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ABSTRACT

The marginal stability condition of bélloohing

instabilities for toroidal confinement devices is

derived for low critical stabilityJB (B < 10%). The

to EBT and multipoles as well as tokamaks and

stellarators. For EBT and multipoles a more compact

'stabiiity”COndition:derived here should be applicable

expression for the stability condition is possible

and is given here in the appendix.
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The MHD, finite B ballooning instability is expected to
limit the maximum B in toroidal devices (tokamaks, stellerators,
and EBT) as well as tandem mirrors. Thus it may behoove us
to refine the critical B criterion which was first pointed
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out in the 1960's by a number of authors. The usual way

fé-detéfminéithéiéfiﬁicalvﬁalﬁe”iéitaking advantage of the
fact that the growth rate, s, sguared, is real in the MHD

approximation. Hence the problem is reduced to solving for
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marginal stability condition,
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*wo (e =0 (1)

where wg(z) is the local interchange growth rate, v, is the
Alfvén wave speed and & is taken parallel to B. in actual
experimental situations, this simplification is somewhat modi-
fied as the magnetic field stren§th; B, is usually a funétion
of . But what will be described here presumably improves

the usual assumption that wi(&) is expanded in Fourier series
and retained to the first term, thus transforming Eg. (1) into
Mathieu's equation.

We shall impose periodic boundary condition such that

¢ (2+L) = ¢$(2). And introduce a new variable

(2)
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Then Eg. (1) may be rewritten as
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Y = —1——2- B (4)
S {L/2m) " :
2T |
0 =-/ do£ (8) o (5)
0.
= .2 1 1 2 4 ' ' l
RC
h - 1 /de s ) |
h oo 1 fa (7)
- 2T R(H) ’ :
RC

Here R is defined as

1 _ dnB? . _dy/dn | | (8)
R .= | >
2dn [dy/dn|

o
where n is the normal component to constant pressure surface

and often (but not necessarily always) coincides with the

(quasi) magnetic surface. The>difficulty which arises in many

. .
devieeséisﬁthafewemeanno%mheep»&%Rmsueha%haﬁmd4&np%¢ﬂn»t Ris

—=—————negative--everywhere-—




o 3

SEERD e ..

ssii : The function £ is nondimensional and <£?> is taken
usually between 0.5 v 2. It is not too difficult to impose
one particular value for <f2> but sometimes it is advantageous

to define <f2> at our discretion.

(1) Method of low B approximation.

The equation (3) can be solved rather easily by numerical

methods. But often it is convenient to have an analytical

solution available. Here we try that. _We order coefficienfs
of Eq. (3) as Y£(8) ™~ 0(e), yh ~ 0(e?). Usually h is ~ 1/10

whereas f(e) v 1, so this ordering is not inconsistent.

Finally, ¥ n B%/h as we see later, so if B < 0.1, Yy is considered

to be small.

Then to the zeroth order we obtain
= . ’ . . 9
by = 1 (9)

- To the next order

2 4.
a ¢l
de:z

= YE¢, = ¥f . ' | (10)
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'“d¢i/de'5ati8fies'the béundary'éOhdiEion in view of Eq. (5).

This is integrated once to yield

d¢1

] .
—5 = Y/ £(6)de + C = YF(8) + C (11)
0

- Integrating once more

r6

b, = on dOF(0) + CO + Cp . (12)

The constant C; may be absorbed by ¢,- The constant C must

be chosen to satisfy the boundary condition that is

: 2ﬂ o ‘
C = 5 fo de F(p) = % G(2m) . (13)
|
We defined ’
F(0) = / £(6)ds, F(2m) = 0 (14) }
0. ;7
- G(8) = / F(9)ase S ' (15)
0
Thus |
o ) ,
¢, = Y(G(.G) - TzTTc;(z-n)) | “___(_16)




Sisgelarii,

To the next order

2
a*¢,

= 2 _ '
~qg7 = Yh + Y'f4; . (17)

Integrating once
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62' = Yhe + y2 L_/ a0£G(8) - SL2m) / f(,e)edeJ + C,. (18)
0 - Jo

C2 is necessary to satisfy the boundary condition for ¢2, but
the necessity of satisfying the boundary condition for Eqg. (18)

brings out the BC. Since at 6=0, d¢2/d9 = Cyy it follows that

2T : 2T
21h + vy / A£G (0) - %—Tfi‘-)- / £(6)0d6 0. (19)
1 Ja | o

The first term in the bracket gives [note F(27) = 0]

27
/ defG = FG
0

Also

2w
/,f(e)ede =F - 8
0

27

27 2T
- / Fdé =—'G(,21T). _ (21)

0

L .
- [G'Fde = —/ F2d6 . ' (20)
Q , i 0
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/(; F?de 5-[6(2m) ]

U ,,SchwartzPs,inéquality assures the positiveness of the- divisoer -

_ except for the trivial case (fz 0).

Thus
.2aR
B = 2a R . Czog T (23)
(L/27) 27 - Peo
- /dee——l—(c(znnz '
2T ) p
0 .
\Bco is the critical B for f = cos 6 and I ié the correction
factor for other functional forms of f(8).
(ii) Some Examples
Let us calculate sbme simple examples. Assuming h is
small from Eg. (6) and letting 1/R(8) = (l/Rp)cose where Rp is
the minimum field curvature radius, we get ﬁé-= Rp. Also -
I = 1 because G(2m) = 0. So we get
2a|R_| .
= = 2
8 (L/2m) 2 h Bco f )

as is expected.




Take
£(0) = 1, 0<e6<m, ?
£(8) = -1, ' T < 6 < 27, (25)
Again,-I—{c = IRPI.' The calcuation yields
2m
[Chiae -2 s . f
‘—'”'“”*“‘ﬁyw“F“d6*=”§fﬂ’ (26)
0 ,
— ; i 27
G{(2m) =} de - 6 +/ (2m - 6)ds = 7?2 (27)
. a - T : ‘
Thus, |
-6 _ 6
I = 2 or .B = HZBCO (28).
If
f=aq, 0. <6 <8y s (29)
£ = -5, 6 < 6 < 2m, (30)
such that
ael = (21 - 81)6 . (31)
Then after rather tedious, but straightforward calculations
we get (by equating 6 = 1, thus R, = Ryag
6 -
T=Tor =987 ¢ (32)
1
R
2aRb| 6 (33)°

sc'= (L/2m) 2 h (21 - 81)2




Thus, Bc could be smaller than the ordinary eigenvalue of

e Mathieu's equation.

If £ = £(8) = cosN® where N is ahn integer, we get
F = = sind - | - (34)
5 .

Thus, we arrive at I = N2. 1In other words,

2a|R, |h

|

?
—
w
wn
—

e (L/2mN) 2

That is even in systems such as Octupole or EBT, the connec-

tion length is determined by one peribd'of bad-good curvature.




{iii) Comparison with wave mechanical solution.

The usual method to solve eigenvalues could, of course,

be used. Let us take the case of Eg. (25) slightly modified

. so that
£08) =1, 0<e< 2, < o < 2n
- f£(8) = -1, T<g < 3T 7
7 SO0s 5o (36)

The starting point is Eq. (32). We define

Yl = (l + h-)Y ’
Y, = (1 - h)y . | B R
Then in the domain I where £(8) = 1, we have
: 1/2
¢ = Clcos h.yl 3] . . (38)
In domain II where f(8) = -1, we have
1/2 -
¢ = C2 cos v, (m - 8). (39)
. T 3 .
The connection at 6 = 5 and - requires
1/2. 1/2 7 _  _1/2 1/2 h
Y3 tan h \E 7= Y, tan Yo 5 (40)

The above equation can be solved for‘arbitrary y numerically.

In the small y limit we obtain
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or

1 2 (41)
hrt = Ii(l + h?) (42)
Thus we get
aRr
.- LC T e - 6 . l
Iy 7 4T I (. B —

10

This is to be compared with Eq. (28) (h® << 1).

We conclude that Eg. (23) is probably accurate endugh for

- estimating critical B in normal situations.
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APPENDIX

CLOSED FIELD LINE DEVICES

In the case of floating multipoles or EBT, the geometry

is very simple, so that a more formal set of equations can

be utilized. In these devices, closed field lines § %% = const

form the magnetic surfaces, Y. And we can choose another

ortthDnal.coordihate, XasJBﬁzand the third coordinate = =

ﬁw X ﬁx is an‘ignoréble-coordinafe.- |
-Starting with a two fluid theory, using the usual assumptions

among which Iklpil << 1 where kl is fhe wave vector perpendicular

to §,’and Py is the ion Larmor radius, we arrive at

B2 Bk

4 2
agi 1 Vﬁn 3 ($ ;L) (nkTB) - X80 _ (1a)
o Yo n

where n, is the unperturbed density, n is perturbed density,
: . o2l 21 - * .
subscript n in Vgr means ﬁgf . o/, kT = kT + kTi is
. )+ . " .
assumed constant, B-is the magnitude of B, x is the density
gradient as defined (Vznno)n with subscript n having the same
. N A
meaning as (V%z)n, M is the mass of ions and S? is the growth

rate in the limit of Ikloi|<< 1.

Since only §? appéars, s? is real in Eg. (lA). Thus at

marginal state the last term of Eg. (lA) can be made U. Since

B 1is a function of &%, ¥, where £ is the coordinate in the

S S

~-direction-of By Eg. (1A) will be-written-as-
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dp
3 1 3n o L2 5 1
. BW§W+_dw BJJOW Bz ~ 0 (23a)
or
. dpP .
3%n G (a A
%% + av NO\_gm z2jn = 0. (3a)
Since the field lines are closed, it follows that
%dx =x =3I , (43)

where II. is the total net current (in coils) enclosed by the

closed field lines.

. 3 1
We define (W'-B;g)A as

- (5a)

2.1 d%dx/Bz_'_(a 1)
TR 30 T B2
oy B dy 2(0 oy B 2
Since Yy and x are orthogonal, the change of the order of
operations involving X and ¥ is permitted. Then Eqg. (SA)‘
implies
__k_“_,<;-.A*4A_AA,_A,;A.aAhl,)A e B @R e
=T T2 dX = ( % —) = 0. (GA) .i
Thus, Eq. (3A) is reduced to T
N2 dP [ = 1 dP / l A
o— Il E = (7A)

£ 2\
e (S e (B

J—
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Again, ordering three terms of Egqg. (73) as 1, €, €, we

arrive at the critical dPO/dw as

14

14 § as -
dp = a% ‘
I B
dwo - Ho Ay — =L () (82)
f H2 (x)dy - Xo
o _ _ UALWMMAJHWAM;MITSE;—“
where i
ey = {4 rXaxy\ _[a X az ,
A A ;
3(x) = [ H(oax. (102) |
a ' |
If IdPo/dxl is larger than given in (8A), the plasma is é
unstable. Thus, in marginal stability cases
v
P= [ LGay (11a) |
Yo i :
with P(wo) =0 at ¢ =y Note in a %dl/B stable plasma
dp
o d +« d&
o __““fiFT,Aa$A§MT§T_> Q. S (12a) i




