold power level
for fishbones. Noting that this and other features of the precursor are

suggestive of ballooning modes, Weiland and Chen2? proposed to

~ explain these excitations as MHD ballooning modes excited by trapped

hot ions. Their theory for these “balloon-bone” oscillations was
developed in the limit of weak shear and rather low beta values for

the beam ions.

~In this chapter we present a complimentary description of |

how ideal MHD ballooning modes can be resonantly destabilized by
énergetic trapped particles. Our theory is both analytical and
numerical and seeks to describe the *balloon-bone” oscillations for
finite shear and beta values. We also obtain the effect of varying
either the trapped ion pressure or the core plasma pressure. The
development of our theoretical investigation may be summarized as
follows. We start our study of the “balloon-bone” oscillations from
the quadratic form for the ideal, linear, high-mode-number equations
that the electromagnetic perturbed fields satisfy.'*38 The quadratic
form can be divided into a fluid potential and a non-local kinetic part.
The resonant response of the plasma at the drift frequency of the hot
particles occurs in this non-local part. Certain approximations are
then adopted to make the problem analytically tractable. One of

these approximations is to use a delta-function model in order to
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localize the resonant response of the energetic particles at the
center of their trapped region. The exact form for the frequency

dependence of the resonant term is calculated for a slowing-down

equation is then obtained that contains the spatially localized

resonant response, along with the inertial response of the plasma. We

shall take the ratio wy/w, to be small compared to unity. This

assumption is consistent with our consideration of only moderately

--energetic hot particles (since wdh/onc Th'). It is also consistent with-

the measured parameters for the PDX expériment that observed the

fishbone oscillations and the high frequency precursor fluctuations.
we note that w 2 wg,<<w, implies that the plasma pressure is
nonneglegible to the degree that the shear Alfven-ballooning mode:

frequency is much below the Alfven frequency: w <<w,. The high

frequency MHD spectrum therefore remains intact when w,/w, is
small. Since the typical frequency for MHD ballooning modes is much
lower than the Alfven frequency, we may take w/wA«'wdh/wA«l.,so

that the inertial term is unimportant except at large values of $6.

Thus we can divide the field line into two regions: an inner ‘region
(S6~1) in which the inertial response is not important, and an

outer inertial region S6 >> 1 inwhich that term is important. We
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numerically solve the integro-differential equation in the inner region
and fit the results to an analytically derived asymptotic form for the

wave function. In the outer region, a similar two-space-scale

analysis -leads-to-the—inertial -solution;-which,~when-asymptotically
matched to the inner MHD solution, yields a dispersion relation for
the complex frequency w. The marginal stability boundaries are then
obtained by a Nyquist analysis of this dispersion relation. The
window in parameter space for stable operation with respect to the

- "balloon-bone” modes is finally presented. .

This chapter is divided into 7 parts. In  Sec 3.2 , we briefly
review the assumptions. In Sec. 3.3, we obtain the balloohing mode
equation, which is then solved in Sec. 3.4. In Sec. 3.5 we present the
numerical results, and in Sec. 3.6 we derive some approximate
analytical stability conditions. Finally, in Sec. 3.7 , we give our

conclusions.

3.2 ASSUMPTIONS

We review some of the assumptions already explained in
Chapter 1. We consider energetic particles that are mirror confined
on the unfavorable-curvature outer side of the tokamak. We also

suppose that the population of hot particles is fairly anisotropic,
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Py/Pn<1. We will consider the energetic particle beta and the core

plasma beta to be comparable, o ~oc.. (Note that in Ref. 30 o, /ox ~0(€)

was taken, where €<<1 is the inverse aspect ratio.) Also, throughout

this chapter, we will consider the square hot particle pressure
profile of Eq. (2.18) with m=0. We want to investigate the stability
of MHD-like modes (hence, finite parallel electric field effects are

ignored) in the large-mode-number eikonal limit. The ballooning

representation will be needed for the perturbed quantities, and finite

Larmor radius and finite banana width effects will be neglected.

Finally, we are interested in modes with frequencies wu ;< @ & w,<
W« » Where w,, and w., are the magnetic gradient-B and diamagnetic

drift frequencies for the hot species and w.,,; is the background ion

diamagnetic frequency. Other assumptions and approximations will be

explained in the course of the theoretical development to follow.
3.3.a QUADRATIC FORM AND THE BALLOONING MODE EQUATION
we obtain the ballooning mode equation begining from the

quadratic form for the equations of motion, with the hot species in

the high bounce frequency limit: '4.38
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BW, + 8W, + 81=0 . | (3.1)

Here, §W, is the fluid part of the energy:

15 [ T e

-ex [ e-VP,+.% e'VPl] |¢|2] (3.2)

In Eq. (3.2), ¢ is the perturbed electrostatlc potentlal (the
Mequzllbrlum e!ectrostatlc potentlal is assumed to be zero), Q, is the
Lagrangian magnetic field perturbation paraliel to the magnetic field,
e =B x V5/B2, and ¥ = V-(VB) 3/3B. We are using the ballooning
representation where S is the eikonal phase for the perturbed field.
quantities. The first term on the right-hand side of Eq. (3.2) is the
stabil{zing bending part of the fluid potential, the second one is the

magnetic compressional term, and the last one is the destabilizing

interchange free energy term. The kinetic part of the energy, 8W, , is

given by

2

W~ Wap, ] of,,

1 fer |y B —
s, = - |5 dEd”V.[w'Tﬁah aE[uQ,+V,ex¢]

(3.3)
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and involves an integration over velocity space quantities. The

inertial energy, &1, is given by

2

2

¢

N

s (lyer [ le
2 B Vy

We can split 8W, into two pieces, one independent of w and

another one containing the resonant dependence on w-w,, , as follows:

(1) [ o [2] [B2- ey

B Vl (L)dn B ( (D'mah) g
) .
Gy 3 14tV exd | (3.5)

The first term in the square parenthesis is the zero-frequency part
of the kinetic potential energy, and the second is the finite frequency

resonant part.

In order to make progress in our semi-analytical treatment

we use a Schwartz inequality to estimate the zero frequency part

of W, . which is then combined with 8w, . In the finite-frequency

resonant part of 8w, , we make the following low beta aproximation

for the magnetic field

(3.4)




S0

Q,z Bex ¢ (3.6)

Also, in the resonant part of 8w, , we assume that the energetic

particles are deeply trapped, so that

WB+VHexd(e) = o) B+V) ex .  (3.7)

Here, 6, = 27tn is the center of the n' trapped particle interval. Using
the Euler-Lagrange equations for the quadratic form (3.1), we now

obtain the following equation for & :
2 7
o] 2
BV [_égéj, BY0 |« &5 |vs|%0 + ex [e¥P, + T VP, |¢

“R(©) = (ex) [e¥Py + L e WP, Ja (3.8)

where

e = ox ooy | [0 ] (81,

\7 W gh

oF
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The first term on the left hand-side of Eq. (3.8) comes from
the bending term in the fluid potential, the second one from the

inertial term, the third one comes from the interchange term, and the

fourth comes from the finite-frequency -resonant part of the kinetic
part of the energy. On the right-hand side appears the compressional

term due only to the trapped hot particles.

We now assume that the effect of the resonant term in the -
“ballooning equation can be localized to the center of the n' trapped
particle region at 6 = , as follows: |

O, * 6
R(©) 3 0(6y) 8(6-0,) | ﬁ] 06 R(E) = T(w) 3. 8(6-6y) oy

8, -~ 6g | (3.10)
where 26 is the width of the trapped particle interval.

wWe now use our model equilibrium and the ballooning
representation3? to rewrite Eq. (3.8) as

d
4 [1+ h3(6) ]— 8(6) + O [1+h2(e) }cp(e) +S 8(6-271tn) ®(27n)
de ae n
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*n )

T(w) + [«c*[ 5 ] H(e)] D(e) &(e) = [-—2—-] H(e) D(e) AWM
(3.11)

Eq. (3.11) will serve as our basic equation to study the “balloon bone”

modes. The various quantities in Eq. (3.11) are defined as
follows.Corresponding to the square-top hot particle pressure profile,

we have

n(e) = 56 - o sine - [ 3 | ¢® (3.12)

where, from Eq. (2.40),

-[l+%] [sineo-eocoseo] . -n<8<-6
g (6) = 1 sin’e“-[%] [sineo + (11-8y) COSeg] . 18] 26
] . | ~
{]—-Tl'—] [Smeg -9 COSGU] . p<O<T
_ (3.13)

Here, & is & modulo 27, such that |8|< m. Furthermore, as in Chap.
I, we use D(6) = cosé + h(e) sine. The function H = H(8¢-|6-2nm|)
is the Heaviside function, representing the functional form of the hot

particle pressure profile in e: .




93

I, 2In-63<6<271Mn+ 6y , integer n
H(6) = 1

0 , elsewhere (3.14)

The integral term in EQ. (3.11) is the same as in Chap. Il for an

unweighted Schwartz inequality, viz. ,

F2TIN + 8¢
D(e) $(e) do

-7.27n - Og

- (3.15)
270 + 6

[D(e) - -2%‘; ] de

“2nn - 6¢
The inertial term in Eq. (3.11) involves the normalized frequency
Q=w/w, , where w,=V,/qR is the Alfvén frequency. Finally, the

quantity T(w) in EQ. (3.11), which represents the resonant trapped

particle response, is given (for @, /w. <<1) by

Zﬂn*eg
2

T(w) = - [BLTQ] do' D(e") | dr pB a;“ [w‘j’_ ] (3.16)

ZTm"eo
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3.3.b FORM OF THE RESONANT TERM FOR A SLOWING-DOWN ENERGY
DISTRIBUTION FUNCTION

~ We now calculate the explicit form for T(w), using a -

slowing-down type of energy distribution for the hot particles,

)\5/2

VBo A

f(E, N) = ng E-3/2 H(E,- E) H(By-2\) (3.17)

where E_ is the maximum energy (/e, injection energy) of the hot
particles and the dependence on A=E/p is taken from Eq. (2.52) with
1=0. Then we can write Eq. (3.16) for T(w) as

»90 —Em PBO
& de ] W
T =2 | depe) | E | an [ ) ]
27 En AB VBypA L O B
"% 0 7B (3.18)

Since B(B) is even, we can let
o Ch)
e - 2 [ de

we recall that the hot particle bounce-averaged drift frequency is

given by
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where the integrals are over the trapped particle region. Thus

60
1 . de. . D(6)
- J//c0s6-cos6,

T 8 = — (< oo [-2-)

de

/€056-C058;
O, (3.19)

For 8; <<1, we aproximate D(6) 2 cosé . (The other terms could be

handled but we ignore them for simplicity.) Then we find

D g[ ](“BO)[ rRBy [zi((kk )—1] =[Ti,-] [—%L]G"‘“

(3.20)

Here, kg = sin (64/2); K and E are the complete elliptic integrals of

the first and second kinds; and @, is the magnetic precessional drift




96

frequency evaluated at the maximum energy E. and at the pitch angle

that corresponds to the turning point 6y

m> g By L IR K

We can do the energy integral to obtain

©g Bo
T -2 | o) | on — .
o Tl /B BN
0 B
w A _ Wyn Bo
(2] (o) > [ ) (3.22)

Defining x = A/By W = w/ @y, , and b(e) = B/By , we obtain

o |
Tw) =--2 ldepe) | dx —F— win [1——‘——] (3.23)
s J%b /1% xW
0 b

Now we change variables d6 = (de/db) db and then reverse the

order of integrations. Note that for small 8y , we have

_1-t tOS@

b=1"¢ 056y

g1-¢ [cose - €056 ]

ST T SO S




g7

and

g% = ¢ sind = £ /1-[lcoseg+(1-b)/el¢ = € \/2(1-cos6,)-(2/€)(1-b)

= V2% Jobn, . (3.24)

Hence we find that

- __e,o R T S
de dax = db dx
£/ 1-[lcosey+(1-b)/e ]
b b(8) b min b
1 X
= | ox db (3.25)
g/ 1-llcoseg+(1-b)/ell .
Dmin bmin
Therefore, we obtain
|
0.4
TW) = - — [dx—2— w n [1-—'—] x
T 1-% xW




X

J [ db ] DI e(b) 1 . (3.26)

€ J /x-b J1-Tlcoseg+(1-b)/e]2
b

min

~ 7 For small €<<1, the range of ‘integration for b is tiny , and we can

approximate D(6) 2 1 . We change variables to

Y ol || R B v d
U"/XD'db 2XD'~/§'_D- 2du

and rewrite T(wW) as
1

_ % XW o1 N
T(W) = - Idx T D.n[l xw] J27¢
b

)

The second integral on the right side of Eq. (3.27) is equal to 71/2.

(3.27)

Therefore
1

T(W)=--%h 2/ade KW nn[t-—'—]=-f2"—,/2/el(w>

D min (3.28)




We write b, = 1- §, where § = €(1-cosg ) & € (82/2) for gp<<I.

We now investigate the remaining integral in Eq. (3.28):
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5 1
=w ot == an(g-t) - w | ax I (3.29)
Jt J1- %
0 1-8

The integrals in EqQ. (3.29) can be performed with the use of formula
(...) of Ref. 48. However, care must be taken at the points w=0, 1, and
(1-8)-' i here we need to use analytic continuation and indent the
real-w contour into the upper half W-plane by putting tiny
semi-circles at these critical points. This procedure satisfies

causality, which requires Im (w) > 0.
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The final result is T(W)=Re T(W)T; 1, T(W), with

) 1 l+\/8—
Re T(W) = - oqv/2/6 W {\/Snn 1 WEES) an s U}
(3.30)
where
1 - N VRN AR V™ , -0 <W<0; and .
JI1-1/W n
y J& -/1-1/W | <W<o
= <
2/1/w-1 tan’! [/a/ﬂ(l/W)-lﬂ ] ,O0<W<
| (3.31)
and with
0, -o<W<0 and (1-8) <W <o
~ow/2/€ (MTW/8) = -Tlox, W4/2(1-C0s8g) , 0 < W <1
Im T(W) = 1

o4/27E W (/5 - /T | . 1<w<(1-6)"

LY 4 (3.32)
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Plots of Re T(W) and Im T(W) as function of the normalized frequency

W are given in Fig. 3.2 respectively, for € = 0.3 and &g = 7/4. Note

that the @ integration in Eq. (3.18) has the effect of smoothing what

_would otherwise be singular_when W=1. A similar type of_smoothing_ .

has been achieved 26 by means of a radial average in the fishbone

theory for internal kink modes.

3.4 SOLUTION OF THE RESONANT BALLOONING MODE EQUATION

The goal in this section is to obtain the dispersion relation

for the “balloon-bone” modes. Since the ballooning mode frequency is
well below that for Alfven waves, /e, wW~B,<<w, , the inertial
term is unimportant until large 6 values. Therefore, as sketched. in
Fig. 3.3, we divide field line space into an inner region, which we call
the MHD region, and an outer inertial region. We solve the ballooning
mode equation in both regions and match the solutions asymptotically

to obtain the dispersion relation.

3.4.3 SOLUTION IN THE INTERIOR MHD REGION

From now on we assume that the dominant resonant trapped

particle response is a single §-function at & =0, where the mode is
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most strongly peaked. Then, the equation to be solved in each interval

|e-2nm|<, forn=0, 21,22, ..., is
S (102 ) 2 003 [o 2 #0060 o6 =[] AW
® lt+h (e) % d(0)+ [o<c+ > H}D(e) d(e) = > H(e) D(e) A
(3.33)

with d

% an ¢ oot - T(W) (3.34)
as the boundary condition at the origin .

Two independent solutions of Eq. (3.33) are &g, and ¢4, .

distinguished by their respective parities at 6=0. We shall normalize

“them .such that <be(0)=1, d>'e(0)=0. d>0(0)=0. and <b'0(0)=l. where the

prime denotes d/de. Thus, by virtue of Eq. (3.34), the total interior

solution is given by

®in = Poven = T(®) Doy (3.35)

Having written down the formal solution in the inner region,

we now desire to obtain the explicit asymptotic form for large 6.
This will be done by expanding Eq. (3.33) in powers of e"<<1 and
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solving for ¢ order by order. Noting that the coefficients in the
ballooning mode equation (3.33) contain both oscillatory and secular

~_dependence on ©, we separate the © variation by introducing two

space scales, viz, & for the rapid oscillatory variation (with period
27) and 2=56 for the slow secular variation. Next we assume that the

solution ¢ can be expanded as43

O ERTORERORTERE SN < DN

The procedure outlined here is the well-known Mercier asymptotic

analysis.50:51

. One significant difference with the usual Mercier treatment
is that Eq. (3.33) is an integro-differential equation. Therefore a way
must be devised to handle the integral term, A™ . In the n'" trapped
particle interval, |e-2nm|< 65 , we note that for Iargé >>1 (or,

equivalently, large ©), we have
2=50=5(2mn+8)=56, +S8~s, . (3.37)

Now, in the expression (3.15) for A™, we translate the variable of

integration back to the basic trapped i nterval (- | 6g) and then
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expand for 6, >> &, valid for n>>1:

- |d8 [D(é)+se,, siné][en+ 8 ]“ { 1+ [en+ 6] ;:(é‘) + }

[D(é) - Z—ég}dg

-eo

& (s0)¥ { N+ (56) 2 Ag + } ~

=z ZH );0‘ (Sé) H A Zi-1 & 24-2 [ Ao+ u(ﬂ-}) %}-& e

(3.38)
As is heuristically shown in Fig. 3.4, we have thus been able to |

convert the integral term A from a piecewise constant function to
a slowly varying continuous function in 2 with asymptotically small
dependence on the sawtooth function 6. The coefficient Ag in Eq.
(3.38) involves averages of equilibrium quantities over a trapped

particle interval and is given by

sin ©y + S( sindy - 65 cos8y ) ( 1+1)

Ag =

i i Xe , O(CGO
singg + S(sinBg- 8y €os8y) - [ e ] (264- 5in26;) - [_2_62_]

(3.39)

6, L " sy
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It will be not necessary to know A, in order to obtain the Mercier

exponent, J.

— —— Using-Eqs.(3.36)-and-(3.38),wefind—thatthe-ballooning

equation (3.33) in 0(Z¥*!) can be solved to give

fy(8) = o, sind + —:]2 (1-No) o, Q(6) . (3.40)

‘With this information for fy, we then average in & the

differential equation for f, and obtain the following indicial equation

for the Mercier exponent J :

p(p+1) =D, =0 (3.41)
with |
X~ X [ b
[4(:%2— ]Sineg [90 ]"‘é‘ﬁ' "%Sin 290]

0.4 3 0,8
5inGy* Stg-[ ¢ ] [90 [1+#J-—;sinzeo]+[2—;r-] £ (3.42)

when tqy = sinBg- 8 €056, . The two solutions of Eq. (3.41) are

+ 174+ D, . (3.43)

N|—

He = -
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(From now on, in general we will drop the subscript and let p=y, ,

with p_=-1-p.)

In Fig. 3.5 we have plotted the exponent u=p, as a function

of o, for various values of o, and with the parameters ©4=71/4,

¢=1.5, and 5=0.5 . Note that the value of y increases with o and with

og, - In fact, for the parameters of Fig. 3.6, p is singular at o, &2.47,

Since there are two solutions for the Mercier exponent, the

general asymptotic solution for ¢ will be a superposition, written as |
0(e) ~ Mok {1+ 07! 1,(8) + 0721y (B)+ - - }

+ No-1-H {1+ o7 T+ THE)+ - } (3.44)

Here, T-(8) is the same as f(8), except that p is replaced by -1-4.
Without any energetic component, we have p =0 and the asymptotic
solution assumes the familiar form ®~M+N/6. Applying the oscillation
theorem used in Chap..ll, we see that the ideal mode is stable wheﬁ

M 2 O (where the equality holds for the marginal case). Also since ¢

may correspond to even or odd parity, we label the coefficients as Mg

and Ng , or Mg and Ny , respectively.
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Fig. 3.5 Mercier exponent p as a function
e , for various values of «p
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In this analytical treatment of the asymptotic solution, the

Mercier coefficients ”e,o and Ne,0 are not determined. We obtain

them by matching the asymptotic expression for & in Eq. (3.44),

~—————with the-even-and-odd-solutions -of -the-integro-differential-equation————

(3.33), obtained numerically. Notice that when i 5 0.5, the Mf,0H2
term is the same magnitude as the Ne!"M term ,and hence it is

hecessarg to find f,(8) and subtract its effect on & in order to

obtain Ng.0 .

The equation for f,(8), generated from Eq. (3.33) in 0(zH), can

be solved to give

A,

S2 g2
2

, df , g ' ~
f,(8) = c1+—d-ew‘+o<c[51ne+-§-]f,—p(p+l) + S o< Ag eg-gi-

N [1- H [eo-|5| ] ] [gﬂ] (1-Ng) sin6y (69-6) | (3.45)

The constant ¢, in Eq. (3.45) can be obtained numerically. It is also
possible to derive this constant analytically from the solubility

condition obtainedS! as the 8-average of the 0(ZH2) equation for

14(8).
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For the parameters S = 0.5, 6, = /4, and q = 1.5, we show in
Figs. 3.6 and 3.7 plots of the various Mercier coefficients as

functions of e , corresponding to oq = 0 and oq= 1, respectively. In

—these pictures-the-stable region-for-ballooning modes corresponds —to

the regions where the coefficient M, is positive. In Fig. 3.8 where the

coefficient ”e is shown for 0= 0, 0.5, 1.0, and 1.5, it can be seen

that introducing hot particles reduces the unstable region.
3.4b SOLUTION IN THE EXTERIOR INERTIAL REGION .

To find an analytical solution of the ballooning mode equation
in the exterior inertial region where © ~ w,/w,, >> 1, we repeat the

Mercier analysis for an integro-differential equation, but keep the

inertial Q2 term. Thus, we start with the equation

d 2, dd 2, 2 [ %h [ %h,
@(l*h)—ze*Q (l+h)¢+[o<c+ [—2—} H]D(D: ['2—] HDA

(3.46)

For this finite frequency analysis, we also use a double scale
treatment of the differential equation; however, noticing that the

differential equation does not admit a power series solution, we try

the following form, where &,/ ~ 2 '<<1:
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Fig. 3.6 Mercier coefficients as functions of o. for

op= 0, with 09=7/4, q=1.5, and S = 0.5.
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Fig. 3.7 HMercier coefficients as functions of e. for
=1, With 6p=1/4, 4 =1.5, and S = 0.5
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Fig. 3.8 Mercier coefficient My as a function of ¢ .

for various values of op, . With 65=7/4,
q=15, andS =05
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0(6) =g (2)+ 0,(2,8) + 0,2, 8) + - - - - (3.47)

Actually, we find & poster/or/ that we should take the particular

oo form

‘(zéb-————P(é) [ }o(é) (3.48)

with P and Q are periodic functions of § with period 2.

“We expand the integral term again as follows: AM = A/A ",

where
6o .
A:[ [D(e)- 2q2] (3.49)
-6
and °
%o
As[de [D(é‘) + z,,sme] {¢o(zn)+ [56 g%l’ (2, . 6)]
-0 ’

[_ (39)2 38;;0 . 59828:1’1 + &, (Zn)] P }

=2, %ﬂ— (J+ K+ &g (1+K,) + 0( 27D (3.50)
n




In Eq. (3.50) for A, we have defined the quantities

6
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1=[d6 D(8) (3.51)
R - ”.—9'0* IR B T T T T T T T s e e
8o
J= J d6 S8 sine (3.52)
..60
and .
©o
Kp . | P®
=| désind (3.53)
Kq ) 5
’90 i
1
Finally, we therefore obtain \
| J
S5 2 [ s (k) 7 D00 ‘
o -] [(1 Kp) $0(2) * (J7Kg) 2 2
Az (3.54)

A

The equation obtained from Eq. (3.46) in 0(2) separates into

two equations for the functions P and Q in &, which may be solved to

yield

P(8) = o, sine + [O(h ] [ AL ] a(8)

2 A

(3.55a)
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Q@) = - [;" ] [JXQ] a(8) (3.55b)

Then, the solubility condition that is obtained by taking the 8-average

of the '76(20) equation gives a differentljélwé&dgtiion for the slowly

varying function ¢, (2):

~d—%-[zzg§i]+ [?2&2] 2% 04 - D,0p = 0 (3.56)
For 92 - O; we recover the Mercier power law solution
oo~ 2 | (3.58)

with the Mercier exponent given by Eq. (3.41), as before.

For Q%= 0, Eq. (3.56) has an exact solution in terms of Bessel

functions:
O = Y2 U 4 s ) (3.59)
X QZ |
with Y = [ ]
> J /T,




We choose to take the particular combination of Bessel functions that
yields an outgoing wave at 6 = oo :

)

(1
Gy =Y /2 H (y) (3.60)
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out- =TS Mo A

This solution has the desired asymptotic behavior to satisfg' the

outgoing boundary condition for Y>>1:

- -¢0U1~Y-'exp[r [Y-’—;“—] ] R - 1) I

Its small argument form, which will be needed for the matching to

the inner MHD solution, is given by

i+2) .
Q ] exp (- ipm) ol - g 1K

I oy e L) e 2 )

Goyt €Tl {

(3.62)

3.5 DISPERSION RELATION AND RESULTS

In order to obtain the dispersion relation we match the

asymptotic (Mercier) formof . given in Eq. (3.44) to the small
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argument form of the Hankel function for ¢, given in Eq. (3.62).

Thus, the dispersion relation for the “balloon-bone* modes is

obtained as
142
Me-T(w) Mg =i[ Q ] ’ 7t exp (-imy)
Ne-T(w) Ng 2/ T,
] o} oo

(3.63)

A somewhat more transparent way to rewrite the dispersion relation

is as follows:
G(w) = T(w)

MeMo=sin(H70) (MeNg*MoNE)Q+NgNGQ? |+ 1Qcos(pm) (MgNg-MoNg)

- 2 . 72 =0
Mg = 2MoNg sin (p71) Q + Ny~ Q

(3.64)

with Q(w) = (Q/2y/1+m, )3 7t/T(p+1/2) T(p+3/2) cos (pm). In Eq.

(3.64), the resonant effect of the energetic particles is isolated in

the first term on the right-hand side. The second term represents the
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ideal MHD contribution, coming through the Mercier coefficients

Me,and Ng o . @s well as the outgoing flux inertial contribution,

incorporated in the Q(w) quantity.

\

At zero frequency, since T(0) = 0, we find that the dispersion
relation (3.64) reduces to G(0) = -Me/moi 0. This Eeproduces the
marginal stability condition, My & 0, for nonresonant ballooning modes
~ studied in Chap. I, since M, depends on the values of the equilibrium

parameters, including that for the hot particle pressure o4, -

At finite frequencies, we note that T(w) peaks at a somewhat

large value near resonance, w/ W, = 1, whereas the second term on
the right-hand side of Eq. (3.64) remains O(1) in magnitude.
Therefore, since T(w) is linearly proportional to og, , we suspect that

only small values of o, need to be considered for the resonant branch,

such that p, mp <<1: the validity of this aproximation may be checked

g posterior/; In this limit the dispersion relation simplifies to

[me Mo + O N, NO]- iQ [me No - Mo Ne]

Glw) = T(w) - =0,
Moo + ©F No2

(3.65)
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The stability characteristics of the simplified dispersion
relation, Eq. (3.65), can be analyzed by means of Nyquist diagrams.
Thus, we plot the real and imaginary parts of G(w) against each

other, for frequencies w on a contour that runs along the real w_axis,

indented above the point w = W,  , and encircles the upper half w
plane. Since G(w‘) has a pole in the upper half w-plane at
w/w,=iMy/ | Ny |, if @ Nyquist plot of Re G(w) versus Im G(w) for real

frequencies encircles the origin (G = 0) then there is no instability.5?
In Fig. 3.9, we show a typical Nyquist diagram, for the parameters
.= 0.05, . =0.05 $=05 ¢q=15 and g = /4. Since the
Nyquist plot in Fig. 3.9 does encircle the origin, the "balloon-bone”

mode is stable for these parameters. By varying the parameters o

and o, , We obtain the stable operating regime for these modes.

Figure 3.10 shows the stability boundaries for both the

zero-frequency nonresonant branch (w/@, = 0) and the finite-
frequency resonant branch (w/ @, = 1), plotted as functions of o

and og, , With 6=11/4, $=0.5, ¢=1.5 and @, /w,=0.2 . The nonresonant

stability boundary shown here is merely a cross-plot of the

corresponding boundary in a display like that of Fig. 2.4, except that

the implicit o variation is made explicit in Fig. 3.10, which takes




Im G(W)
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Fig. 3.9 Imaginary part of G(W), versus Real
part of G(W), with € = 0.3, &= = 0.05,

q =15, S = 0.5, and 04=1/4
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S =05, q -_—]_5’ oo: 1‘[/4. ek: 0 O)dh/l.L)A = 0.2
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Fig. 3.10 Harginal stability boundaries in oce and o,

parameter space for the MHD and trapped-
particle —induced ballooning mode branches
for Wy, /wa= 0.2, €=3, S = 0.5, and 6= %/4
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shear to be fixed. Without any energetic particles (.= 0), Fig. 3.10

shows first and second stability regions in «. , separated by an-

unstable zone in which Me< 0. If one were to ignore their resonant :

interaction, then it would appear that the introduction of energetic
particles with sufficient pressure (o 5 1.9) could allow the system
to gain access to the high o second stability regime while avoiding

the zero-frequency unstable zone. However, when the resonant

"balloon bone” branch is taken into consideration, one-finds a rather

low threshold in o that therefore reduces the stable region— /e,

stable with respect to both branches of the ballooning mode— to the

rather small area in the lower left-hand corner of Fig. 3.10.

Figure 3.11 shows a similar plot of the stability boundaries,
but for the larger value of @y /w,=0.6 . The size of the stable region
increases with the increased value of w,/w, , since this ratio is

proportional to the energy of hot particles. For suf f iciently energetic

particles, the mode becomes predominantly nonresonant as the balloon

bone stability boundary moves out to large oq . However, this limit

requires values for @, /w, that are larger than those allowed by the

initial assumptions of our theoretical description. Consequently, we




126

5§ =05 q=1.5 6= /4, 6,0 wdh,‘”A = 0.6
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Fig. 3.11 The same as Fig. 3.10, except @yp/wp = 0.6
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can only detect the incipient trend with increased energy. We can say
for the parameters characteristic of the PDX experiment, however

that wdh/w A<<1 and that therefore these energetic trapped particle-

induced-batlooning-instabilities-were present.— — ———— o

3.6 APPROXIMATE STABILITY CONDITIONS

_Here we will analytically derive some approximate stability

conditions for the resonant mode, by visually inspecting the Nyquist

diagrams.

The Nyquist plot of the second term in the dispersion relation,

viz, G(w)-T(w), is roughly an ellipse that encircles the origin if
M>0. This explains why M, > 0 is the stability condition for the
zero-frequency nonresonant branch. when the resonant term T(w) is

included, the roughly elliptical shape is distorted into a shape like

that shown in Fig. 3.9. The largest distortion occurs near the
resonant frequency w =~ Wy, . Indeed, the Nyquist plot of Re G versus
Im G can be made to no longer encircle the origin if Re T is

sufficiently positive and Im T is sufficiently negative. We can

quantify these two conditions for instability as follows:
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M
Re 6 [0 2Tgn | 2Re T [0 :wam]—f— >0 (3.66)
0
and
Im G [w .‘:6dm] 2ImT [w :wdm]
Bdm
[ " ] [”eNo - MoNe]
—_— <0 (3.67)

Here, we have neglected the o° terms in G(w) since Wer/ W <<,

Referring to Egs. (3.30)-(3.32), we find

Re T (-1 =‘“hm[ﬁ n [T%]_QH[M] ]

(de l- 8

2o [2- 05 % (3.68)

W

Im T[ = I]= - T/ 2(1-C056g) £ - MO o, (3.69)

©gm

, : 2
where the approximate forms are valid for §=g(1-c0s6)2 €6y /2<<1.




A further simplication of Eqs. (3.66) and (3.67) can be
- effected by noting a Wronskian-type relationship among the Mercier

coefficients. Begining with the o<<1 ballooning equations for the
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~—even and odd parity modes, T

ad, o
de

= (1en) + o D(8) 0,020 , (3.70)

we cross-multiply and subtrac to thain the relationship

”[1+ hz(e)] [‘be [%]%ﬁ; [%‘%e_] ] =const. ine  (3.71)

By virtue of our chosen normalizations for ¢, and &y at 6 = 0, at

which point h(e) £ S6 - . Sine » 0, we find the constant on the

right-hand side of Eq. (3.71) to be equal to unity. At large 6>>1, we

0 ¥~ 00 ¥ ~ 2 [Me N~ Mo N | [ + 5 | /67 (3.72)
But because h(8) ~ S2 62, we obtain the relationship

1 |
[+2p)52 = 52

4

(3.73)

Mg No~ Mo Ne = = ¢

valid for the o, <<1 limit being considered here.
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Finally, we will focus our attention near ideal marginal

stability, |My| << 1, and assume that the values of M, and N, are

little changed from their values at o, = 0. The latter may be obtained

from the o, = 0 odd parity solution of Eq. (3.70):

-1
bo= o tan | (50) =T - (374

hence M, & 7/2S and Ny & -1/S2 . For |Mg|<<1 , the Wronskian

relationship (3.73) yields Ny & 2/7S .

Now we are ready to re-write the approximate stability
conditions (3.66) and (3.67).

If Mg< 0, the zero frequency nonresonant (w/w,, ~0) branch

is unstable .

If Mg > 0, the finite-frequency resonant (w/wdh': 1) branch

is unstable if both of the following conditions are satisfied:

> 2 5 gng) (3.75)
X 'J'feo n - .
and _
4 Wym_-
0> G [ » ] (3.76)
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For € = 0.3 and the other parameters the same as in Fig. 3.12, we

obtain from EqQ. (3.75) with «_= 0 the threshold value of o, & 0.08,

whereas near the o value for ideal marginal stability, Eq. (3.76) -

~ gives a threshold of o, & 0.03 ; these estimated values check with

the numerical results in Fig. 3.12.

For small values of wdh/wA«l, Eq. (3.75) is the more
~ stringent stability chrdition,,aw_ag from ideal marginal stability. We
note that Weiland and Chen?? obtained only the equivalent of Eq.

(3.76) because they used a singular resonant response (Ze. , § = 0)

and considered the marginal stability situation (M, = 0).

3.7 CONCLUSIONS

In this chapter, we have elaborated a semi-analytical theory
for the “balioon-bone” modes, Ze, unstable ballooning modes excited
by wave-particle resonance at the curvature drift frequency of
trapped energetic particles. In our analysis for finite values of the
pressure and the shear, we are able to obtain the Mercier expohent

analytically and the Mercier coefficients numerically. In particular,

the plot of the coefficient M, contains all the stability information
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for the enhanced stability of nonresonant ballooning modes that is due
to hot particles: namely, that for ’large enough hot particle pressure

«, . it is possible to have stability (Mg > 0) for all core plasma

pressures o,

. By using the asymptotic Mercier information, we
performed a numerical Nyquist analysis of the stability of resonant
modes, which predicts fairly restrictive ballooning instability . We
have also presented approximate analytical stability conditions for

this mode. This beam ion-induced ballooning instability may explain

the high-frequency fishbone precursor oscillations that were observed

in the PDX experiment.




CHAPTER IV

RESISTIVE BALLOONING STABILITY WITH HIGHLY

""" - ENERGETIC PARTICLES ~

4.1 INTRODUCTION

In Chapter IlI, we found that highly energetic particles-such

as- alpha-particles, neutral-beam injected-ions, -or- cyclotron-wave- - -

heated electrons or ions-could nonresonantly enhance the stability of
ideal ballooning modes. In Chapter Il it was found that moderately
energetic particles can lead to wave-particle resonant destabilization
of ideal ballooning modes. In this chapter, we now explore the
possibility of residual resistive ballooning instabilities. Recently, the
behavior of the resistive interchange-ballooning modes in the
presence of moderately energetic, reéonant particles was examined by
Biglari and Chen.3 ) with the restriction of rather low beta for the
hot species. Here, we will investigate the effect of highly energetic,
/.e., non-resonant, finite beta particles on the stability of resistive

ballooning modes.

The plan for our study of resistive ballooning stability in
the presence of energetic particles will be as follows. First, we will
133




“derive a differential equation for the nonoscillating part of the
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derive the coupled system of equations appropriate for the resistive
modes. As in Chapter 111, in the large-6 resistive region we employ

a double-scale analysis for an integro-differential equation and

eigenmode. Then, the solution in the small-6 ideal MHD region is
matched asymptotically with its exactly known Mercier-type form
to the solution for the resistive layer, with hot particles in both
regions. In the limit of finite beta and finite shear, but deeply
trapped hot particles, we derive a dispersion relation for the complex

frequency of the resistive ballooning modes, as a function of the

usual A”quantity that controls resistive stability. The limits of small

and large A’ reproduce certain scalings with fractional powers of the |
resistivity that may be identified with well-known modes. In general,
the A’ quantity is obtained by numerically solving the ideal ballooning
equation and extracting the ratio of the non-oscillatory “small” and
“large” components. Analytic expressions for A’ have also been
derived in various low beta cases. Finally, the above treatment will
be carried out for the case in which the effects of parallel
compressibility and cross-field transport are included.
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4.2 DERIVATION OF RESISTIVE BALLOONING MODE EQUATIONS

. The traditional derivation of the resistive ballooning mode
- ——equations - is -based -on -thecollisional-fluid—equations-of- motion, — — ———
written in a form appropriate for a single-fluid, weakly resistive,
charge-neutral plasma of electrons and ions. The presence of
energetic particles introduces another plasma component, one which
cannot adequately be described by f luid equations, due to their very
high diamagnetic energy. A kinetic equation must be used for the. .

dynamics of the energetic component.

For the behavior of the fluid-like core plasma, we can still
write down the following resistive hydromagnetic equations for mass

conservation,

3

=7 PtV (pcUc) = 0 (4.1)

for momentum,

pe- U= (Jx B) + O E - VP, (4.2)
for energy (i.e., the adiabatic equation of state),

Edt_ [Pc oo ] = 0 | | (4.3)
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and for the resistiye Ohm's law,

B+t WU xB)=nd; . (4.4)

Here, p. = M, N; is the mass density (approximately given by
that of the core plasma ions), U, is ine single-Tluid center of mass
velocity, J. is the sum of the core plasma electron and ion currents,
- P, likewise is the.core plasma pressure (assumed to be isotropic), the

convective time derivative is d/dt =9/0t + UV, T'y=5/3 is the
adiabatic index for the ratio of specific heats of an isotropic fluid,

andm =1,b b+ n (- b b)is the dyadic resistivity, withb=B/Ba
unit vector in the direction of the magnetic field B, Q_ is the charge

density, E is the electric field, and I is the unit dyadic.

The behavior of the non-fluid ene'rgetic plasma component
will be described by the collisionless Viasov equation. The
appropriate form of the kinetic ‘equation for low-frequency linear
perturbations will be quoted shortly. For our purposes at present, we
note that Eqs. (4.1) and (4.2) are exact moments of the kinetic
equation, and therefore we can write down similar equations that

include the hot particle species:
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0
—p+V (pU)=0 4.5
5 P pU) (4.5)
d . .1,/
VPEU-?(JxB)'VPC‘V' P, (4.6)

Here, p = p. *+ p, is the total mass density, U and J are the

total fluid velocity and current, and Pn =P, bb + P, (I- bb) is the

anisotropic pressure of the hot species. Finally, we add the Maxwell

~ equations
vE+L 2 g=o (4.7)
- ¢ ot ‘
Vx B = 4—;1 J, (4.8)

where neglect of the displacement current is valid in the limit of
low frequency. Overall charge neutrality implies, furthermore, that
vJ=0.

Briefly consider the steady-state equilibrium equations. For
simplicity, we assume there is no equilibrium electrostatic potential;

hence, E= 0 and J, = 0 in equilibrium. Neglecting the small resistive

equilibrium flow, we obtain from Egs. (4.6) and (4.8) the equations

for perpendicular pressure balance,
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é_vLB+[_;_g§]vlpL=[-g—]x , (4.9)

and parallel pressure balance,

DVP,= 2 (P=P,)DVB . (4.10)

Here, o = I+ 47 (P,- P)) /B? and v =1+ 47 [(1/B?) (3P,/8B)] are the
firehose and mirror mode anisotropy coefficients, x = (b'V) b is the
magnetic field line curvature, and ¥ = V - (VB) 3/3B, with P, the

components of the total pressure P =1P_+ P, .

We now consider how to express the equations that describe
a linear perturbation of the system. We shall assume that perturbed
quantities, to be designated with a tilde, vary in time as exp(¥t),
with ¥ related to the complex frequency w of the mode by ¥= - iw.

Equations (4.1) - (4.4) for the core plasma yield

£, /
J'C:_ﬂ-.— , (4.11)
b’pCEN% %(ch§)+ocﬁ-vgc]x5
J,.= (4.12)
iC X 82
#pen, 7 |
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and

_ -b(BVF+BvP)
Ue = ¥p, B

Lexeen, ['? (U B) + 0 E - vﬁch

B2
[?)'Pcﬂl+??—] (4.13)
Due to the presence of the hot species, we note that Q. =-¢N, =0,
where e, is the (signed) charge of the hot particles and N, is their

density. However, we wish to consider the energetic component to be

very hot, but low in density, such that their pressure is comparable

to the core plasma pressure. Therefore, we will take N, /N, <<1 and

let Q.- 0 and thus neglect electrostatic (/e, charge separation-

related) effects in favor of diamagnetic (i.e., pressure-related)

effects due to the hot particles.

~Also note that in the Ohm’s law, we have neglected collisions
between the hot particles and the core ions and electrons, since

presumably this contribution would be small, on the order of

N,/N;<<1. Also, most of the parallel current is carried by circulating
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electrons, and hence J,_ 2 J, and m refers to Spitzer resistivity.

Moreover, Jl

dominated by the ExB contribution. The energetic particles, however,
have a negligible ExB response, due to their large gradient-B drift

frequency, which we take to be greater than the fluctuation frequency

in this nonresonant theory. Thus, we may neglect Un and, again in the

limit N,/N."=»- 0, obtain the perturbed perpendicular current of the

energetic component from perturbed pressure balance as

! |
I 25 0 xVE) - B B) (4.14)

Having solved for the perturbed currents and fluid velocity,
we Now _proceed to derived a set of coupled equations for the
remaining field quantities E, B, and P. Equivalently, if we introduced
the electrostatic potential & and the vector potential A, where

E= -V - ¥A/c and B = Vx A, we need to develop equations relating
§.A,.A B, andB. This will be done in the limit of large toroidal

mode numbers, n >>1, such that the variation of a perturbed quantity

across a field line is much larger than the variation along the line.

Following Chance ef &/, 20 we therefore adopt the following

orderings:

b =0 since the hot particles are assumed to be trapped.'
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V'l-» n>>1,

E,~A~3~ 1/n<<i

where V“ means a derivative of a perturbed quantity.

-We now derive the field equations.

(1) Vorticity equation: Quasi-charge neutrality implies
Jy
vI=Bv[3- |V T=0 (4.16)

Since 3,~0(n), we should look for terms of the same order in

V-J, Thus, we obtain

89 [22)- [ )07 £ () v, 08By - B, 0

B2

(4.17)

(2) Quasi-static force balance equation: If we take the cross product
of EQ. (4.6), linearly perturbed, with B and note that J | & -(4m/c)
bxV, B, ~ 0(n), whereas U = O_~ 0(1) from Eq. (4.13), then we

obtain
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BxV @B -B+4nP)=0. (4.18)

Alfven mode in the low-frequency regime of interest.
(3) Ampere’s law: The parallel component of Eq. (4.8) yields

-HeY:=[ 2] [BvEeLB K]V @R -

(4) Core Plasma Pressure Evolution Equation: Eqs. (4.1) and (4.3)

imply
¥p .+ 0, vp +T P V0O =0 (4.20)

The O(n) part of V-0, is zero, which indicates incompressibility at

this order. The next order terms of EqQ. (4.20) give

B -V [?Fji_i? ERAYR N ] . [“g—‘gz [RA

B2 + 47P_ T
B2 P, T,

-(E) 09,5 - ] [zﬁc- < (bevr, )-vﬁJ

= [af—’fm- 5 ©OxUPL) U, + £ (P Py ) (0) 9, 6] =0

(4.21)




(S5) Energetic species pressure equation: The perturbed tensor

pressure for the hot species can be written as
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1 3B B

PB2 P, [—P'—-—Fil ] 0B, B,

Bz | ar [thfbmps(l-bb) ]f‘n

(4.22)

The perturbed pressure consists of an intrinsic contribution (the first

term) due to the perturbed particle distribution function ho , as well

as two geometrical contributions associated with perturbing the

magnitude (second term) and the direction (third term) of the

magnetic field.

The perturbed distribution function (without finite Larmor

radius effects) is

.o B, 9 .
,fnzenq’[g'g'n"]’}l'gl [‘a‘iﬂ] * O

where g, satisfies

oF
[V, b'V- i(w-wdh)]§h= i(w-wap, ) d [eh [5 -

Ed

(4.23)

V'CK| ]" .UglJ
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In writing the drift kinetic equation, Eqs. (4.23) and (4.24), we have
introduced the usual high-mode-number eikonal representation for the

transverse variation of perturbed quantities. In this representation

We Can express

. %5
E=b[-b-V&-——-A,}w&vs+—£il7(bxv9
c c|Vs|

i B,

| vs

A=b A, - ? (bxvs) -~ - o

B=bB,-iA (bxVS)

J=b% |Vs|®-iB(bxVs).

it will be desirable in what follows to define
K=-(5)b'VY . (4.25)

(The ideal MHD condition, E, =0, correspondsto & =9 ).

As before, we assume that the energetic  particles

are trapped and satisfy the large bounce frequency condition

V,b'V >>w, ~w. Then, we find from Eq. (4.24) to lowest order
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w-w.h] d

. F
V, bV [g,, ‘e [ m BEh ' ] =0. (4.26)

The next-order_equation then determines g, as

heee [ 3

”_‘[w-wuh] oF,, »[5'?*» [“"’“]\'Pfug.],

where as before the overbar denotes a bounce average.

Thus, we obtain for the perturbed pressure

P, = BB, [-bb(G-l)*(l-bb) ('z:-1)]

-(c-1) BB, +8,B)

~ [C—] e me]-bb [(5—¢)ehNh+B§, (o -1)

¥
w
+ f—(g—]e-VPm]
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~|ar [bbmhv§+(l-bb)ps] [i_—ﬁ_"—]
W = Wy
x[%;l][eh(a-% o [2] Ty B’,] (4.28)

At this point we drop the electrostatic terms in Eq. (4.28) by

virtue of the condition Nn/Ni <<1; we consider the nonresonant (i.e.,

highly energetic) limit w << Ty, , w., i and we recall our large

aspect-ratio tokamak equlibrium with circular flux surfaces and

radially localized pressure gradients. Because P,./P,, is of the order
of the inverse aspect ratio, we may neglect Pin and also drop the

curvature drift compared to the VB drift in Wy - Also, since the beta

values are small compared to unity, we take o, v = 1. We ignore the

combination e, (§ - ¥) e N,/N; << 1. Then Eq. (4.28) reduces to an

expression for the“perpendicular component of the pressure:

Pn=-| ) ¥ vru)+ |ors | :—Z; )

x[[_%]eh¢+p§|] (4.29)

W
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Finally, we introduce the ballooning representation for the
perturbed quantities and investigate the stability of modes localized

to a single flux surface. In this representation and with our model

equilibrium, we recall that |VS|2 > (r\q/r)2 (1+h%), BV’ > (B;/qR)x
(0/96), e'x » — (nq/rRB;) D(8), and e'V = (nq/rB;) (8/8r) . We will

again use the square-top profile in poloidal angle & for the hot
particle equilibrium pressure. Also, we will be investigating only

modes whose integrated local shear, h(6), vanishes at & = 0. .

It is convenient to define the normalized pressure

perturbations

¥rB. P sref

Bz — < , P —— & (4.30)
. de' . dpmo
mcq[dr:l lncq[ dr ]

It is also convenient to approximate the bounce average integrals in
the expression for ﬁm ., Eq. (4.29), by line integrals. This
approximation (which corresponds to the Schwartz inequality lower

bound of Chap. II) does not violate the integrity of the integral

nature of the equation, and it improves its tractability. Eliminating

B’l in the integrand by means of quasi-static force balance, Eq.




l.e., 8W, s8W, . This lower bound is derived by an application of the
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perturbed fields. However, the analysis can be nontrivially simplified

by working with a lower bound, §W,, for the kinetic potential energy:

Schwartz inequality in the integral over velocity space.
Unfortunately, the use of the Schwartz inequality imposes a
maximum value on the hot particle pressure, since it requires that
the hot particles not be drift reversed. Thus, the stability condition
given by 8w+ &W, 2 0 in the non-resonant limit becomes only a
sufficient, but not necessary, condition for stability. Therefore
working with a lower bound for the kinetic potential, Rosenbluth
el a/. obtained a pessimistic estimate of stability. By solving the
integro-differential equation for the baliooning mode perturbation in
the ballooning space 37 ,they found that direct access to the high-beta
second stable regime for ballooning modes can be provided by the
presence of the energetic particles.

In | their  treatment, however, an unexpectedly
pessimistic result for the first stability boundary is obtained at
large values of the global shear. This result was a consequence of
using a pessimistic estimate of the total energy, which apparently is
not very realistic at moderately large values of S . In the present

work, we adopt their same assumptions and equilibrium model, but
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[pm— HE- | EPAW ] Hoe) 6]

Again, H = H(6g- 18 - 21t | ), and Egs. (4.31) to (4.34) above are

written for @ in the interval (22 + 1) . We have defined Wg=Cs/qR

- and also

2

Oy, 1= [Drﬂ] [_C%] | (4.35)

in the remainder of this study we will assume isotropic resistivity,

v, ,=Vv,.Note that v = (nq)z’/'c:r , Where v, = ri’/Dr is the resistive

diffusion time and D. = (c?n/4m) is the resistive diffusion
coefficient. Equations (4.31) to (4.34) will constitute the basic

equations for our study of the effects of highly energetic particles on

resistive ballooning stability.

Note that there are several space scales associated with
Eqs. (4.31) - (4.34). Since h(e) is given by 1+ $2 62 apart from

oscillatory terms, we see that in the ideal region, & ~ 1, resistivity
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and inertia may be neglected. They become significant at larger
distances when 6 ~ 6, = (3/v,S2)/2>>1 and 6 ~ 6, = ©,/¥S >>1.

The parallel compreésibilitg and cross-field transport enter,

respectively, when 6 ~ 65 = w/¥ >>1 and 6 ~ 6, = (¥/v, 7572)1/2 X
(w,/w)>> 6, >>1. A self-consistent ordering - for the growth rate
¥ i§ obtained when we order 6. ~ 6, and 6, ~ 6, : this yields the basic
resistive ballooning scaling of ¥~n1/3 . In the following sections, we
‘will solve Eqs. (4.31)-(4.34) in each of the three regfi»én's' e%l. 0 ~ ér.

and 6 ~ 6, and match the solution to obtain the dispersion relation.

4.3 SOLUTION IN THE IDEAL REGION

In this section we solve the eigenmode equations in the
ideal region, S6 ~ 1. In this region, all resistive and inertial effects
may be ignored, and the equations reduce to the ideal ballooning mode

equation, which we solve numerically to obtain values for the A’
quantity.

Analytically, it is very difficult to solve the ideal equation

except for low beta. Thus, we will obtain analytical expressions for
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A’ in the low shear, low beta limit (o<c~ o~ S << 1) and in the finite

shear, low beta (o ~o, <<1, S~1) limit. Also, we obtain A’ analytically

another when o = 0 and e <<,

4.3.a NUMERICAL SOLUTION FOR &°

Numerically, A" was obtained by comparing the computed
solution with the known asymptotic expression given in Eq. (3.44):

+ 4+ vov o p

6 62

f1(§) fz(g) ﬂ(g)
q)ideal ~MoH |1+ ]"’ Ne-l- [1‘* P e }

where the Mercier exponent p has been previously defined in Egs.
(3.41) and (The function T is the same as f, except that p is

replaced by -1-4.)

The functions fy(8) and fx(8) can be determined
analytically by solving the large-6 version of the ballooning mode

equation in successive powers of 2 !<<1, Knowledge of fy and f,

becomes useful when o, increases so as to make u finite.

Specifically, f, becomes significant when = (m-1)/2, and it must

in"two special-limiting cases; one when e = 0 but o, is finite;and—
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be subtracted away before the coefficient, N, of the *small” term can
be extracted. By integrating the equation for ¢ with the appropriate

choice of parity at the origin and then comparing its values at

successive points, e.g., at & = 2mQ and 2m(R+1), for 4>>1, we

numerically obtain M and N. In Figs. (4.1) and (4.2), we present the
results for A" = N/M for o= 0, ,=1.0 and o, = 1.5, with even and

odd parity, respectively.
4.2.b ANALYTICAL SOLUTIONS FOR A

To be able to solve the ideal ballooning mode equation
analytically almost always requires that one work in the low beta
limit because of the mix of oscillatory and secular ©-dependence in
the coefficients of the differential equation. By considering low
beta, it is possible to solve the differential equation order by order.
In this way we have been able to obtain A" analytically in the

following cases.

(i) Low beta and low shear: X o<6~ S <<,

when the shear is small we can work in the 2 = S6 ~ 1 realm,

but still expand the hot particle integral term as in Eq. (3.38) for
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& >1. Introducing the secular and periodic space scales Z and 6 ,

respectively, where both are formally of O(1), and expanding the

solution ¢ in powers of o = € <<1, as

d=0p(2)+c0,6,2)+e20,@,2)+ -+ . (436)
we obtain a differential equation for the nonoscillatory part ¢4 (2)

= (142 S 00~ g 9= 0 (4.57)

with fg = {%J [90 [H;—z ] - 2Ini26g) (226 ) ]

The first and third terms in the square bracket on the left-hand side
represent the curvature averaged over the trapped particle region; the
second term in the square bracket represents the magnetic
compression due to the hot particles, which in this low beta limit
reduces to the so-called “ring” rigid response. Note that jg is, in
fact, the low beta/low shear limit of the Mercier exponent u given in
Eq. (3.43).




156

Equation (4.37) has an exact solution:

9 (2)= A Py () +BQ, M | (438)

where t = iZ and where P}10 and Quo are Legendre functions of first

order. By using the small argument forms for the Legendre functions,
(40 we can determine the coefficient B by the choice of parity at the

origin and the coefficient A by the normalization at the origin: viz., .
$,(0) =1, @e'(o) =0, ¢,= 0, and @0' (0) =1 where ¢’ = d®/de = Sdd/dZ.

Then we employ the large argument forms for the Legendre functions
and extract the coefficients of the “large” and “small” terms. This
process yields

. 2
. T o (
o (32 ) [ on).
D = , (439
22Ho cos (7)) r Ho + -%— [F ( :;_— + Ho)
T . 12
o (221 [130]
A = - - > (4.40)
22Ho cos (Ttpg) | o * -%— [I‘ ( po+ —; )

respectively, for the even and odd parity modes.
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InFigs. 4.3 and 4.4 we have plotted these expressions for A

and A" .

o The Legendre function solution for Z~1 (7,6 >1 since 5<<1)
has also been checked against the solution for the non-oscillatory

part of the eigenmode for 6~1 (/ e, 2<<1). To obtain the solution

in this latter region, we first expand the ballooning equation in

powers of . and then solve the equation corresponding to each order

C
” in indi\?iirdﬁa'l trépped”é‘nd u.ritﬂrrappéd iniérvélé. Wwe m-étch the valués for
¢ and ¢ between successive intervals to satisfy continuity. This
matching yields a difference equation for the secular (/e.
nonoscillatory) part of the eigenmode, which in the 2" untrapped

region, where & >>1, is given by

N 3 2, [én_] 2
¢geven 1"‘[2 ](27‘(9.5) | + ? 2¢ . (4.41)

non-oscillatory

This result is identical to what one obtains from the Legendre
function solution of Eq. (4.38) in the limit 2<<1 . Hence, the Legendre
function solution is valid even for small 2, the reason being that the
hot particle integral term does not contribute to the O(1) equation for

¢ (2), which contains the information about parity at 6 = 0.
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(ii) Low beta, but finite shear: X~ o <1, S~ o(1).

We were motjyﬁétﬁngppis}udg the finite shear limit by anaﬁlﬁqgg

with the work of Drake and Antonsen (without hot particles),®® which
showed that the low shear results for A’ derived by Strauss®® could

be generalized to the S ~ O(1) case.

In this limit, we again expand the solution ¢ and the

ballooning equation in powers of the small parameter o« <<1, but we

consider S to be finite. We solve the ballooning equation up to second

order in o and use the low beta relationship %

N 1, dé
AN =—=-— &im [l+ 5262] —2 ] (4.42)
M 5%y g5 [ 40 | non-oscillatory,

which is valid for low beta - /e, when the Mercier exponent is small,

H <<1. We obtain

. 32 . -
Deven = [ §§ ] n(S+2) [1 - ‘%2— g s ] (4.43)
and

Aogq = - 572 | | (4.44)
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However, the results for A’ given in Eq. (4.43) do not depend on <y
and are, in fact, the same as the Drake-Antonsen results without

hot particles. 5% The reason for this result is that (ex, o,)/52 ~ O(1)

is required to obtain a contribution from hot particles that is of the

same order as the core plasma effects, as in the previous case.

treated in part (i).

(iii) Special zero beta cases:
(a)o<c=0,o<620.
When o = 0, the even parity solution of the ideal ballooning

mode equation is trivially seen to be

¢ M. (4.45)

even ~

Hence the corresponding Mercier coefficients are My = 1 and Ny = 0

The coefficient Ny can be easily found by using Eq. (3.44) for &, .

we find
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where Ag = singy/(singy + Stg) and ty = singy — 6g coseg . In Fig. 4.5
we show the various Mercier coefficients, obtained numerically and

plotted as functions of Xy, for the case when o = 0. These agree very

“well with the analytic solutions in Egs. (4.45) and (4.46). Note that
the o dependence is very weak Tor the odd modes and absent for the

even modes.

(b) o, = 0, o <<I,

As before, we expand the solution &g and the ballooning
equation in powers of € = o <<I. Also, we employ the optimal

ordering, S ~ O(g2) which is traditional in the absence of any hot

particles . Proceeding to second order in €, we obtain a solubility
condition that yields the -equation for the average part of the

eigenfunction, ¢4 (2) :

a oy 4 . _

ezt L 0g s il w0=0 (4.47)
with 2o 2 X 2

_ 2% (.3 % .

S [1 S ] 0 (1) (4.48)

In the A<<1 limit we can solve Eq. (4.47) perturbatively for

the even parity solution:
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boz 1+ [ 2] [(1+22 7' 1- (tan” 2)2] . (4.49)

Considering the large Z limit for of this solution, we find

, . T
Ayyen E 4 (4.50)

The odd parity solution is &g= (1/S) tan™! 2, where the O(M\)
correction is not necessary in order to obtain

AP % | (4.51)

For finite A, we can find the solution by changing the
independent variable to & = tan™! 2 . Then EqQ. (4.47) transforms to

the Mathieu equation

[—3—2—2-21 [1+cos 22 ) ]% (£) =0 (4.52)

Let us consider the even parity solution at marginal stability. The
eigensolution that is even about & = 2 = 0 and that satisfies the
condition ¢, (£ = 1/2) = 0, which assures that ¢4(2) » 0 for 2= «

(marginally stable), is
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o
i S
0 () = (4.53)
1 A
07

where ce; is the first-order even periodic Mathieu function.5? Using

the power series for the characteristic value of this eigenmode,

2 .
Zleldl il bela e

we obtain A = 1.32 at marginal stability. Also, we can examine the
asymptotically large 2 behavior of the solution by putting £=11/2-1/2

and expanding for 2~ '<<1:

, [ A
7T

oy = -2 (4.55)
ce; | 0, - —Z}\— | |

Eq. (4.55) thus provides the value of Ny at marginal stability (where
Me = 0): using the power series to evaluate the periodic functions, we

find Ny = 0.85 .

We can compare this result with the plot of Ne + for o=0,

shown in Fig. 3.6 . For S=0.5, EqQ. (4.48) shows that our calculated
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value of A = 1.32 gives two marginal values, «= 0.62 and x=1.01 .
In Fig. 3.6, the zero¥crossings of Mg (first and second stability

points) occur at .= 0.4 and 1.7, for which the corresponding values

of Ng=1.00 and 0.14 were computed by solving the ballooning mode

equation numerically. The analytical solution is fairly good at the
first stability threshold, but not so good at second stability, which is

understandable in view of the small beta assumption.

~ Marginal stability can also be studied variationally with

a trial solution, for example, &g (2) = a/,/a%ZZ . We find two

stationary points for A, the eigenvalue, as a function of a. One, at

a = 1.00, yields A=1.33 and Ng=1.00; however, although this point is

stationary, it is not a minimum for A(a). The other, at a = 0.86, is a

true minimizing value and gives A=1.32 and N,=0.86, thus reproducing

the Mathieu function results .



4.4 SOLUTION IN THE RESISTIVE REGION

Having obtained numerical and analytical solutions in the
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ideal region (6-~1), we now proceed to examine Eqs. (4.31)-(4.34) in

the large-6 resistive region.

We can derive the asymptotic form of these equations by

decomposing the © dependence of the field quantities as follows:
&(e) = do (2) + &, (51 2) + ¢, @2)+---- (4.56)

and likewise for ¥, B, and P, : here & = 6 modulo 271 represents

the rapid periodic variation and 2=56 the slow, averaged behavior. As

before in Chap. Ill, we expand the equation in powers of Z_‘<<l,
where &, ~ O(Z-'). etc. , and solve order by order. As for the

resistive and inertia terms, we adopt the following maximal

orderings:
/Y~ (B, )~ urwi /vsz ~0(2?)

(/%P ~ 2 (4.57)
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The lowest order solutions are easily obtained. Note that the
lowest order of Eqs. (4.31) and (4.32) is ostensibly O(1), whereas the
lowest order of Egs. (4.33) and (4.34) is 0(22); however, we treat

them all ;ifnultaneouslg. One finds trivially thatW% . \Y(; , and P, are

functions only of Z. Expanding the integral term on the right-hand
side of Eq. (4.31) for ©>>1, one finds that

Ppo (2) = H [eo-_|é“[ ] [wo(z)f@%_] : ~(4.58)

Here,

M = g (@) + 2 204 28(2) + (o 80/ [Peo @ - ¥0(2) |

(4.59)
o 6 )

with1=]d6 D) , J=|dos8sind , B(2) =] d8sind ¥,(6,2),

-60 _ "eo _90

and A =1 - (o 69/92).

The next order equations are slightly more complicated. As

becomes clear from the expression (4.58) for P, , they involve an

integro-diferential equation in & for ¥,(8,2), which can be solved by

the method of solution for a Fredholm equation with a separable

kernel, ¥
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The equations for the next, or “second”, order are then
averaged over the periodic & variation to give the so-called distilled

equations for the average field quantities ¢4(2), etc. The algebra is
somewhat tedious although straightforward, and so we do not
reproduce it here (see appendix B).

Fmallg we note that (w /wA) = 4T T, PC/B2 <<1 by our

assumptlon of low beta and that P /RP, <<l bg virtue of our locallzed

gradient equilibrium model. Dropping these terms in the equation for
the core plasma pressure, we obtain the following system:

2 2
U W Sw
[1 =] 2 ]Pco= | - | & o ¥or do (460)

Bw,2

d_ (5, 9¥p 5 1’ 2
7 2@ ;) omy @

@z dz Sw, J C1emy)
2J d
-31 on [ PCO* 2 SIneo dZ (pco - q’o)jl = 0 (46‘)

U,
[ [)2] 2 -
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InEQ. (4.61). m,, is the same quantity as was previously defined in Eq.
(3.57), and 8, 0h= u(p+1) = D, where jt is the Mercier exponent for the

ideal ballooning mode and the quantity D, is defined in Eq. (3.42).

Looking at Egs. (4.60) - (4.62), we see that the resistive

region can be divided into two subregions: one a region of

intermediate resistivity where (v, 22/%) ~ O(1), the other being
the so-called deeply resistive region at still larger values of Z such
 that (0, 22/%) ~ (,/w,)">>1. We shall examine each of these regions

in turn.
(i) Intermediate Resistivity Region:
" Following Drake and Antonsen,>* introduce the quantities
4
?5r3= v, 5? W /wA2
_ 2
Bi=(ws/wy)

2 2 2
2y = Fwp /v, W

as well as the dimensionless variables W = 2/2, and ¥=¥/%_~0(1).
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Then the intermediate resistivity region corresponds to w2 ~ B, <<1.

Parallel resistivity effects [in Eq. (4.63)] are important here, whereas
sonic compressibility [the first term on the right hand side of Eq.

(4.60) and cross-field transport [the second term on the left hand

side of Eq. (4.60)] do not contribute until w2~1. Therefore, in the

intermediate resistivity region (w2~ B,), the resistive equations

reduce to
02'
w2 Poo ™ ¥0) =0 (4.63)
< [w? %3’—/11] =0 (4.64)
w2 1 d¥, _ ddg |
[1 s ]aw - b (4.65)

which can be easily solved to give

¢y (V) =2y - ay [Y - ]7-] (4.66)

Vo (Y) = a3 + ay/Y (4.67)

PCO (Y) = a4* a5 Y + az/Y (468)
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where Y2 = W2/8, ~ 0(1). Note that for Y<<1, /e, approaching the

ideal region, we recover &y = Yo = P, as expected.

Also note that the dominant behavior of &, at small Y

matches to the large-6 asymptotic form-for ¢ in the ideal region as

long as the Mercier exponent p<<1, which is guaranteed in the present
analysis by our taking ﬁh ~ O(1). This latter ordering means that the
Mercier condition for interchange stability in the presence of
energetic particles is well satisfied, |B; D,|<<1/4 and insures that
the ideal stability properties do not dominate the behavior of the
resistive modes. If we keep the 0(,{3t ) terms in this intermediate

resistivity region as small corrections, we can solve perturbatively

to obtain ¢q up to next order as

<:)0=[a,-a2 [Y——J(—] ]+,rst B, [a, [nnw% Y2]

. LIV IRV i, _QDI___‘_]
as[2 Y+6Y]+az[Y9.nY Y v v ]

a
pond (1+ 8, by, anY )+ =F(1- 8y By anY)

-1-y
£ aj YH + azY (469)
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where p = -1/2+/(1/74)+8,D, = B, B, . The logarithmic correction

terms, therefore, demostrate the proper matching to the asymptotic

ideal solution.

(ii) Deeply Resistive Region :

In this region, we have w2~1 and the equations become

-3 d2

(1 + w2) Peo = ¥ -d_w2pco+¢’0 (4.70)
and

@ (Ve o Poo V_ .
AL [l*ﬂn] W2 &g~ 0, Peo * O, [2smeo] [w T ]'0-,

(4.71)

Note that this region is electrostatic, since W2(d¥q/dw) = B,(ddo/dW)
implies that ¥q may be neglected ( ze., f&.-’ 0). At this point, for the

sake of tractability, we will take the energetic particles to be deeply

trapped: g <<1. Then we may drop the last term in Eq. (4.71), since
J = 25 (sin8y-6q €c0S6g) ~ 0(903), and we may neglect m, ~ 0(905) <<1,

Equations (4.70) and (4.71) are now coupled equations of the parabolic
cylinder form and their solution is

®g = a; Ulc, , x) + ag Uc_ , x) (4.72)
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and

Pcoz—[D ] [87C+U(C+.X)"’88C_U(C_,X) ]
h (4.73)

where 4c, =¥%/2 1 (3’3--40h Y2 and UG, X) =D 172 (%) is the

-c—

asymptotically evanescent Whittaker function,s.? with x2 = W2 (2%3/2),

The dispersion relation is obtained by matching from the ideal
region to the intermediate resistivity region to the deeply resistive
region. We note that our solutions have the same form as those

obtained by Drake and Antonsen®® it we substitute our quantity Dh for

the negative of their quantity D. Therefore, we may simply quote the

result for the final dispersion relation

|
2r( =) - 1/2
4 (33°45h)
A = /
3 al/4
I‘(4) ¥
. -1
-1 Coq r 1 Cen
M=r7J) TE*7.
x - (4.74)
r 3 C- 1 r 3 Cs
Nz*z7J) Tl7*'7.
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where

(4.75)

4.5 STABILITY ANAL YS]S

It "has been shown in Ref. 54 that various limits of a
dispersion relation having the form of EQ. (4.74) can be
invesiigéfé& ar{a-lfgticﬁa'llg. ‘lnu particular; forA <« l.- oné. orb'tda'ins
310, (42+ 17 /(401023 with 1= 0, 1,2, . . . ; as long s D,>0
(which holds in the case of drift nonreversal), the only acceptable
solutions are damped roots, implying stability. For A’ >>1, two
different roots can be found. One root, for which 5’ >>1, yields a

tearing mode type of scaling with resistivity for the growth rate:
¥« 135 (A9%5. The small ¥ << 1 root has the resistive ballooning

mode scaling with resistivity: ¥ o q1/3 (a0

Moreover, because of the formal similarity between the
dispersion relation obtained here and that analyzed in Ref. 54 , we
can use the numerical curve obtained in Ref.54 for the relationship

between the normalized driving energy A at marginal stability and

the quantity 5h . which represents the favorable contribution to the

curvature provided by the energetic particles; see Fig. 4.6 .
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Dy,

Fig. 4.6 A universal curve for the stability of resistive
ballooning modes below the ideal threshold. The

critical value of the driving energy, A’ , is
plotted versus ﬁh . [From Drake and Antonsen
paper, Ref. 54]
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Finally we note that in the deeply trapped limit (64<<1), we we
have from Eq. (3.42) that

[ :;o;cz ] [ ::, ] (qz_'%/z) (4.76)

Oy

Thus, the small 6y limit allows us to still consider finite values for
. and o, . Note that the denominator in Eq. (4.76) yields a singular
behavior when e =”2'q2 ; this correép'ohdswto vther co're_vpke“ssure' lim»it
discovered in earlier studies of bumpy torus stability.! We stay

below the value of . corresponding to this threshold; nevertheless as
e increases and approaches this value, ﬁh is enhanced in value and
the critical A’ for instability increases, which is favorable. Although
we cannot overlay the results of Fig. 4 of Drake-Antonsen (Fig. 4.6)

on top of our analytical or numerical plots for Ae' without specifying

values for ¥, /w, and B, = (ws/wA)z. we can state that this indicates
that compressibility effects are able to stabilize the resistive
ballooning mode in the first ideally stable region, at least for o

values not to close to the ideal threshold, where the ideal ballooning

mode dominates and Ae' is singular.
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4.6 CONCILUSIONS

We have investigated the effect of highly energetic particles

on the stabi iit'g"’ of resistive Bfavl’lrdon'iri;cj”rh'odé'sfs.' ﬂF'i"rs't.” the driving
energy parameter A obtained from the ideal solution was obtained
numerically. Then, we obtained the dispersion relation by matching
the ideal solution to the intermediate resistive region to the deeply

resistive region.

| In the ideal ballooning low-beta first stability region
(°‘c<°‘c D). the value of A", the parameter that controls the strength
of the resistive growth rate at a given value of o, , tends to
decrease somewhat as o, is increased. In the ideally unstable region
. < <o ) above the first stability threshold . | and below

the second stability threshold e

. 11+ the presence of highly energetic

particles definitely improves the stability of the ideal ballooning

mode, converting it from unstable to stable for sufficiently large

o, . In this region, A’ decreases favorably with ;.

The high-beta second ideal stability region (. > occ ;) is

more complicated. The Mercier coefficients tend to acquire large




~stability -region for- which-A’ for-both-even and odd -mode becomes
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variation with oc. in this region, especially the coefficient of the

"small” solution. Finally, there is a value of « in this second ideal

singular. This value of «_. can be analytically determined. It

(o

~corresponds to the situation of marginal stability in the Mercier

sense, for which the large and small solutions are degenerate. This.
feature has been previously pointed out by Newcomb.42 |
From the dispersion relation, we find that the hot particles

contribute an effective curvature that is favorable; this tends to
raise the A" threshold value. At the same time, they tend to reduce

the actual value of A" Thus, their compressional effects indicate the
possibility of stabilizing the resistive ballooning mode in the first
ideally stable region, at least away from the ideal stability
threshold.

Inasmuch as it neglected the resonant response of the
energetic particles in order to focus on their nonresonant effects,
this analysis is complimentary to the recent study of resistive
ballooning stability by Biglari and Cher?.4 in which only the resonant

hot particle behavior was retained, in a very low limit.




CHAPTER V

SUMMARY AND DISCUSSION

The results of the work presented here have already been
summarized at the end of Chapters Il, Il and IV. Here we will

attempt to provide an overview and then discuss some implications.

-In order-to give some perspective on how this work fits into -

the grand scheme, we refer to the rather heuristic cartoon shown in
Fig. 5.1. The abscissa in this plot is the energy of the hot species, T,.
Very energetic particles are nonresonant with the MHD ballooning

modes: w,/w >>1, where @, is their magnetic drift frequency and w

is the mode frequency. mbderatelg energetic particles do interact

with the background plasma resonantly. Low energy particles

(wg/w<<1), on the other hand, can be described by ordinary fluid or

kinetic theory and hence are not of interest here. The ordinate in this

diagram represents the resistivity 7 , or the inverse of the magnetic
Reynold’s number S, = T, /T, = w,/v, >>1 where v, = (nq/r)?
(czn/lm).‘ Depending on whether the mode frequency is larger than

comparable to, or smaller than, the resistive frequency Wwp def ined by

180
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Sy <1
A S }
wg/w>>1 I
Deeply L
isti Instabilit Stabilizing
Resistive (resistiveu (increase Acrit)
balloon bones) . [Chap. yyv] -
Resistive
wp/w<< 1~ Instability Enhanced stability
Ideal (fish balloon  (;ccass to 204 stable
bone modes) .
[Chap. 111] regime) [Chap. 11]
| | | 5 T;

(Ddh/(l)<<| wdh/m -1 “’dh/‘”” i

Nonresonant  Resonant Nonresonant
fluid Non-fluid

Fig. 5.1 Regimes for various theoretical descriptions
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we/w,= (N2 g2 52/3,)1/3 << 1, we pass from the ideal (collisionless)

regime to the resistive regime to the deeply resistive regime.

As is indicated in Fig. 5.1, the work presented in Chap. 1l
dealt with the highly energetic regime of nonresonant non-fluid-like
hot particles and their effects on ideal ballooning modes. The work of

Chap. Il extended that theory to the resonant domain. Interestingly,

one finds that in the nonresonant domain, if ideal modes are unstable,

then sufficiently large o can lead to stability. On the other hand, for

the resonant domain, when the ideal ballooning mode is stable and o,

is above a threshold, there results instability. These features can be

seen in numerically obtained plots?4:32:58 of the growth rate versus,

for example, oq, * when T, is large, the two oq limits are separated

and there is a stability window between them, whereas for smaller

T, . the two limits cross over each other and the ballooning modes
passes continuously from MHD (w/w,<<1) instability to kinetic

trapped particle-induced (w/wy, = 1) instability.

The work presented in Chap. IV described the effect of
nonresonant hot particles on resistive ballooning modes. Both the

resistive and the deeply resistive regimes were involved, because the




- the assumption of incompressibility would be valid and only the
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effective curvature contributed by the hot particles was taken to be
small on the order of the sonic compression and cross-field transport

effects. If the energetic particle effect were ordered to larger, then

resistive regime would need to be considered. We found that the

compressible resistive modes are somewhat stabilized by a
nonresonant energetic species, in that the threshold A’ value is

increased while the actual A’ value is lowered, although near the

~ideal marginal stability boundary this mechanism becomes

ineffective. We did not examine the effect of resonant hot particles
on rgsistive ballooning modes since this problem has recently been
studied by Biglari and Chen, 3 who obtained the resistive version of
the balloon bone instability.

From the stability point of view, it would clearly be desirable
to operate in the nonresonant, highly energetic particle regime. The
theoretical results of instability with resonant particles' seem to be
confirmed by the PDX observations of beam ion-excited fishbone
precursor oscillations. The prediction of enhanced stability with
nonresonant  particles, however, has not yet been tested
experimentally. Such a test would require a device that is capable of
exploring high-beta second stability. One such device is the PBX

tokamak59 at Princeton, which is using indented bean-shaped cross




~cyclotron wave heating to create a population of super-energetic
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sections to attain high beta. Another might be the proposed SRX
(*Second Regime Experiment’) tokamak  at Columbia University,

which has been designed with large aspect ratio and with electron

electrons Some combination of the hot particles and bean shaping
schemes —eg , the use of a modest indentation to stablish an
improved equilibrium that would require fewer hot particles to gain

access to second stability — is also a possibility to be looked into.

There are also technological requirements that would have to
be considered. It has been been pointed out earlier, in Chap. I, that
satisfying the nonresonance condition requires rather high energies,
typically in the few MeV range. Even when such energetic particles
can be created, there is the question of power balance. For example,
it has been estimated60 that the proposed SRX experiment would
require an imput power of approximately 400 kW in order to balance
the energy lost by hot electrons slowing down by coll'isions with
background electrons. Moreover, with super hot electrons greated by
ECH, there could also be energy lost by synchrotron radiation, as well
as very high-frequency instabilities (e.g., whistlers or modes at the

electron cyclotron frequency) on the hot electrons themselves.
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There has been other recent work related to enhanced
stability with nonresonant energetic particles. Several studies®!-62:63

have pursued the global (as opposed to single flux surface) stability

of tokamaks, as numerically computed with a two-dimensional, high
beta, finite aspect ratio, anisotropic equilibrium. Also, the power
needed to dynamically evolve a stable equilibrium into the second
stability regime, with access provided by energetic particles, has

been computed with a model ballooning transport formalism.54

However, the resonantly unstable ballooning modes that can be
excited by trapped hot particles remain a significant concern for
tokamak operation. These modes can occur even if the ideal mode is
stable; their growth rates can be comparable to MHD growth rates;
and a sizeable fraction of beam-injected hot ions can be lost as a
result of these resonant instabilities. In Fig. 5.2 we sketch the
approximate instability boundaries, which we earlier found in Sec. 3.6
to be o 5 Max [Me (25/m), (wy/w,) (4/73)]. The quantity My is an
indicator of ideal stability: for core plasma pressure less than the

ideal threshold (/e , x.< o i Mg IS POsitive and the ballooning

mode is ideally stable. However, the resonant branch can be unstable

above the threshold boundary for o, .




186

*h .
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xc > ¢ crit  %c = %c,crit xc =0

Fig. 5.2 Simple sketch of stability boundaries for resonant
and nonresonant ballooning modes.

Several ways to suppress or avoid the resonant instability can

be mentioned, some of which are suggested by Fig. 5.2. One approach
Is to raise the the value of w,/w, . which is equivalent to
increasing the energy of the hot species. Numerical studies” have
found that codh/wA 1 is required to open up a stable regime, which
could possibly lead to second stable operation. Our theory described '

in Chap. 111 is limited in its validity to w,/w,<<!. A more recent




gap mode, whose growth rate decreases as the ratio w,/w, is
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theoretical treatment®® that investigates modes with w ~ Wy, ~ W,

has found that energetic particles lead to an unstable discrete Alfven

increased. Another approach to raising the threshold for the resonant

mode is to stay well below ideal marginal stability so that M, is

positive and finite.

.~ Yet another. idea is to use a “sloshing” distribution of.
energetic particles, so calied by analogy with the ion distributions
created in mirror e><periments“8 by off-angle neutral bean injection so
as to be primarily located in regions of good curvature near the
mirror throats. In mirrors, these sloshing particles are used to
control MHD stability, since their average magnetic drift is reversed
by pressure weighting. In a tokamak with hot particles whose
pressure profile peaks toward the small-major-radius side, the
resonant mode will be damped, rather than growing. A possible
scenario that has been suggested 55on how to avoid the deleterious
effects of resonantly excited MHD instabilities involves programming
electron cyclotron heating to have its resonant heating surface be
initially located on the small-major-radius side of the torus as the
power is being turned up. Moderately energetic electrons with average

drift reversal could be created, which, although resonant, are not
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unstable. Then, at higher power, the ECH resonant surface could be
shifted to the outer side to produce the high temperature,
nonresonant, non-drift-reversed electrons desired for stabilization

purposes. A recent examination®® of sloshing energetic particles has

found, however, that drift reversal leads to other types of instability:

Finally, an almost trivial suggestion to avoid the resonant
instabilities is to use nearly parallel injection for neutral beam
heating. This minimizes the trapped fraction of the injected hot ions,

.. which are responsible for the nonadiabatic.resonant response. Of .
course, controlling the direction is not an available option when the
energetic particles are the 3.5 MeV alpha particles that are\prdduced
isotropically in an ignited fusion plasma. A recent study3® for TFTR

oo parameters_has_found_that_the_presence of alpha_particles_can_also

lead to resonantly unstable ballooning modes.

Incidently, energetic particles can also affect the stability of
MHD modes higher in frequency than ballooning and kink modes. For
example, recent studies®®:87:68 have shown that alpha particles with
super Alfvenic parallel velocities can destabilize the global Alfven

waves.

The study of energetic particles, therefore, is of broad

intérest. whether these particles are intentionally created or occur
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as a by-product of auxiliary heating or as the direct product of
ignition. As far as the stability of ballooning modes is concerned, we

have attempted to show that the presence of energetic particles

offers promise in one regime, but could lead to problems in another
regime. Ultimately, the nonlinear behavior of the unstable modes and

their consequences for transport remain to be explored.




APPENDIX A

COEFFICIENTS OF THE DRIFT NONREVERSAL CONDITION

The non-drift reversal condition given in Eq. (2.56), can be

written as
%0 de ( )
X X
{cose*r h() sind - h < } >0
J/cos6- cosgy L 2@2
-6 , , D (A
where

X = %ho [Awr\ (cose-coseo)]

. . *ho
h(e) = 5(6-6,) - x(sin6-sin6,) - - [g(e) - g(ek)]

The contribution from terms odd in © is zero, so that the inequality

(A.1) becomes:

0o %o
de cos6 do [Se - . sine] sine

+

J/€0s6 - cos8y J/€0s6 - c0s6g

0

o
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i [“no] eode g(e) sind [o<C ] % de

2 Jcos -cosey L 2q2) | /cose - cose

0 0

9o
i [ Sho ] 4 [A+n(cos6-c0s6,)]
2q2 /€086 - c0s8y

(A.2)

0

In Eq. (A.2) we now split g in two parts, using Eq. (2.39) and obtain

r

o 0
doé g, (6) sind

=) | +
2 q? /€036 - c0s6; J/cos - cos6y

0 0

] eg eU ( )
o[ 8) sind
sn|— | 6 /cos6 - coseg + Jsm :
Q? : /€0s6 - c0s8y
0 0
o
e de

+

2q2 /€06 - Cosey
0
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8o 60 6
‘o dosin® o |_do @ sine | _do cose
¢ |/cose- 056y J/c0s6 - cos6, V€056 - cos8)
0 0 0

Now we rewrite this inequality using the expressions for Ggq 3Nd Qg

given in Egs. (2.40) and (2.41):

®ho | (tq + cos6p)
=" A[‘q%"S‘—ﬂ'ﬁ—L'sJ

*N "12"*-]'6—‘[5C0390+Y13]

roxe [2'—q2]1,+15 <Slg+ g @A

Here we have defined
to = siNBy - 6y COs6
and

Y = cos2 g - [—;] cos(26g) - ['élfr"] [sin(Zeo) ~20g €05 (200)]

, Lo
- cosey




. Note that

8 /2

do - d¢ - STK®

Iy = J?2 h
! [Jcose - €0s0g [ v 1- K< 5in?

lp = | 06 /cos6 - cos8y = 242 {(kQ-l) K(k)+E(k)} :

4 4

0 0
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Where, K is the complete elliptic integr'al of the first kind and

k=sin (90/2)
6o

0

where E is the complete elliptic integral of the second kind. Also

we compute
reo
Iy = de 6 sind - 4\/2_ '{(k2_])K+E}
¥/C0s8 - cosy
0
9
Iy = d6 cos6_ = /7 (2F-K)
| /cose - cosey
0
0
in2
/€030 - €036,
"0
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We recall that, H = (8¢-|6-27tn|) is the Heaviside step function, and
the equations above are written fore © in the interval (2mn-m,

27N+ ); ﬁm=0 outside the trapped particle interval, and its value

inside depends on which interval is being considered, so that

J,c]

(n) 27n-6 0

27N+

We want to derive Vthe'asgmptotic (/Ze, large @) form of the

above equations, where resistive effects will come into play. The

maximal odering is to take

2
O, -2 U, Wg -2
) 2
-2 Wg -2
7 0@ [ =] ~ o™

where 2=S & >>1 (and S~0(1) is presumed.)

Note that 1+h? = (1+A?) - 2 Z A + 22 where A(6) = . $in6 + (04/2)

g(8): also, D(e) = F(6) + Se sine, where F(6) = cose - A(6) sine.

Expand the four field quantities as follows:
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$(0) = 008, 2)+ ¢,(8.2) + 0,8, 2) + - -
V()= ¥y6.2)+ ¥ ((B.2) + V(B 2)+-- -
P8) P8, 2) + P,(6,2) + P8, 2) ¢+ -

B,,(6)=P,(8.2) + P, (8. 2) + P,,(8.2) + -

Here, P /P ~ 0(2")<l » also, the © dependence is now decomposed

into the rapid variation with the periodic variable 8=6 mod 27 and

the slow variation wit_h 2=58,

Lowest order
We proceed to writ the lowest order in 1/Z2 of each

equation. [note that the lowest order of Eq. (B.1) and (B.4) is
ostensibly 0(20)=0(1), whereas the lowest order of Eqs. (B.2) and
(B.3) is 0(Z2); however, we treat these all simultaneously.]

P52 By, _ 90 _
lF)Z) RS s we
—a-wz2—§vw =0 > Yo=Y, (2
36 - 86 0 0~ *0
2

Ws
[7] -a—’e"f(pco"‘yg)zo > Pcozpco(Z)
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We treat the integral equation as follows:

8o
[D(ew 3 q2 (p %J JGO[D(§)+2nsin§}x
“(n)

8 .1
8z, 2

[ ~ ~ 2
145 © $2 g2 —i—+--~]\y(e.2,.)

o
+ Jde @ [1 SO 7 + 5546 82,,2] [PC 6, 2,)-¥(, 2,,)]

-60
9
=quo(zn)+zn—%ﬂ.l 2,80+~ [PCQ(Z) ~¥o(2,) ]+0(2,,2)

Note that the O(Zn") terms cancel by parity arguments, here we

have defined

j d6 D(8)

60~ ~ ~
J=] d6 56 sin6
—eo
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90 "~ ~ ~
8(2) = I d6 siné ¥4(6, 2)
_eo

Also define

6
M(2) = 1¥62) + J2 5 + 28(2) +

[PcO(Z) - \Pg(Z)} :

Then we find

r + gc— - 7 VNV - ~ i | | | -2
Jae [D(e)@ T (F-9) J 2 [1 6 az] Ao+ 0(27)
(n) |
Therefore, to lowest order,

Pho (Z) =H [ "yo(Z) - A% } > Pho = Pho(Z)

[

where
9
_ x o %

The next higher order equations are the following:

o3 2) (o) Bs
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22.22._\1/,2' p.,ﬂp -
592 Y11 280 | o Peg* =~ Ppo | =0

2
w12 g2 o P, w12 Py
[?5]‘892 (Pﬂ“")*[ 2 ]25'”9% [ wA] [ 3 ] ~

The equation for ¥, is an integral equation:

aaez ¥ (6, 2) sme {“cpco(Z)*_ H [*0(2) _‘Z@] }=0

Its solution is

W1(§.2)=o<csin§[ PC?Z&Z) ] A g (6) [izn' ) ZMZ]

By definition, we have
©9
8 s ind [P 7, o vo 1 ¥y
‘B(Z)-[ desme{acsme[ > ]479(6)[2 ..A 3

-eo
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8 N
L=J d6 g(6) sin
_60
The equation for Py can be solved in terms of ¥, as
2

r Wg 2Tg Pe .
— ] (P-¥y) =[ - ]2 5ine &g (2)
. ¥ RP

<

2

[ () (B2 e

The Equation for relating ¥ and ¢; may be left as an equation for

@'; :
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%: ['+ v, 22] [a‘h +Sa‘§’0]-s 0dy

Oor we can solve it as

22] [\y,*se—aiﬂ—]-sé“ﬁ‘££L

[
o [“ 3 Ya 32

Note that averaging these “next order" equations produces no new
information, except for the preceding equation, yields

v, T
el B p . 9%
[“ ¥ 2] 2 -

The last order equations that we need to consider are as follows:

(103 22] [Bzos B2 g [Bhr. s BH0]

a6 a2 L o2
= @Z 4+ S io_]_
g6 02




v.{3

2

2
Vv, @ w 3'2
e ¢ +—?,‘—-(f22]9c0=-[§] [ o Pt )+ 25 52 (¥ )

2
2T P, - [ Ws Pin
+d>0 +[ Rp'c ] [Fd)o_* 2 sn_ne Cb]]“ i _UK] [ P’C ] 7 Ph_O_-_

PmH
- @

] [Fd’g + 2 sing ¢1]

Ppo = H { ¥, - 0(272) terms } :

We proceed to »average these equations over 8.

2 o
s &[22 T |- :Az 22 89 + o, Py P * - <F Prdom

(0 4
* o 2 <5n0 Pe dom + 5 2 <SiN6 Py g = 0

2
v, W " 2 :
[h [?f_lr,qz]‘z? Peo = [Ts] 3 52z Par¥o) * o

[ bg <FPop + 2 <sinG ¢|>2,[]

2 & , X _
-“TATZ ¢0+F[o<cPc0+-2—Pco]+Zsme [“cpcl’_fphl]‘
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) [zi] [ gm] C<Pho>zn‘ o~ [;%n] {(bo Foir

* 2450 03y, |

We do not need Py, i we do need the previous order equation
l+[ﬂ-] 2 dyg _ 4y |
¥ dz dz
We need to calculate the following averages:

! oy M
o= (et 55 ]

F Prodon = [“’0 - 2\'/_2‘ ]<F>1r

o = 'é‘lj?' (I-9)

¥ ]Z[ZFsPc

. . 2
o T3 ] 2 &g <sin” 67,5

{sind PeDon =[

. [ 4 ] [“’5 ]2 [Fy”‘] [ ifl ]2% $sine (&) o

Wa P'e RP’ i

+ <S|n6 \P |>2n
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- 28 ] <sine g8

<SinG PpDop = <8iN G ¥ Dy ¢ 1 G sing S 8,

A dZ

P 1%
CSind ¥y = o [ 2 ](sin2 o [ 7

z 2 L2
{sin%6) = [e -—'—sin(ze )] =
r= 2w |70 2 0 2
. Mo L L
{sin & g(6)>y, = o
~ - J
{56 sind,, = o
Also recall that
12+ 2500 - o M - —— L

Thus, the vorticity equation becomes
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The last two terms of this expression can be written as
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Now we examine the P, equation:

1 o M
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Therefore, we obtain
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Consider how rewrite te following :
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At this point, we note that (ws/wA)2 = 4 T, P/B2<<| by our

assumption of low beta: also

PC Ar <<a <<
0(1) , but RP’C" s n 1

P

Pe

Therefore, we drop these small terms in the core plasma pressure

equation:
"5 (.02 - . ®. 2 02 o
1+ 5o 2 )P [5] 8% o5 Peo-¥0) * 8 (8.5)
r 1 |
2 2 2
g ]|, adanst |, S SENED
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(87 ]
2 ' J
.0
Sineo[“c”"' czo]
O(h q
) [21152 ] ¥o
A+
2
. 6
o<cN+ czo]
- [ k indg - J2 = | (P - o) = 0
[47['] 52 FA o, L] [2 sindg dz ] c0 0) =
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We note that,
. X
suneo[occﬂ+——-— [A+—-—L]
(55 TG
- +
2752 o o J2 LY
L+
2 4752

Where 1 is the ideal Mercier exponent.
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