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ABSTRACT
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with shear is presented. a renormalized electron
drift kinetic equation which is consistent with
conservation of energy is derived. For low
levels of turbulence, a perturbative solutioﬁ
indicates that the turbulence has a Stabilizing
effect and that total mode spectrum ehergy
decreases. . For strongly turbulent regimes,
results quantitatively but not qualitatively
different from those of.Hirshmanvand Molvig are
found.  1In particular, additional stabilizing
terms lead to a lower»saturation'amplitude, but
the basic picture of turbulent destabilizatioh
Competing against iinear and nonlinear shear

damping persists.
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I. INTRODUCTION

observed in tokamaks. "Since it is thought that such trans-

port is caused by low frequency mlcr01nstab111t1eq of_the-dri-ft

wave Varlety,1 it is obvious that the development of a theory

In this paper, a self—conéistent‘theory of the renormalized
dlelectrlc for electrostatic unlversal mode turbulence in a
cyllndrlcal plasma w1th magnetlc shear is presented
Recent pioneering work of Hirshman and Mo‘lvig2 has demon-
strated the important effects that electron orblt stochast1c1ty
can have on drift waves. They showed that the presence of shear
induces a coupling of stochastic radlal E'x B motion and poloi-
dal free streamlng which ylelds an- aggregate electron orbit
decorrelation rate wc, where wc = (k v D/3L2)l/3 and D is the
turbulent test particle diffusion coeff1c1ent Since at cbserved
turbulence-levels W, > w, Hirshman - and Molvig noted that the
radial diffusion length (Dw;l)l/z,texceedS’the electron 1inear
" Landau resonance point, X vThus,.an electron is diffused into,
Tesonance in less than one wave‘period and the fluid electron

response characteristic of the region near the mode rational

" surface is- ellmlnated The_contribution of the nonadiabatic

electron response_ln_the—drr£t=wave ergenmoae~equation

T T e —

characterized by an_inverse_ gandau—resonance=iike, turbulent




dissipation term, which destabilizes the mode. Saturation
eventually occurs through a competition between electron
destabilization and linear shear damping. The saturation cri-

terion allows a self-consistent determination of D. It is

‘worthwhile'to note that the principal effect of the'turbulence

is-—-to-- cause—andsregulate theinput oF ‘the expansion free energy

of the electron bressure gradient inte the drift oscillation. - .- .

'“It is also significant that the underlying«modes persist in the

“ presence of turbulence.

The analysis of Ref..2 is based on the idea that in the
presence of low frequency drift modes centered on closely packed
ratlonal surfaces, electron orbits will be stochastic. ThlS
stochast1c1ty is 1ncorporated into the theory by lncludlng a
constltuent §x(1) in the electron orblt and ‘then averaglng the

time hlstory 1ntegrated electron response over a statlstlcal

‘distribution, usually (2wDT) ~1/2 exp, [~ dx(r) / Dt], of that ‘con-

stituent. of cOurse, such’ a procedure is ba51cally an appllca—

- tion of resonance broadenlng theory3 and is equlvalent to

replacing the ~(c/B')(y¢ x.ﬁ)?Vf'nonllnearity of the electron
drift kinetic equation with “the’ dlffus1on operator -D 3 f/a

In view of the 1mportance and s1gn1f1cance of the results
obtained by Hirshman and Molvig,ga careful appraisal of the

Tesonance broadening theory in the context of the application

}

to the_problem—of—drift—wave—turbuience in a sheared magnetic

field is in order. As previously noted by Dupree and Tetreault4

[T

1n—the1r—anary51s Of shearless drlft wave turbulence, the reson-

ance broadening procedure fails to preserve certain properties



of the exact, nonlinear drift kinetic equation. In.particular,
the orthogonality of E| and J; = ne(c/B )(E X n) is violated
when the —(c/BO)(gé X n)-VE nonlinearity is replaced by the
diffusion cperatOr. This causes two'difficulties§ an-erroneous

renormalization of the adiabatic response. and a failure to satisfy

£

a constraint necessary for conservation of energy Hirshman and

Molv1g c1rcumvented the first difflculty by first integrating R ]
by parts, retalning the exact electron orbit, to extract the B
adiabatic response and then applying “the resonance broadening

procedure. Observe, ‘however, that this is equivalent to writing

ko= (el/m <f><1>k w +‘5k,
and then replacing —(c/B (Vo x n) Vg ‘with —Da g/ax . .Clearly,

r'noting that -(V@ b4 n)- o= 0, I

the operatlonscﬁfadiabatic response extraction and renormaliza-
tion do not commute here. Hirshmanvand=Molvig did not address
the second difficulty in a substantive fashion;

Some questlonable p01nts in the resonance broadening pro—

cedure are also apparent from physically motivated observations.

First it is-peculiar that the quadratically nonlinear term of
the drift klnetic equation is replaced by a- renormalization pro-
portlonal only to f Second, difquion is characteristic of a
Markov-process.. Thus, the resonance broadening theory has under—
lying it the presumption of the existence of a bath of fluctu-

ations of short wavelength and high frequency, in‘comparison with

typical mode scales, which cause the turbulent orbit scattering.

ERE

This presumption is clearly inconSistent with the fact that the§

spatial and temporal scales of a typical test mode are cgmparable;_______eL¥




to, not disparate from, the scales of the background modes.
This is because other drift waves constitute the turbulent
background medium. On the other hand, because of the strong
‘resonant interaction between electrons and the mode, one might

argue that application of the resonance broadening theory is a

———reasonable; -approximate procedure for constructlng a renormal—

ized dlelectrlc and that remedles for the defects discussed here . .

Would lead to quantitative, but not major qualltatlve, modlfl-

- cations to the leshman and Molv1g theory. Clearly, further
investigation is needed.

In this paper, we attempt to resolve some of the difficul-
ties discussed by reconsidering the problem first studied by
Hirshman and MolVig. The electronxdrift kinetic equation is
renormalized.using the procedure of7Dupree and 'i‘etreault.4 The
resulting renormalized equation contalns an approximate repre—
sentatlon of the -(c/B )(V@ X n) Vf nenllnearlty which is
composed of two types of terms, proportlonal to f and @,-and
which retains non—Markov1an effects. . ThlS renormalization per-.
mits an uhambiguous extraction of the adiabatic response and
is shown to satisfy constraints necessary~forhconservation of
energy.‘ o | |

The renormalized drift kinetic equation contains terms

involving complicated spectrum sums which have heretofore

e

hindered—actual—calculations with this method. However, the

two-dimensional nature of the wave vector sbecturm for cylin-

drical geometry with shear can be exploited by developing an

approximate procedure, presented here, which greatly simplifies



the specturm summations. 'Thus,.itris possible to solve the
renormalized drift kinetic equation to obtain an analytic
approximation to the turbulent electron response which, in
turn, is used to construct the eigenmode equatlon (dlelectric

operator). The nonlinear stability probelm is analyzed in two

regimési*%Fﬁf‘ub‘<‘@,a.perturbatlve analys1s 1ndlcates that the

.turbulence has ‘a stabilizing effect at small amplltude and total

mode spectrum energy decreases. The rate of decrease is calcu—

lated. For wé >7w, moderate quantltatlve, but not -qualitative,
- modifications to the basic picture of ‘Hirshman and Molvig are.
found. In particular, additional stabilizingnterms lead to a
lower saturation amplitude, but the mechanism of turbulent
destabilization competing against shear.damping_and turbulent
mode broadening persists.. This is consistent with tne“notion
that in the presence of shear,'resonant radial diffusion con-
stitutes the dominant turbulent effect
The paper is organlzed in the follow1ng manner. .In'Sec..iI,
the electron drift kinetic equation'is‘renOrmalized.' It is
shown that the renormalized drift kinetic equation satisfies
constraints necessary for conservatlon of energy and. allows an
unamblguous extractlon of the ad;abatlc response. In Sec. IIT,
the w, < w perturbative analysis is presented. . The rate of

decrease of total mode specturm energy is calculated. In Sec. Iv,

the W Wy strongly turbulent regime electron response is cal-

culated and the eigenmode equation derived and solved. The

physical motlvatlon for procedures which simplify the calcula—

tion is given. 1In Sec. V, the results and their relatlon to

those of Hirshman and Molvig are discussed.




II. RENORMALIZED ELECTRON DRIFT KINETIC EQUATION

The renormalized drift kinetic equation for low frequency
turbulence in a circular cylinder with shear is now derived.

Neglecting the E”8<f>/3V” nonlinearity, which is unimporfant :

because E, is smallhﬁbhewnpnlinear drift: kinetic_equation -is — ”7

given by

of NVE 2 v [0t . D3] L o 3kEr 1 a0 ]

- = e e— e — - a_E—fv”n— V—:AEf:-;fvf— [B6(V‘I)»X‘ni) f_]‘—BO#afrAa@‘ | ‘
3<E> N o - | o

- lel == vyn:ve ) |

The potentlal fluctuatlon @ :can. be decomposed .as

8 = I @ (r)eyp[l(me~n¢ -0t) ] where m: refers to poloidal mode
m U.) ~ .
number m. and ‘toroidal mode number n and where r, e ¢ signify

radlus, poloidal,  and toroidal angle; respeCtively...Associated

with @ (r)arethe wave vector k [(m/r)e - (n/R)z], Wlth

~

p0101dal component’k6'= m/r, and the parallel wave number

k” = h-ﬁike(r—rOX/Ls.’>Here, rO.IS‘the radlus such‘that

:kiB(r ) = 0 and L-lg= —rq’/qu is'the shear length;“‘The'eiectron

dlamagnetlcdrlftfrequency is w e-==fk P C /Ln, where cS =
(T /m ) 1/2 is the sound speed, P =:c /Q , and L (l/n )(an /ar)
is the density gradient scale length. Thqu_fm w;ws”determrned
[ At
from _ A
' [ \~ - ' L / :
— — : . = 1. N < diIRVAT RS .
l\w K”Y”)f@,&'ﬁiuk]@4w ?fTéLK£?<k“V”"‘Q?)§@1w (Za)
~where—thenoninear—tarm , -
" 1. m (9% ] ;
Vg[NlJm,w = -1§3 z'[f° '*-r (Bréghﬂﬂ) m-m', w-w' :
. ~ 1 ¥
wre (2b)




Unless indicated by parentheses, radial derivatives act on all

quantities to the right.

Following the method of Dupree and Tetreault, we renormal-

ize Eg. (2) by constructing Cm wfm " the portion of (Ni)

which is phase coherent’with the fluctuation at m,w. Because

“construction of the renormallzed dlelectrlc does- not require an

__understanding of incoherent emission processes etc.,.the--coherent - - — -

approx1matlon to NL is sufflclent. Obv1ously, however,ithe phase

coherency restrlctlon eliminates many terms included in standard
Weak turbulenee theory. Construction of the coherent approxima-
tion'is implemented by iterative subStitution of driven terms |
into [NL]m,w’ such that the-overall phase is that of the fiuctu—
ation at m,w. Hence, Cn“wgm @ 'is at. least thHird.order in. fluctuatlng
gquantities. 1In additlon, for simplicity and in order to make con-
tact with the work of leshman and Molv1g, we Cm:Q%mvm 1noLude»only

terms correspondlng to wave-partlcle 1nteractlon Processes.

‘Proceeding, we now write [NL]@'w as:

H|2

(2 )] Iffﬁn i

[Nilm,w < - Z [ ?'Qm',wf + m
(3)

~ m' ~
~

where the supersgcripts indicate order’in fluctuating quantities.

" The corresponding terms of the form f(l) ,8(2) are part

m-m',w-w'
of the resonant three wave coupllng processes and are thus dropped4

351nce “£his analys1s is llmlted to cons1deratlon of wave—partlcle 1nter—

“action effects.. It should be noted the consistency of the renormalized

.§riftmkineﬁ%9fequatlonWWlth.conservationmoﬁmehexgy;is;not;afﬁectedfhv




z(2)

m-m', w-o' is then determined by
4

the neglect of these terms.

using Eq. (2), for the m-m', w—w’ fluctuation, and noting that
(2)

~ o~

the phase coherency condition requlres that f 0" be driven
7

only by the direct interaction (beating) of-lndependent test

fluctuations at m,w and m',w' 1in the presence of the remainder

From Eg. (4), and noting that éég%,

of the randomly phased turbulent background. ’Thus, [Nl]

m-m',u-w'
~ s . AeCcomMPOSEA B8 . o o e e e e e e e e
o ~
X! o, t T T "lii&j ‘El:’f:\* 7777i’__8f’77A T T
—m o-w' mem'yo-w' 7 B.lr sm',w' or
~o~ 0 o oo ,w
m (38 . . \z m' % I
= = 5= v ¥ £ + = £ ' T A~ J
r \9r m',w'/ m,w r m',w' 9r
‘ ~ ke ~ ~ m w (4)

Co—in! terms have been excluded,
4 . ’
z(2) o

£

fmem' , w-w" is determined by

e = 72 (2)
| R | =1 ! . .
[ i(w=-w")+i(k-k )“vﬁ + C@—@',w—wil m-m' ,w-w'
- ‘¢ [mt o of . _m -3f ' 5 ;
|z o = o= .
E BO ¥ m',w E)rm'_m r arm, ©! m,w
_m (3o )3 m'ze 9o
T r (ar ®m',w')fm,w + r fm_',w' arm w] (5)
~ /= ~ m, .
and is thus given by
~ (2 . £
fé—é',w—w' 1 %Eﬁ u
,;'”f;* ' v .
=L \g 5o = w5 |
- r\d ] mw <= = £ .  += f . :
| \,_,Is'_:_w'},, ~! (r 8;:13, »lw,b)f m, W r m',w ‘ar@’mJ“ (6a)
guzm-'—(l\'-—--'.‘l' = f[--l(w w') + i (k~k' )” V“ +C’n—m" =gt _] (6b)
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. . =(2) : .
Substituting fg-@',w—w' into Eg. (3) yields
[NI]QIM - C@,wf@:w =_dm@wffm,w,% bm,w ®m,m (7a)
where
_ 2 rl D _
— c g 0 A
d = =< m
m,w m.fw. 5 2 [r or ~
S~ .0 T R
S T ey Aif; B -
X g@—@',m—w“fg Qg',w' 3T (7b)

x 3 RUNEE A
I}}"INH',m—w' r arml ,wl.

Thus, the renormalized drift kinetiC‘equation is

—ile -k Ny c. ¢ = i191 f k v, - \a

[ ( ku-"n> zy,w] m,w T <PV T Yre) om0 (8a)

C@,w f@,w»= _d@,w'f@,w + bm,w ®9,w (8b)
The distinction between C ¢+ . and C . , 1s made because

m-m' ,w-w m-m' ,w-w

of the neglect of ®(2)

mem® -0 terms in Eq. (5). Consistency with

this approximation requires that C . £ .
[FHLS approxd - au that Copm' -0 " o-n' ,o—p ' e9Ual
~ N~

~

a. contribution

-and_that_the b

= =M =0
7 L4

b=~ W— A —LLL==L L

" ~ ~ A~

=T =0 =T, 0=

~ ~ ~ A

‘be dropppd~
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and bm " operators involve sums over the turbu-

4

The d%,
lent spectrum. In view of the fact that the coherent approxima-
tion neglects emission and absorption. by k,w components and that'

the phase ‘coherency condition excludes non-factorizable driven

fluctuations, the spectrum constituents. are effectively limited

_Note that such a limitation on the spectrum ensures treating a

to be normal modes only. Hereafter, that limitation is imposed

*~and~¥-taken-to-be~w(m).-~Sﬂperflueus~wvsubseriptsmwill—be-droppedw-_~~~mmn“

test mode and the background modes bn'an equal footing.

Having derived  the renormalized drift kinetic equation, a
brief'discuSsion'éf-its properties ‘is useful at this point. First,
a criterion (based on the exact drift kinetic equation) is es-
tablished which the approximate [Nilﬁ'given in Eg. (7) must ..
satisfy in order that the renqrmaliégd drift kinetic equation
be consistent with conservation of energy. Proceeding as in
Ref. 4 by_taking'the.%mvnz moment of Eqg. (1), integrating over 1

V||, and averaging yields

3 (- |

where g is the heat flux due to E x B convection. Ih additibn,

the Poynting theorem gives

AW,
(o aml =
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J. includes ion E x B, polarization, and parallel currents.

~

Thus, shear damping appears in the energy balance as ion heat-

A

ing. ©Note that since J( y =1 o{e] £L(V® X n), <E, l(e) = 0,
~ O ~

exactly. Thus, combining Egs. (9) and (10) yields

|
s 1 . &)= —I~e!AnO~fdv”j<~'5NI>4='o~~~~'~’ (T1bY

where Eq. (lla) is the energy balance relation and Eq. (1l1lb) is
the constraint. vIn effect, Eg. (l1lb) constitutes a test.which
approximate representations (rendrmalizations) of'Nl must pass
so that constraints necessary, but'bj.no~means sufficient, for

energy conservation are. satisfied. 1Indeed, whether or not a

theory actually conserves energy must be checked aposteriori
using Egq. (1lla). |
That the renormalized [NL]m given 'in Eq. (7) satisfies

the constraint is verified by inserting that result into Eq. (11Db).

Thus

" A , Ak [~ AN
.fdv“ <ON > = ,[dvﬂ;f rdr ¥ & (ﬁ f - b o ) (12a)

2. /(/35*\ b
R — ;'____ 1 ey il . —— .
<(I)N'L> B.;Z‘}dr mzmvki&_'r ~)m_ ®m'g —m'[r (I)m' r "~
o) s\ - ~ ~o ~
,.\,. ; * - J _Q g_*.. — . ‘A é




A \ * .
N b ~%x OF of
* — * ~
~Je m (—- )g . [m'® n.z (—— T') o
or ~ m-m r m 9r ° r \ or T m

~

apk |~ w00 . ,
m it = —i
-—-(ar T:)fm ‘T fm' or - - (12b)
- Taking @(-m) = -W, which is true for drift waves, and inter-

.

<®N > =0 and the renormallzed drift kinetic equatlon 1s con-

sistent w1th Eq. (llb) Note that . detalled knowledge of g

~ o~

was not necessary for construction of this proof.
Regarding extraction of the adiabatic response, it is

easily verified that in the limitfwhere fm=L%J©m<%> and sim-
. ~ ~ ~ e .
ilarly for all fm[, Cmfm'= 0. Thus, the adiabatic response is

~ o~

annihilated and can bé unambigously extracted. The renormalized

drift kinetic equation for the nonadiabatic response gm‘is

~

T A e ['é[(-.__ )~ PR Ay
1(w k”v“>g~» dg +Db 0 i W @*e‘ém‘f> ‘ (13)

m m m T

where Bﬁ contaiﬁs!the nonadiabatic responses, ém’ of the back-
ground %odes.' )

In generél.térms, note that in the renormalized drift
kinetic equation the nonlinear term of'the drift kihetic_equa—

tion is replaced by two quasilinear-like terms. The importance

of thé'bm’térm‘is'obvioUS'and”1s”disoﬁSSéd“iﬁ%Ref{ 4. VNOte;z

bt A 19

“changing m with m' gives <@N,> =-<0N,> . Similarly, inter-

- . v
Mchanging m, m' with -m,“fm' ~gives <®N,>=<®N,> . Thus, . .1

however, that since @'“’ terms have been dropped, Poisson's

equation never appears in the derivation of thé renormalized

drift kinetic equation. Thus, to attribute to‘bT the role of
AL

~
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representing a "back reaction of the particles on the field"5

is incomplete. Also of significance is the non-Markovian

character (Q dependency) of dm and-bm. This feature, which is

~ ~

necessary for consistency with conservation of energy; indicates

~that tﬁewrenormalizédmdriftmkineticwequationwis,spgtiallygand,;m

temporally non-local, unlike the diffusion equation used by

"Hirshman and Molvig. -




