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Abstract

The local effect of the equilibrium current on the linear stability of the m > 2 drift-tearing
mode in the semicollisional regime is investigated' analytically. The set of eigenmode equa-
tions describing the relevant mode dynamics inside the tearing layer, is solved variationally

to obtain the mode dispersion relation. It is found that the stabilizing influence of the par-

allel thermal conduction on m > 2 drift-tearing mode is reduced by the inclusion of the

local equilibrium current.
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I. Introduction

In a recent paper,’ the local effect of the local equilibrium current Jy on the stability of
low poloidal number tearing modes in the collisional re'gimez‘3 has been investigated.

. The modification of the dispersion relation describing the m > 2 tearing mode has been

found comparatively more significant than for the m = 1 mode, where the Jy correction

a.ppears‘q‘uite small. It was found that the FKR growth rate? is increased by the inclusion

of the local Jy terms, whereas the stabilization of the drift-tearing mode is enhanced; the
classical m = 1 growth rate is slightly increased.

Also, it has been shown that, assuming the parallel equilibrium electric field EI(I ) to be
spatially constant, the presence of electron temperature gradients in the plasma is essential
for the coupling of Jp to the mode dynamics. |

In derwmg the relevant elgemnode equatlons inside the layer, the electron response has

been taken to be strictly collisional, limiting the Va11d1ty of the analysis to the outer; cooler ’

regions of a tokamak discharge. The most interesting regime in which present day operates
is, however, the semicollisional?®# where, in particular, the parallel therma,l conduction
has to be considered. The investigation of the local effect of Jo in this regime appears to be
especially interesting, since it has been surmised® that the presence of electron temperature
gradients, coupled with the parallel thermal conduction, has a.strong stabilizing effect on

the m > 2 drift-tearing mode.

‘In the present paper, the electron response is derived from fluid theory including

full semicollisional effects, and the formalism developed in Ref. 1 is used to derive the
modification to the dispersion relation for the semicollisional m > 2 drift-tearing mode
due to the local current.

- The remainder of this article is organized as follows. In Sec. II, we derive the eigenmode
equations, describing the plasma response in the semicollisional regime, including local Jy
effects. In Sec. III, the methodology developed in detail in Ref. 1 is used to obtain the
variational functional for the semicollisional case. In Sec. IV, the appropriate limiting form
of the variational functional is shown to recover the known result for m > 2 drift-tearing
mode in the semicollisional regime. The effect of the local equilibrium current is then

treated as a perturbation of this result, and the modified dispersion relation is obtained.
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In Sec. V, we summarize our conclusions and remarks. In the Appendix, we present an

alternative derivation of the semicollisional tearing mode dispersion relation in the absence

of local Jp.

C.G.S. units with ¢ = 1 are used throughout.

II. Eigenmode Equations

The electron dynamics of relevance in the present work is. correctly represented by the

following moment equations,®* expressing particle conservation, momentum balance along

the total magnetic field, and energy balance, respectively:
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These equations differ from the well-known transport equations derived by Braginskii,® to

the required order,? by the inclusion of a time-dependent thermal force on the electrons

and by the fact that the coefficient of the electron inertial term in the momentum equation,

Eq. (2), is greater than unity. The physical origin of these terms, basically connected with

the velocity dependence of the Coulomb cross-section (for a

the electron collision frequency and v, is the electron thermal

3

plasma, v ~ v3, where v is

velocity), has been discussed
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in detail in Ref. 4. Here, we only remark that the inclusion of the time-dependent thermal
force results in the thermoelectric growth rate®!! in the final dispersion relation and that
this term does not couple with the local parallel equilibrium current Jy, and therefore does
not play a crucial role in the present analysis. Also, the electron inertial term will be

neglected in the subsequent derivation.

In Egs. (1)—(4), n is the electron density, T, is the electron temperature, p. = nT,

is the electron pressure, m. is the electron mass, e is the absolute value of the electron
charge; E and B are the totbal electric and magnetic fields, respectively, b is a unit vector
in the direction of the total magnetic field B; 7 is the Spitzer-Braginskii resistivity; x
is the thermal conductivity along the ambient magnetic field; v is the electron collision A
frequency; ¢, €', " are numerical transport coefficients tabuiated in Ref. 4: in particular;

¢ is the familiar® coefficient of the thermal force and is equal to 0.71 for a singly-charged

'~ ion plasma.
~ The linearization of Eqgs. (1)—(4) is carried out assuming that, for any linearly per-

turbed quantity g,

58 = —iwd, | - (5a)
bo - V§ = iky(2)3, - (5b)
¢-V§ =ik (2)d, o (5¢)
7-Vg=4g, | | (5d)

where the radial variable z :‘ 7 — 1, denotes the distance from a mode fational surface,
“located at 7 = r;. A locally orthogonal reference system is introduced, so that by = By / By
ié a unil vector in the direction of the equilibrium magnetic field Bg; # is a unit vector
in the radial direction, normal to a flux surface; and é = by x #.- In the slab model of
the tokamak, these unit vectors, as well as the equilibrium quantities, depend only on the

radius. Near a mode rational surface, where k|(0) = 0, we have
,ZQ”(ZI:) ~ A,I'I’L (6)

For sufficiently small § (ratio between plasina pressure and magnetic pressure), it is
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consistent” to assume for the perturbed magnetic vector potential A,

A =hoAy,

implying that the radial magnetic perturbation becomes

where ¢ is the perturbed electrostatic potential.
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Making use of the above eqﬁations, we obtain, for the perturbed parallel currentsj” -

(10)

(11a)
(110)
(11c)
(11d)
(11e)

(11f)
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wy,, wr are the electron drift frequencies related to density gradients and electron temper-
ature gradients, respectively; € is defined in terms of the numerical transport coefficients ¢,
e'; the quantity D is basically the diffusion coefficient of t11¢ electrons along the magnetic
field Bg, when collisions inhibit free streaming at the thermal velocity; s is the numerical
coefficient of the Spitzer-Braginskii conductivity and is equal to 1.96 for singly-charged

ions; the numerical transport coefficient &' has been defined so that (3/2)e"'s is equal to

the nﬁmerical coeflicient of the parallel thermal éondUctivity, which is, (3/2)e"'s = 3.16
for singly-charged ions. We note that apart from the local Jy term, which is related to
resistivity perturbations in Eq. (2), Eq. (10) has already been obtained in Ref. 3. The
first eigenmode equation is obtained by combining Eq. (10) with the parallel component

of Ampére’s law in the form

1

Jr= s (A A= - (12

47’

where we introduced the approximation, valid for low poloidal mode numbers and used

throughout the present analysis, of 'assuming the mode radial wavelength to be: much

shorter than the azimuthal wavelength. Defining ¢ = wji” / ]cl'l and making use of Eq. (6), :‘
we get A ' 1

oo @) - fmA@]8, "

where the generalized conductivity o, (azz) is given by3®

. k2D
. —47g (w—w) —éwp) + (w —wi)ies L
o (2%) = n | k2D k2D ” D [’ (14)
<1+zs”’s—]w—> (1—}-zs ” > + ZE(1 +e)is-L- ‘
and the equilibrium current appears through the factor
3 5 ews

. 2w o

A ({Z‘“) = D (15)

—q (w —wk — éw}) Lellg (w —wk) %

Equation (13) is essentially a description of the electron dynamics; the other piece of
needed information describes the ion dynamics and it is usually® obtained considering the

plasma equation of motion in the form

ov
minigt— = VP +J X B, N (16)
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where V is the ion (or bulk plasma) flow velocity, m; is the ion mass, n; is the ion density, -

P = p; + p. is the total plasma pressure.
Solving Eq. (16) for the perpendicular component of the perturbed current, J |, and

imposing quasineutrality ih the form

V.-J =-V-J, | (17)

one finds®

4k
BT )

X4 = i~
where the Alfvén layer x4, defined as the distance from the rational surface at which

w~kjvy (va = Bo/ (47rnimi)1/2 is the Alfvén speed), is given by
2 _ w(w+wi)

e e e e "'_’.’"" T '.“' '?XA'_:' W’ T ‘_”'.':m T T

and the ion drift frequency is

*
Wy

eBn;
In the derivation of Ecis. (13), (18) the following approximations have been used:

i) terms involving Jo which are of order B have been neglected;
ii) terms involving Jy which appear as Doppler shifts to the real part of the-
mode frequency have been neglected:; |
iii) contributions to the mode growth rate due to Ohmic heating terms are also
neglected, since the corresponding thermal instability does not strongly cou"é '
ple to the tearing mode. |
Neglecting terms of order AﬁD /w in Eqgs. (14), (15), the eigenmodé set constituted
by Egs. (13), (18) reduces exactly to the one studied in Ref. 1, where a.‘ derivation of
Eq. (13) ‘from kinetic theory rather than from fluid equations has heen given, and also an
extensive discussion on the eigenmode symmetry breaking properties of the Jy terms has
been presented..
In thé following section, we outline the method of solution of Eqgs. (13), (18) according

to the formalism of Ref. 1.

SV '
_kip (20)
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ITI. Variational Principle

From the analysis of the dispersion relation of the collisional drift-tearing mode,*® it turns
out that the term (w — w} — éwk) appearing in the numerator of o, tends to be much
smaller than the factor (w — w?).. Therefore, the following scaling is possible because of

the presence of temperature gradients, and it is characterized by

k2D 5
t— <1 ' (21)
but, at the same time, '
kﬁD _
(w—w) —éwp) ~ (w—w}) ——. (22)
w .

The existence of such a scaling, which includes in particular the effect of the thermal

~conduction, has been noted for example in Ref. 5 and is very interesting in the present

)

~context, - since -it-is-made possible- by-the temperature” gradient; which also-allows the o

coupling of the local equilibrium current to the eigenmode equations. We remark-that,
when (w —w? — éwh) < (w—w?) kﬁD/w, A — 0 in Eq. (1.3), making the effect of the
local current negligible. For it'his reason, since this study is intended to treat Jo effects,
vwe shall limit our discussion to the scaling e_xpréssed by Egs. (21). and (22); we can now

‘approximate o, by

Te ™ 1 F oz, ’ : (23)
where pj is given by
—4me e '
= 0 - o — ), (24)
and uy 1s defined as
2
dme' s 8[’|~D
Uy = —wr) ——. 25
pe = (w—wi) =5 (25)

We note that when o, is approximated as in Eq. (23) (unlike wlen one retains its
full 2* dependence as in Eq. (14)), the two Jy terms in Egs. (13) and (18) are essé11tia11y
identical (a similar equality was shown in Ref. 1 to hold for the collisional case as well)

-and we have
_Amky Jy

27 2
(11 + p2a®) A(2?) = BD

(26)
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where we made use of the T /2 dependence of the Spitzer-Braginskii conductivity oy in.

the equilibrium Ohm’s law

Jo = USPEI(IO) | (27)

and assuined the parallel equilibrium electric field to be spatially constant to write

Jo===J%- (28)

We see that, even in the semicollisional regime, the presence of electron temperature gra-

 dients is essential for the coupling of the local Jy to the mode dynamics and the local

equilibrium current has to be treated on the same footing with its local gradient. Making

use of Eq. (26), the eigenmode equations can evidently be cast in the following form

#r2 e a@e= 2 o a @ - a6

XA

where 04 (:n"‘) is given by its appro?cimated form, Eq. (23).
Even though Egs. (29), (30) closely resemble Eqgs. of Ref. 1, the 22 dependence of A

makes the procedure of Ref. 1 no longer applicable in a straightforward way. The following

.a.pproximation, however, will enable us t6 reduce the problem to the one solved before.

Since the eflect of the Jocal equilibrium current shall be treated as a small perturbation of

the known semicollisional result, a negligible error will be involved if we substitute 22 by _

a suitable, average value over the radial extent of the mode; for the mément, let us denote
this average simply as <IE2>; in Section IV, an explicit form for <’B2> will be given. A (7;2)

can therefore be approximated by

PXa
A~ , 31
\ (it 112 (2)) (31)
where
drky J}
p= el (32)
]w BOXA

Defining a new radial variable!

~‘7*( ){%b [m—A(mz)]¢} - (29)

T T T
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p=a- 4, | (33)
and a new field variable

Qp) = 0x(p)(® — p4), - (34)

where

Ge(p)= pirA-piz- (P2 2Ap+-AZ) 5 ——(35)

we can write the eigenmode equations in the form

¥ =Q(p), - (36)
8"+ oo = 250, (37)

- whichis formally identical to the corresponding set of Ref. 1. We briefly outline the method =~~~

of solution of Egs. (36), (37), presented in detail in Ref. 1; treating the variable Q as a
given inhomogeneous term at thev.right—hand side (r.h.s.) of Egs. (36), (37), one formally
solves these equatidns for ¥ and ¢ in terms 'of Q; using the definition of Q as given by
Eq. (34); one then constructs an appropriate combination of 1 and ¢ to'bbtain an integral
equation for Q, which has the necessary structure to allow for a variational treatment.
Appropriate boundary conditions are chosen by requiring the asymptotic behavior!8-10

o Alle
A

P

- (38)

for large z, where, we recall, 1 is the value toward which the exterior 7 solution tends

and A’ is the logarithmic jump in the derivative of the external solution, defined by

A=Y | (39)
Yo |

where 1, 1_ denote the external ¢ solution on the right and on the left of the tearing

layer, respectively. In the present context, no distinction is made between the radial

variables @ and p, because for © — oo, p — z. The resulting integral equation for Q is’
Ar) _ - Qp')dp' + - g(p,")Q(p")dp', (40)
s A J_ o 2/ o
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where
!

g9(p,?") = 9(¢',p) = Ip~ P {1 -2 K(p,p')] ; (41)
XA

and

K(pp) = K(@.p) =1~ Z(p+7)p-p)

O

02 9 \ 26_5 3] (42)

[ g 6 . 4
+g(-)z[p°+p' —gpp'(p“-kp’“) PP (p +7 )+—pPJ

Noting that the kernel g(p,p') is symmetric in p and p', the variational functional corre-

sponding to the Eulér—Lagrange equation Eq. (40) is given

S :/oo 0*(29)E (p)dp — % [/oo «(p )E(p)dpr

o0

.—-/ / o0, )0 (p)o (¢) E@) B dp '
we have expressed the functional S in terms of
_ » .
B(p)= 22 (44)

ox(p)

rather than Q(p) itself, a form which is more useful for the subsequent calculations. By
letting p — 0, E(p) becomes the ordinary perturbed parallel electric field; also, letting
tz — 0.in BEq. (43), cfr. Eq. (23), one recovers ]31‘eéisely the collisional form of 9, a given

m Ref. 1

11

AR _ S ___(43) R




IV. Dispersion Relations

In order to evaluate explicitly the variational S, given by Eq. (43), it is necessary to
- choose a suitable trial function; in conventional theories, where Jy terms are 11eg1ected,
the eigenmode equations are invariant under space reflection and one can choose a trial
function of definite paﬁty; solutions with tearing symmetry have even parity (i.e., J s E” ,

1 even and ¢ odd) and the usual choice is®19

E(#)trial = exp (—az?/2), - (45)

where the variational parameter o measures the radial width £, of the mode, i.e., £, ~
~1/2
a e,

When Jj terms are included, the space reflection symmetry of the eigenmode equations

-—is broken;-and-one can no-longer -choose a trial function ‘With"deﬁnite" parity; since we shall - —

principally be treating the effect of the current as a correction to known results, we demand
that the trial function reduces to Eq. (45) whenever the Jy effect is néglected, to ensure
continuous contact with previous analyses. The simplest choice for a mixed parity trial

function with the required properties is?
E(p)wial = (1 + ép) exp (—ap®/2), (46)

where the variational parametef 6, which is eViciently proportional to p (cfl;. Eq. (37)),
measures the mixing of the even and odd part of the solution, caused by the inclusion
of Jo. With the above choice for the {rial function, S, as given by Eq. (43), becomes a
polynomial in & and §, and the extremum conditions on S , together with the condition
that S vanishes for E(p)yia = E(p) (to lighten the notation, we use the same symbol to

denote E(p), the solution to Eqs. (40), (44), as to denote the trial function, containing

variational parameters, which appears in Eq. (43)), are in this case®®
as . ‘
— =0, 47
06 ' (47)
as
=0 48
Jda ’ (48)
S =0. (49)
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After the dispersion relation has been obtained, any mathematically consistent root must

satisfy the following conditions, expressing the mode localization and the choice of the

branch cut for @'/? in evaluating the integrals appearing in Eq. (43), respectively:

Reoa > 0, ‘ | (50)

Re al/? > . (51)

no similar conditions have to be imposed on é.

Substituting the trial function Eq. (46) in Eq. (43) we obtain, after a somewhat lengthy

In Eq. (5:

calculation,
520312 ‘a—3/2 3
S = <a_1/2 + —2——) + p2 ( 5T 252a“5/2 + 2460737 4 Aza_l/z)
A oxY/2 - Y A Vs -4~ N
il ot M1+ e a~ -I—2A5a -}—Az 2 2a_3/2+a—‘ : :
1 H1 2
A ‘ o Xa S
3 5a~7/2 7 27 a—g/z
- -5/2 2 L2 2L
Hakz <6q Tt ) M(?a T3 xi)
5 7Ta”T/2N 49 o~9%/2
+ 6 {M‘i <0‘_5/2~+ 3 2 ) + p1po <5a—7/2 + = 2 p) >
. : . Xa 4 Xa
27 _os2, 321 a”1/2\ 7
+ po ( i + 5 ~

v . —7/2 . 1i —~9/2"
+464 I:NIMZ <~2a‘5/2 + 92—> + 15 <—a*7/~ + =2 )}
Xa : 2 Xa

—5/2
+ 42 {—2/@2 <2a‘3/2 + 7 > + 13

Xa X4
26 N Y | o
“ <,U«:1201 9/2—|-9,ul#'26\' 11/‘+—/L§@ 13/2
3xa \ 4
4 1 ' _ 15 .
"T‘g (/u]./-LzOI /2 _ 5—;@@ 11/“)
P

2 22 3 /e 3 ‘
+ <——;1 —11/2 —-;1.1;1901_13/2 + ——;Lga—ls/2> .
)\A 15 15 10

2), werecall, o and § are variational parameters, j1; and uy are given by Eqs. (24),

(25), respectively, the local equilibrium current appears linearly in p and A, given by

Egs. (31) and (32), respectively. ‘We notice that the corrections due to the local current

appear in S as terms quadratic in p since § must be of order p itself. Terms of higher
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order in p (e.g., terms of fourth order in Jy such as §2p? or §24%) have been systematically
ignored in the calculation. | , | |
We notice that, by letting po — 0'in Eq (562), one recovers the collisional limit of .5,
cfr. Ref. 1, as it should be expectéd from the form of Egs. (23)-(25). Also, from the previous
derivation, it appears that we can choose for the average value of z2, <m2>, appearing in

A its average over a Gaussian trial function, which is

PX
Ay —— 22 53
B+ (M2/204) (53)

We first proceed to show that S easily recovers the known result in the absence of

the equilibrium current, in the appropriate limit. The “classical” form of S is obtained by

neglecting terms proportional to Jy in Eq. ( 52); also, since in the present section we shall

of S for ’al/zxA_i < 1:

_only be interested in modes which are broader than the Alfvén layer, we consider the limit

a—3/2  9r1/2

—1/9° _ C_1n\2
Sai 2 a2 4 py SRR T (T L
. ' (54)
a5/ . a2 97 Lo .
— i ——— — BSuipz ~ = p3——=0.
TN A 477 %2

" The above form of S is still too complicated for a simple analytical solution, but it

is possible to obtain a quite accurate answer by means of the following argument. In the

‘Appendix, we present an exact variational calculation based on the method of Ref. 11,

which allows-a very simple treatment of the semicollisional conductivity given by Eq. (23)
but it is not extendable to the case in which Jy terms are included. We remark that
the dispersion relations obtained by the two methods differ only by a few 1>el‘¢ellt i the
numerical factor in front of the damping rate.

Since the mode which we are going to discuss is characterized by a negligible value of

A'® the corresponding term in $ containing A’ will be negligible, provided

a=_12 | | (55)

p
which, substituted in Eq. (54) and setling the resulting expression for S equal to zero,

yields the dispersion relation
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3 2

K1 = 173X (56)
which can be written as
.2 ' | 2 ’
(0 —wp—&wp)® = i (L) [e"s (w = wl) K D] —(wwt)jz ), (57)
A
and which, for a drift tearing-type solution, w* >> v, gives®
/ g e}
1 3 4 =i .
W= wo +’lr€v..« v W€ \11/ \471_/ \c ocw [‘D/ U2/3 ) \ ]
A
where the real mode frequency wy is given by
wo = Wi + (1 4 €)wh. (59)

The first imaginary term on the righit-hand side of Eq. (58) is the so-called thermoelec-

tric growth rate'? (as in the collisional drift tearing result), while the last term provides a

damping of the mode due to the stabilizing effect of the parallel thermal conductmn 'This

dlspersmn relation corresponds to the root (1)%/2

= e27mi/ 3.for 1, which is mat‘hem:a;tmally

consistent, as it can be seen from Eq. (55) It is -not necessary to impose the condition on -

oal/2

in the present case since, as it can be seen from Egs. (54) and (55

the individual terms in S aepends only on the sign of o and not of al/2,

We now investigate the effect of Jy on the result expressed by Egs. (55

4

), the balance of -

), (56), by

treating the effect of the local current as a perturbation on the result expressed by Egs. (55),

(56). The limit of S for ’o:l/?‘XA’ < 1is given by

2 o ? 0_3/2 3o 2 3/2 2 —~1/2
Sy la 246 + 1o + 2 5 75?2 4 2460782 4 A2 /2
. , ? o

r4

‘a—s/z . o712 o7 ZQ,_9/2
Hy—3 12— Ho—=—
A Xa 4 X4
& (7 49 321
+ = _Mfa,—ﬂz_*__Mluza—g/z+ #‘301—11/2
Xa \2 2 8

2

X4

2 8p , 51 , _

;,\,2 (,U 9/“—}—9/.11#9& ll/a_l_zﬂé«a 13/2)

XA N

44 15

”B“Tp (ﬂ-llha 02 - 2 a‘11/°>

X4

p2 2 9 11/ 22 13/2 3 _15/?
-J_ T 1k 1 - - —_ —
X3 ( 151 15 Hkea + gz

464 L 11 A '
i X7 <N'1/.1-3a“7/~ ““2 _q/2> + =5 (—L’/meza‘s/z + 9#3@‘7/2)

(60)
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The term involving A’ has been neglected since, with o given by Eq. (5), it provides a
correction of order p* (i.e., of fourth order in Jy) to S.

. Since S is a variational quantity, the perturbative calculation is of the outmost sim-

- plicity; indeed, if we write Eq. (52) as

S : SO + 6251, ' » . (61)

~after § has been obtained by solving Eq. (47), we set S equal to zero, substituting o from

" N, 1 . R 2 S i s Ty 2 1 .
where S5 is the corresponding ~“classical” S, and &2 & 1-is proporticnal to 52, and we

assume
azaé%szal, : . (62)

‘with oy given by Eq. (55), we have
S ~ So (cx0) + %iﬂ a4 e”S1 (o) = So (o) +€°S1 (aw) , (63)

o

where only terms up to order e? have been kept and we made use of the extremum condition
on Sg.

The perturbative calculation for Eq. (60) is therefore carried out in the following way:

Eq. (55) and making use of Eq. (56) in evaluating terms of order p?. We then obtain, after

some algebra, _
: 9 ) 2.2 :
3_ ~ H2X4
_ 2 | | 64
H1= 111 — 164p2a-3)° - (64)

or, making use again of Egs. (55), (56), we obtain the dispersion relation

) 2
2 S pl° el
(@ =, — ) = — (&) ["s (@ ~wn) D] 2k (65)
. T . o 47rkJ_Jé 2 ’ : )
30(71-77)< kI"B >

€///s(w_~w;l;)D (Wj:: ) }

14
| :
providing the modification to the result expressed by Eq. (57) due to the local Jo contri-
bution.
In the present case, the validity of the perturbative calculation is ensured by the

condition
4k, Jb

——— < 1 (66)
2
khBué/ XA
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for typical tokamak parameters, evaluated near the location of the ¢ = 2 rational surface,
q is the safety factor, the small quantity of Eq. (66) is of the order of 2 - 1072, Therefore,
even though the numerical factors in front of the Jy corrections in Eq. (65) is rather large,
the equilibrium current does not modify significantly the result expressed by Eq. (57).
For a drift-type solution; w* > v, recalling that the mathematically consistent root

of the dispersion relation is the one shown in Eq. (58), we conclude that the inclusion of

Jo results in decreasing the damping contribution of the parallel thermal conduction with

respect to the result expressed by Eq. (57).

V. Conclusions

In the present paper, the local effect of the equilibrium parallel current Jy on the stability of

__ the tearing mode in the semicollisional regime has been investigated analytically, including, =

in particular, the effect of the parallel thefmal conduction on the mode dynamics.

The equilibrium éurrent enters the first eigenmode equation through its gradient,
in the so-called “kink term,” whereas Jy appears in Ampére’s law through resistivity
perturbations in the “Ohm’s law” provided by i;he electron momentum balance equation.
Assuming the equilibrium parallel electric field to be spatially ‘constant, both Jq terms
are identical for the form of the 'generalized conductivity corresponding to thé scaling
expressed by Eqs. (21), (22) and have the form of local current gradients, directly related
to the local electron temperature gradient, because of the TS /2 dependence of the Spitzer-
Braginskii conductivity in the equilibrium Ohm’s law. Analogously to the collisional c‘ase_,1
the presence of electron temperature gradients is essential for the local Jo to couple to the
mode dynamics. |

The main result of this paper is given by Eq. (65), which provides the modification
to the semicollisional mode of Rei. 5 due to the inclusion of the local equilibrivum current.
The local Jy term is responsible for a decrease of the stabilization of the mode, due to the
thermal conduction along the ambient magnetic field. The qualitative prediction of Ref. 5
is, however, not contradicted by the present result, since the local Jy eflect is obtained
from perturbation theory and cannot become larger than the leading term.

We finally remark that the discussed Jy effect appears to be relevant only to the linear

17
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analysis as it was already noted for the collisional regime. At least over a time scale over

which the equilibrium magnetic field does not change appreciably, the equilibrium electric

field can be assumed as uniform and therefore the local equilibrium current couple to the -

mode dynamics only through the local electron temperature gradient. As a consequence .

of the formation of magnetic islands, and of the resulting large radial élec;tron thermal

conduction, the local flattening of the temperature profile will prevent the equilibrium

current to play a significant role.
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Appendix: Alternative Derivation of the Semicollisional Tearing Mode

Dispersion Relation in the Absence of Local Current

Because of the fairly complex expression for the semicollisional form of S, Eq. (54),
even in the absence of Jy terms, a somewhat approximate procedure has been employed
to derive the mode dispersion relation given by Eq. (56). In this appendix, we present

an alternative derivation of Eq. (56), based on the variational principle formulation of

Ref. 11, which enables an exactl and simple variational calculation in the present context,

even though this method of solution cannot be extended to the case in which equilibrium

current terms are included in the eigenmode equations. | |
If the Jo terms are neglected, Egs. (36), (37) can be combined into a single, integro-

differential equation of the form**

! ) . ._..1 0o
T (——Xingi >_ ;I: _1320'*8_;—: <AI;+_E;> o "“"‘4:12%_}421""‘“/7!-” ) ~—»:1:f,’d:z:~ T _(Ai)EN‘ T

Sy xa) (@) S @@=

where the field variable E is defined by

E(z) = ¥ _ 45»_ By ' (Aé)

T o ikhm'

The variational functional reproducing the Euler-Lagrange equatiqn, Eq. (Al), is ev- |

idently
S= (A" +in/xa) (I + L)+ I3, | (43)
where
4o g! 2.2 ! .
I :/ 5(%) dz, | (A44)
— 0 e — X.A .
+eco ' ‘
I, :/ 2?0, E%dx, (A5)
—o0
and
| oo z& ‘
Iz = 9X?4/ ——dz. (A6)
— 00 (562 — X?‘l)z

By comparison with Eq. (45), it appears that the trial function for tearing-symmetry

solutions is
2
exp (—az” /2 _
E(m)trial = ( - / ) 3 (flf)
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substituting the above trial function in Eqgs. (A4)-(A6), using 0. = u1 + poz?, and simpli-
fying the resulting expression for S making use of the fact that ]ozl/ % A| <1, |A xal <1

for m > 2 tearing modes, we obtain

_ o 44/2 -5 Al

The semicollisiornal mode discussed inSec. IV corresponds to the

|A"xal < &®2x - (49)
limit of Eq. (A8), which gives
4/2 -5
S~ pra”M? 4 sza_s/z - (%) 0‘3/2X2A§ (A10)

the variational parameter o and the dispersion relatlon are obtained solving Eqgs. (48),

(49); they are respectively given by

3 |
a=--£2 (A1)
4 py

and (cfr. with Eq. (56)) , - |
2
3 .
= (2) (sv2-3) A
For a drift-type splutidn, Egs. (Al11l) and (A12) yield

~ . Wo o
W X wq 166 — W
v

14 )1/3 (A413)

2/3

imi /3 1/3 ;p\1/8 . 2/3 (

+e76 <:l> (4\/5—5) <Z7—r> (s"'selecilD> *———02/3 g
. A

with wq given by Eq. (59). We remark that the above result differs from the one expressed

by Eq. (58) only by a 21% difference in the numerical factor in front of the damping rate,
and by a 15% difference in the numerical factor in front of the damping rate given by

Eq. (39) of Ref. 5.
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