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I .. INTRODUCTION

| Based on computer simulat‘ionsl and'analytic studiesz,
aysimple nonlinear description of the ion pressure gradient
instability in toroidal'gedmetry has been introduced. The
instability is deScribéd localiy on the'outside'of.the
torus.by two'coupled}nonlinear partial "differential

egquations for the electrostatic potential and pressure

+ £luctuation.

In the study-of Horton, et al.? the renormalized
turbulence theory' is used to obtain»a‘médel_wavenumber
spectrum,vtheisaturation level, and, -in the-satg;ated’state,
a final result for the turbulentfthermél'conduétivity. The
turbulence theory is based on a statistical description of
- the weakly interactiﬁg fluctuations.  In fact, closure of
the equation for the spectral distribution ‘is obtained by
neglecting'intrinsic‘four—field correlation effects.

In thié WOrk'wefconsider'a simplerlcalculation based
. on the.opposife'assumption} Namely, we cohsider-that the
system is sufficiently close to marginal stability that
only one mode, albnglwithtits coherent harmonic components,
needs to be considered. ‘This'condition of weakvinstability
‘can be guaranteed by conéidering a discrete azimuthal
wavernumber spedtrUm.’ky.=_2wm/Ly = m/r due to periodicity
in y and puéhing.the'SYStem'pérameters just past marginal
stability.' For such a temperature gradieﬁt only the mode

k satisfies the dispersion relation and is linearly unstable.




The situation is shown in Fig. 1. The first bifurcatipn
point is an éXQhange'Offstability where the two stable
oscillations wi(k}n) for 1 < Ng. As we proceed to
iarger values of the‘temperature gfadient'n + @ sequence
of modes are destabilized. The second bifurcation is at
nq - with" the subsequent sequence vné,h3,;.; leading to
complicated solutions Which-éventually become stochastic
in nature. _

The Hépf‘bifurcation theOry4 impliésvthatvin the
neighborhood ofleach’of these critical points. there emerges
a new. stable limit cycle._ Here we calculate the limit cycle,
the'nonlineaflphase shift and the thérmal conduction in the
neighborhood of the first bifurcation: ProCedures¢are.given
by Keller4,jfor.EXample, for sYéteﬁatically constructing
fhe bifurcation'diagram shown here'séhématically-in Fig. 1.
The method is constructive and ihvolves solving the non-
~linear eigenvalue problem defined'by~the'finite amplitude
steady state equations.

In Section III we analyze-thelconvéCtiVe heat:flux
 carried by the coherent oscillatory"flows. ‘Recent‘neutral
fluid experiments on the transition to turbulence appear
to show that typically only a few bifurcations are observed
before the dﬁset of stochastic fluctuations. In'SeCtions
IV and V we consider the conditions required for the onset
bf'stochasticity in the flow that circulates betweeﬁ

convective cells swirling in opposite directions. Finally,



we discﬁSS'observations‘in neutral fluid experiments which
support the picture of the onset of turbulent flow developed

in this article.



IT. LIMIT CYCLE AT THE FIRST BIFURCATION POINT

We consider that a parameter, particularly the ion
temperature.gradient; has increased to push. the system .
into the unstable'régime; We'now calcuate perturbatively
through the third order in the”amplitude Of‘fhe oscillations
the nonlinear:fields in the system. At third order we
Obtain a secular component Whidhvdetermines,the nonlinear
amplitude of the~oscillatidns. From ﬁopf bifurcation theory
we expect to find the frequeﬁc& to be.giveﬁ by that of.the.
linear oscillations at marginal.stabiiity,and fhe amplitude

ey
)? measuring the

to be directly proportional to ' (N - Mg

excess of the‘temperéture'gradient that drives the
instability.
The‘nonlinear-equations2 for the fluctuations in the

system are

5t~ T4 gyt o2e, 5y OP (1)
adp _ _ 8¢ _ A
S = (1 +m) 3y [s0,6p1 . (2)

which reflect the statements of V?;l = 0- and ‘dpi/dt = 0,
respeCtivély; The parameters of'thé system are the '
témperatUre—to—densitylgradiéht ratio 'n = d4nT/dfun, the

- inverse aspect fatio ‘En =_rn/R and the electron drift
wave azimuthal phase velocity o =1 - (1 +.n)k?._ The
dependence of the'ihsfability’on the magnetic shear and
the connection length is.giveq in Horton,; Choi and Tang

and is neglected here. Kinetic theory effects, particularly



~ the change in the phase velocity uk of the drift wave

due to the velocity spaqe'averége of the finite Larmor
radius factor 'Jg(klvl/MCi); afe'investigated for this
instability by Coppi and Pegoréros.

-For the truncated E_ spectrum the’nohlinear equations

(1) and (2) may be written as
I

| d¢(£) E ) ’ z
g = ik e () + i2ekop(k) (3)
dép (k) S _ oon . '
ge = Tik(l o+ m)edk) + Z vzeky Xkopel)éplky) -
kitko=k o (4)

In the absence of the nonlinear mode_coupling it is
straightforward to show that the collective fluctuations

are given by

-ek(w)- ¥_ wlw - kuk) + k?yg =0 (5)

and are unstable when 2y, > [u, |. . Here, we define
» L o : .
Yo ='f2€n(l + 1n)]? as in Horton, Choi and Tangz. The

most unstable wavenumber is given by -
N _

kg = @ +m7F )
and the unstable wavenuﬁbef band is given by
kol = 2v)? < k< k(T + 2707 L (7)

For Yo > 1/2 the unstable band extends from k=0 to
%
ko(l + 270) .
For a discrete azimuthal wavenumber spectrum, k=m/xr ,
in a periodic system the mode number m. with k closest

to kd'.is the first mode to become unstable. ILet us write



the small amplitude oscillations at the wavenumber nearest

ko as
| e = ae(x) coslkly - ut)]
and '

lsp(}‘) = aqu)(X)j COS[k(Y";"ut) - 9]

where we consider that

@(x) ‘=  sin(gx)

(8)

(9)

with g given by the geometry. In the linear approximation

the two complex equations (1) .and (2) determine the unknowns

a, ¢;.u, Xp* Substituting (8) and (9) into (1) and (2)

yields the four ‘equations

ku = kuk - Zenkxo cos¢

da _ A R .

IE —_~2€nkgxo sing¢

da .- .

e cos¢ = kau sing

X gé-éin¢ + ayx.ku cos¢ = (1 + n)ka
0 dt 0

to the first order in a(t). In the Appendix we

(10)

(11)

(12)

(13)

describe

a more general form of the solution which allows for a time

dependeﬁCe in the relative phase ¢.

We now assume that the nonlinear fields can be calculated

by a small amplitude expansion

w(l) (2) (3)

Y = + + + o

- D

Sp +‘6p(2) + Gp(3) + ...

where '

(14)

(15)



™~ e~ g (16)

with a << 1. We substitute the expansion (14), (15) into
equations (1) and (2) and solve order by order.

The first order'equations are equiValent to the
stability anélysis of the equilibrium. The equilibrium
~a = da/dt = 0 is stable or uhstable‘accbrding to
2Y, §'luk| ,
equations (10) through (13) the two cases:

respectively. In summary, we have from

(1) 27, < o]
X =. (1 +n)/u
sing = 0
wl . AR ‘ ‘
up -uy + oy, =0 (17)
‘or
_ 1 a2 5 % _ — -
T U = zu * [zu” - yo j
2k 47k
(ii) ' ZYO > v]ukl
cos¢ = uk/ZY0
%
. _ .2 2
sin¢ = (l uk/4yo>
u = Ly and = k in¢
= 3% Yk = YO sin

L
Xg =. [ (1 + n)/zsn] (18)




A. SQCOnd+Ordér*FieIdsﬂ
We now calculate the effect of the nonlinear convection

associated with the first-order fields by evaluating

v * Vop =,[¢,}5p] = __'_;‘","‘*‘_‘ .

Using equations (8) and (9) and defining the phase variable '
C) =_k(yv—tut),.we'bbtain
[w(l);ép(l)] = % aZXqu sin(2gx) X [sin® cos(® - ¢)
— cos® sin(® - ¢)] -
1 2 -
= 5 a“xyka sin(2gx) sin¢ . (19).

As is well known, the convective. nonlinearity only produces
the difference of the azimuthalﬁWavenumbers, which is at
k"=0 for the self-interaction. The second-order fields

are given by

| (2 ~,
'3 2 ~ 9 0

. - .-: : ] N ) . . e .\( -2)

3 (2) _ op »_ 2 . .

IE Sp = (L -+ 1) 5y T 2 a xokq»s1n(2qx) sin¢ .

‘ ' (21)

The solutions are evidently

VAV i -

e 2l = g |

. . t '

6p(2)(x,t) = - % xokq sin¢‘sin(2qx)}[ azdt' . (22)

The second-order fields are uniform in vy and give a

steepened x gradient to the pressure fluctuation.
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B. Third-Order Fields

The convective derivative acting on the secénd-order

fields reduces to

3 (2)
(v, 0] 3V = [0, sptt] 4 [cp(l),dp(z)]
: 1P - oy ox :
Since ¢(2) = 0 there is simply a reaction in the pressure
equation due to' the first-order flow vEx /COnveCtion-of
the second-order preséure*fiuctuation.
The third-order equations are
| 3) } .
3,3 a3 (3 | (23
}: 3t 4 = =-u ay + 281’1 E—YT Gp v i ) ( )
/ 3) (1) (2)
B (30 L 093 e (D) gep —
[Bt Sp ‘—< (1 + 1) 5y + 3y % (24) |
where
[w(l),ép(z)] = - %_Xokzqz sin¢ [sin(3gx) - sin(gx)]
sin® a(t)/ a?(tv)at" . - (25)

Returning to the first—o;der equations and collecting the
components that vary as cos® and sin® , we again obtain
equations (1) through“(lz) and the nonlinear modification

to equation (13) given by

da ing -+ axoku cosp = (1 + n)ka

Xo g St

t
- %—Xokzqz sin¢'ap/. az(t')dt' . (26)
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Using the relations in case (ii) equation (18), we now

reduce equation (26) to obtain

t
2 2
sing -~ kg az(t')dt' a(t)

0 2

(27)

Equation (27) has an analytic solution found by

reducing the equation to

dy _

ar %

dx. _ .

ar - v(l - y)x

(28)

where T =_2ykt -ahd x(T) =.(kq/2yk)2a2(t). The solution

is ‘ o
Zxk - exXp (th)

~ o Tkal 1 +.

alt) :
. exp(Zth)

N

and in the limit +t » + the solution has y = 2
2.2

Finally, we note that a more general solution for

is given in the Appéndix.

C. OQuasilinear Approximation

+ o0
E_g_ R 2 1 Vot : —= L
2-'./i a” (t )dt. = 2ky0 sing —;.2yk E

(29)

or

(30)

a(t):

In the épirit of weak turbulence theory we consider

the following approximation for the time history integral,

»t . 2
/ az(t')dt' = & (zt) .
2Yk
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In this model the amplitude equation (27) becomes local

in time
2 2 A
g% = | kv, sin¢ - k % a®(t)| aft) . (31)
Yy ’

Now a(t) . approaches a stable limit cycle with

' 4.2 1 .
2 s(yhH2 g - )
L : 2 2 : 2
kg g
or | |
2
o 2(y2 L uz) ' 2y, sing¢ :
a. = 0 4 k = _Q___ (32)
L; ;5 ’ . :
<:k > 4

This approximate solution for .a(t) is closely related to
fhe turbulence theory formula for the mean square amplitude.
Comparing equations (29).and (32); we find that ..
instéad of maintaining a(f) = a, ‘the integral (nonlocal)

equation for a(t) has the long-time behavior

lim a(t) = 2a; exp(-y,t) . ' (33)
t>oo .
Figure 2vde3cribes the parametric dependenée of the
limiting ampliﬁuae on the temperature gradient.

The amplitude forﬁula is extrapolated.to large n
through the bifurcations shown in Fig. 1 and compared to
the reSult_given in'Horton,-Choi-aﬁd.Tang2~on'the basis of
turbulence theory. The root—mean¥square level from turbu-
lence theory is smaller by 1/2v/2 than the extrapolated

single mode amplitude.
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IIT. THERMAL CONDUCTION

Now we calculate the fime-averaged thermal flux Q
produced by the nonlinear oscillations. The time average
of the locally oscillating flux is also equilvalent to the
net flﬁx integrated over the magnetic surface (defined by
X = constant) since the oscillations are only a function

of ® = k(y - ut). The net convective thermal flux is

-<VEx6p,> = —<g_§; 6p> | (34)

% azkxo sin%(qX) sin¢

Q(x)

as follows from equations (8) .and (9).

Here‘we-rémark fhat té model the toroidal system the
reference surface x=0 is any of the densély packed
rational surfaces on which k” = (m - 29)/gR = 0. The
result of interest for the toroidal system is the summation
of 0 ~given in equation (34) over a large number of

rational surfaces. Assuming statistical independence on

these surfaces the summation becomes

2 ., . . 2
. a“ 51n2(qx) ® > %— E o(m, )15
L

where ¢(m,%). is the amplitudé a(t) for the mode at the
g(r) = m/% rational surface. Recent fluid simulations by
Brock and Horton9 show. that once the wave amplitudes'ger'
to the level where fhe resonance overlap criterion derived

in Section V is satisfied, the stochastic motion of the
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ions across the sin(gx)=0 surfaces| eliminates
the radial ﬁodulation of the radial thermal flux. In the
strongly stochastic regime quasilinear theory, Wiﬁh.the
flux proportionél to Z]$(m,£)]2 ; is observed in the
fluid simulations. An objective of thié»work is tb_study_
the onset of stochasticity in the ion Eﬁcgj motion of
the drift modes.

First we consider the parametric dependence of the
flux Q wusing the limit cycle amplitude ag obtained in

the quasilinear approximation in Section II.B . From

equations (18) and (32) we obtain for equation (34)

4‘Yz 1 uz)
1 ' 0~ 4 “x/ _.
Q =7 xok 5 - sing
: g )
2 A :
Yk L :
0 1+ .3
= 3 ( 2€n”) sin®9 , (35)

with sin¢ = (1 - ui/4y§) . For comparison with the

earlier formula2'3-it-is appropriate to approximate k by

o =1 .
ko = (1 +-n)“a',*theffastest.growing mode in a continuous

k spectrum, and to define the effective nonlinear thermal

conductivity ‘K  by
Q = K(1+n1n) .

The formula for'the‘thermal conductivity that follows from

equation (35) is

i
v. .k (2e_)

K = -0 sin’

o Sin3¢ . ) (36)
g~ . <k

I

Ntuw
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with the last reduction obtained using k =k, from
équation (6). Finally, we observe that taking sin¢ = 1
and using <k§> =_(2€n)%E/Q(1 +’.'-n)';i as derived in
'Horton, Choi and Tang2 from ballooning mode theory, the

formula is

S S [.ip_ g’é‘_] (37)
. . n

»in thé units shown in the brackets. This formula is the
same fo wiﬁhin a ldgarithmic factor as that derived earlier
from statistical turEulence.2’3',Here we see that the
result follows as the limiting value of.the thermal flux
when af(t) +‘aL and sin¢ = 1 from the convection in a
single finite amplitude nonlinear oscillation. of course,'
in the limit where 2yy >> |ug | and sing’'= 1, the ‘system
| passes into:the-region of higher ordet bifﬁrcations shown
in Fig. 1. 1In Fig. 3 we indicate the~dependence'of £he
thermal flux én’the'stability parameter 1.

If the quasilinear model for a/(t) i§ abandoned, then
we éee from equations (29) and (34) that the flux Q first
vgrOws to the value computed from a = ap and tﬁen subse-
quently decays exponentially. In the regimes of the higher
order bifufcationsﬂthis slow decay is easily interrupted by
the presence of mode-~mode interactions when their rate for

. : . 2 .
coupling energy is comparable to Y We conclude that in

K

either case, the value Q =_QL obtained with a(t) = ar,

is an important characteristic value for the thermal

conductivity.
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-‘The present collisionless theory shows vanishing flux
Q at the point of marginal stability n = n, - To under-
stand the transition from the finite, but small, collisional

flux Qc for n < n_ to the:conVective flux for n > n

c C

we must také into account the small phase shift ¢ between
the potential and pressure_oscillations'in the presence of
a fiﬁite colliéional thermal con@uctivity;. Returning to
the linear analysis it is easy to show that the pressure

fluctuation equation leads to the phase shift

2
. _ k"' -  kx
A S T

when a weak thermal conductivitY"K is included in equation

(2). TFor weakly-uhstable“regimes where

Cosing = > | LX) ()
- L -\ Léjo _ '

‘the anomalous flux becomes from equdtion (35)

2 ,.2 ,
2k“k(yy - + u) :
g = —L0 2k (39)

owg

The ratio of the convective flux (39) to the conduction

9, =. k{1l +n) (p/x)(cT/eB)
is
: 2, 2 1 .2
o _ x _ 2k lyg-7w)
Q_ = T 2 i (40)
c = K q uk(l + 1)

which shows the\transiﬁion from vanishing K/k at onset to

large K/k in the regime lukl << vy
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IV. CONVECTION OF PARTIéLES IN THE DRIFT MODE

" We now calculate the characteristic motion'of the
~guiding centers of the parficles in thé drift mode given
in Section'iI. For a general poténtial‘fiéld Y(x,v,t)
measured in units of the electron tempefature the.équations

of motion for the guiding center coordinates are Hamilton's

equations
. cT .
ax' _ . & 3 (4,v,t
a—t" - . " eB ay (XIYIt) (41)
‘ cT . n, o -
&y o 83 (4,v,8) B (42)

dat. . eB 9x

with ¢(x,y;t)‘ for the time-dépenaént Hamiltonian.

Before the?bifurcétion point ni the drift wave field
is characterized by equations (8), (9), and (18). Except
fér the’élow variation of the amplitude af(t), the modé is
stationary in the.reference‘fréme' y''=y + ut whefe
u =}5uk . In this reference ffame; traveling with the:
phésefvelocity of the drift mode, the first integral of the

equations :of motion is

p(x,y) .= "a sin(qXIHCOs(ky)f'=@ 90" = _constant. . (43)
The contours of constant ¢(x,y) are shown in Fig. 4. The

flows along the contours arelgiven by ¥ =~82¢ and X =_—8y@

in strict analogy to ¢ = BPH and g = —BPH for one-
dimensional nonlinear oscillatérs. We now calculate the

characteristic period "t of the oscillator as a function
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of the effective energy ¢O’

integration that defines each flow line.

or here the constant of

The maxima and minima of ¢(x,y) occur at
ax, = (2n + 1) (v/2) and kym = mmT where ¢ = ta .
Around the maxima and minima there is convection in the.

clockwise and counfer—clockwise directions at the angular

frequency
. 27 cTe
Wy =. T = g k@ . (44)
0 :
since the Hamiltonian is harmonic for [Wof << a . The

, trajectdries_giVen by equations (41)., (42) and (43) are
obtained in terms of the elliptic function dn(u|m)

with u = w,t and m= 1 - wg/az. ‘We find that-

0
sin[gx(t)] =,'dn(w0t]m)

cos[ky (t)]

"dn‘wot + K|m)

with the full period of circulation given by At = 4K or

“o

wlpg) = w, [Ef%éﬁi

g 1 2, 2 ' 2 < 2
wo[l 7 1 ¢O/a ] for ¢O ~ a

R

WA

.
22n(4a/¢0)

for ¢g < a®. (45)

The limiting forms of the trajectories are also easily.

obtained for small m and for m near unity.
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The maxima and minima are stable equilibrium points-
of the flow, whereas the éthér roots of =0, y=0
at gx = nr and Kky = (2m}+ 1) (r/2) are unstable
equilibrium points in the flow. As shown in Fig. 4, the
flows in the‘neighbofhood of an unstable point liern
opposite sides of the separatrix given by gx = nm or
ky = (2m + 1) (n/2). The.sepafatfix is defined by
Y(x,y) = 0, which also defines the 6nly "confined orbits"
of the Hamiltonian system. The period of the flow becomes
long for contours near the seﬁaratrix. | -

Let us calculate the trajectofy of the flow near the
separatrix at ky = 7m/2 going from gx =0 to T. For

ky = 1/2 the equations of motion (41) and (42) become

Y 3 — _ag. = 7
b:4 oy ka sin (gx)
y = 0 ,

which integrates as

gx(t) | | t
' d(gx") _ -
sin(gx') Y0 at' .

0 e

Performing the integral, we obtain the trajectory

0

gx(t) = 2 tan_l [exp(wotq
0 at wot = =00
T at w,t = oo (46)
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The trajectory has an infinite period and its Fourier
transform contains all frequencies with its maximum

amplitude at;zero.frequency.
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V. PERTURBATIONS AND THE ONSET OF STOCHASTICiTY

In Section IV we show that the guiding centers are
convected at the frequency m(wo) = kq(cTe/eB)ﬁ(wo/aj
iﬁ the plasma by the drift mode ¢(x,y) whose fundamental
component is ¢ = a sin(gx) cos(ky - wkt) . - That<paft of
the flow that is near the’separat:ix“ Iwol <a has a long
period for circulation. As shown by Chirikov® in his
Section 4 on mdtion in the vicinity of the.separatrix, the
trajectories near the separatrix become stochastic in the
‘preSencevof a small resonant perturbation;v Qualitatively,
we expect the perturbation analysis of the pendulum
separatrix_given in Section 4.4 of Chirikov to apply to
the present drift wave problem.

In thié section we considefjthe perturbation calculation
of the convection in the primary drift wave due to the
- presence of a small amplitude secondary wave. In the
reference frame moving with the primary Wéve'analyzed in

Section IV we consider the perturbation

pq(x,y,t)

Il

ay sin(q1X) éos(kly - w"t) (47)

where " = @ - ku = w - w
_ kq kq k

frequency in the laboratory frame. The equations for the

with w, being the

perturbations dJdx(t) and dy(t) are
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t ‘
Sx(t) = klal‘_/ sin[qlxo(t')]_ sin[klyo(t') - w"‘t':] dt!

(48)

]

rt :
Sy (t) _qlélf cos[qlxo(t'l)]‘ cos[klyo('t') - w"t'}dt‘ .

— 0
The secondary wave can arise from the mode-coupling
pfbcesses. |

There are resonant contributions to the perturbations
at times t =_tS where the inﬁegrals have innts of
vstationary phase given by -

dx dy
O "'(t‘\) i k O

+ — — : = "
*d; 3¢ (s 1 ae (t) W

) (49)

Condition (49) is an example of the general resonance
COndition'fqr perturbations_acting.on a,ﬁohlinear oscillator
as discussed by.Chirikov; Geneializing the condition by
tréating the two waves with comparable amplitudes leads to
the resonance.overlap condition for fuily stochastic
trajectories.

~For trajedtories sufficientlylnear the maxima or
minima of ¢(x,y) that the'siﬁusoidal orbit approximation
becomes relevant we may estimate the resonance condition
to obtain |

w.y'-'Q' = am;i' S’_I‘E A  > Iw"I . (50)
, g eB . '
where

A = [&l,x ky * z| = lqlk - kqqf .
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The resonance condition (50) appears easiest to satisfy
near the separatfrix where m ~ 1.

For trajectories near the separatrix we may proceed
more directly by folldwing the pendulum calculation in
Section 4.4 of Chirikov; The orbit near the separatrix
xo(t'),yo(t') in the perturbation inﬁegral is replaced
by the orbit on the'sepératrix._ Consideripg that part
of the orbit that has ‘ky, = 71/2 and Xo(f) ~given by
equatidn (46) , we obtain for the resonant part of the

perturbation

S T gy (E') - dwt!
§x = klal;‘z ?sin(kiﬁ/QkYmRe' ‘e : - dat?

-0

| | T gxp () - demer |
Sy = qlal‘z cos(klﬂ/Zk)' Im ‘e ) der .

i
|
i

I
J
-

U ) . -0

Along the xo(t) motion the condition for the stationary

phase becomes

o (52 ot
qlk eB'f cosh(w_ .t ) = lw.l *
i 0's

Repeating the calculation for fhe motion along ax, = nm

and yo(t) on the separatrix the resonance condition is

[T

e a - "
qu ( eB)Fcosh(thS) - .Jw l -

nf

From these results we see that when w > lw"l there are

stationary points its in the perturbation integrals and



24

thus a resonant interaction occurs. The resonance occurs

for a period of time T . of order

T 0~ 1 ~ Y&
. r wo/g : wnz

.short compared to l/wnz for a small a..

in.fhé approximation that the change in position of
the guiding cehter is negligible between resonances, it is
possible to write a tWo-dimensional map for the successive
interactions. This map is the analog for this problem of
the whisker map for the pendulum problem; which sﬁows.that
the stochasticity along the Separatrix occurs at arbitrarily
small.pertﬁrbation. ‘Without pursuing this calculation in
detail it appears evident, and can be observed in examples
by numerical integrations, that the flows in the neighborhood
of the separatrix become stochastic for very small amplitude
perturbations when the resonance cqndition wyL2 N Iw"lk
is satisfied. N

In Fig. 5 we show the ‘effect by adding to the single
mode'equation the'smali pérturbation al.sin(qix)_cos(kly - w"t).
Repeating the'integration.given in Fig. 4 with al/a v 0.03
and w % N %|w"|  leads to the stochastization of thé orbits
along the separatrix. 1In Fié. 5 the =x(t), y(t) are plotted
every tn = 2mn/w" . The points along the separatrix are

observed to jump from cell to cell in an irregular manner.



' In studies of the transition to turbulence in fluids
the stochastization of the flow between convective cells
appearsAto have béen observed in a recent experiment. In
the experiments of Bouabdallah and Cpgnet7 on Couette flow,
measurements of the autocorrelation function of the fluid
oscillations are reported as a function of axial distance
across ﬁhe Taylor vortex cells. The measurements show that .
the incoherence in the oécillation deVelops preferentiaily
in the flow between the vortex cells.

The effect is shown in Fig. 6 of Bouabdallah and'Canet7
where the autocorrelé;ion functioh of the oscillation is
| shown for three aﬁialvpositionS'corresponding to the two
boundaries and the middle’ofAthe'vortex cell. For £he’

- Taylor numbér (T = 263) below the onset of turbﬁlence'the
correlation is near Unity for all three axial positidns,

- whereas for the intermediate Taylor number (T = 637) the
flow is well correlated in the center of the cell and
incoherent. at the ends of the'éell. For a still larger
Taylor number (T = 710) the correlation function at all
three axial positions decays rapidly with time.

This aspect of the experiments is readily interpreted
by the theory for the onset of stochasticity along'fhe
separatrix for the Hamiltoniah equations (41) and (42)
describing the two-dimensional flow. Noting that the
eéuations 6fvmotion.(4l)'and (42) are'the'characﬁeristics

for solution of. the partial differential equation for (1)
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the pressure fluctuation in the toroidal drift-mode problem
and (2) the vorticity in the Couette flow problem, it
follows that the pressure or the vorticity fluqtuations,

respectively, become stochastic first in the spatial regions

separating the convective cells. Nonlinear fluid simulations

of the temperatufe gradient—driven drift mode also show this
behavior as. can be seen from the evolution of the flow shown

in Fig. 5 of Horton, Estes and Biskamp™ and in Brock and

Horton.9

There is also experimental evidence that a resonant
perturbation may be prodﬁcing stdcha;ticity inwﬁhé'circular
Couette'flowAéxPeriments at the University of Texas. From
visualization measurements, Gorm'ah8 has observed the onset
of fine-scale étructﬁre in the flow. The fine structure
occurs approximately with the onset of the second
characteristic frequency. Near thé onset, thé'étructuré ’
is promihent around theiboundariés;of the cells which we
call the separatrix of the flow pattern. Although less
well correlated with this énset, there is a definite

strengthening of the mixing from cell to cell of the

. polymeric flakes.in this régime of the experiment. Recent
laser Doppler shift measurements by Reith and SwinneylO
report a strong correlation of the axial variation of the

noise with the location of outward flow between cell

boundaries.
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VI. CONCLUSION

The nonlinear limit of the toroidal drift instability
is investigated in the regime of a single smallvamplitude
ﬁode. Based on the small amplitude a(t) expansion
carried out to third, it is shown that within this truncated
déSCription the amplitude obeys a simple set of ordinary
diffcrential equations. . In the absence of dissipation the
énalytic solution is found as'écreversible pulse “al(t)
~with the CharacteristiC'limitinQ amplitude - aL(Eh,n,é)
whére € is the inverse aspect ratio, N the temperature
.gradiént parameter and g is the radial wavenumber of the
primary modef The'relatioﬁship between the'nohlinear pulse
and the guasilinear approximation in which' a(ﬁ) approaches
aL as a stable limit cycle is noted in.Section’III.C e

With’the'finiteﬂamplitude”éolutioﬁ; the'coﬁvédtive'
thermal flux is computed and.ics characteristic vaiue; 
.given in equation (35), is compared wifh the value obtained
from turbulence theory in Horton, Choi and Tangz. In
Figs. 2 and 3 ﬁe summarize the compariscn_of the single
mode amplitﬁde'and thermal flux extrapolated to laﬁge-
temperaturecgradients with the formulas from turbulence
theory. It is shown that with,the interpretaticn of the
rédial wavenumber as an averagé'value in the turbulent
'speCtrum, the two results agree in their parametric
dependence. The extrapolated value for the maximum of the

single mode ’ a; 1is a factor 2/2 greater than the
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‘root-mean-square amplitude from turbulence theory. The
corresponding factor for the comparison of the thermal
flux is 8. o

The motion of the guiding centers of the ions and
eiectrons in the low phase velocity toroidal drift mode
‘is given by the one-dimensional nonlinear oscillator
equations (41) and (42) . . The period-for convection of the
flow aroﬁnd the circumference of a cell in the single mode
is given by equation (45) in terms of the-elliptic integral.
The'lbgarithmic Singularity of the peridd for the flow near
the separatrixlvmakes the flow suééeptibleito small
perturbations.‘ Using the trajectory for the‘guiding center
motidn‘along‘the'separatrix, we obtain the condition fbrf
large deviations from resonant perturbations. .Genefalizing
the work of Chirikov. on the stability of the'motion near
the separatrix, we find that the_condition:for the omnset
ofvsignifidant‘stochasticity along the separatrix is given.
by equation (50). ) |

In Fig. 5 we show the effect of adding a three percent
éerturbation on the trajectories describing the flow. When
the resonance condition is approached, wnz(ﬁlfi) < ka.— wkﬂ,
the boundaries of the cells become strongly stochastig witgl
~guiding centers moving across the cells in both the radial
and azimuthal directions. Since the“trajeCtories are the
chaiacteristics of the convective derivative in. the

dynamical equation for the pressure, the pressure fluctuations
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also become stochastic when the resonance condiﬁion.is
satisfied. Here we do not attempf tovidentify the origin
ofAthe perturbatibn thaf produces the stochastic motion.

We simply note that, in general, the perturbation may arise
from the'nonliﬁear-dynamic:itself.

_Finélly, we note the important qualitative difference '
between the onset of stochasticity in the present drift
wave problém and that of the stochastic. pendulum. In the
pendulum, or Ordinary plasma wave problem,vthe Kolngorof_
Arnold—Moserfsurfaces, at values of the Chirikov overlap
parameter less than unity, divide the phase spéce so as to
prevent motion in velocity écross thé reSonahces. The
resonant surfaces along which the stochasticity starts in
the drift wave problem, in contrast; form-a two-dimensional
redtangularlweb across the magnetic field as shown in Fig. 5.
Now{ even at smali,values of the overlap condition
wnz/lQ"1 , given in equation.(SO), some particles move
randomly over many nonlinear resonances in theféntire

phase space.
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APPENDIX
"In this appendix we generalize the single-mode
amplitude equation of Section II to include nonlinear
phase oscillétions between the pressure and the potential
fluctuations. The phase'dscillations limit the exponential
. growth and decay of the amplitude given in equation (29).
Returning £§ equations (1) and (2) we'generalize'thé’

form of the solution taken in equations (8) and (9) to

o(x,t) = o(x) {¢(t) explik(y - ut)] + ¢*(t) exp[-ik(y - ut)]}
_, | | e
Sp(x,t) = @(x){ap(t) ex‘p[ikf(y - ut] + Sp*(t) expl-ik(y - ut)l}
| (A.2)
where again we take @(x) = sin(gx) with g fixed frém

the geometry. 'Equation (2) determines the amplitude and
phase of the pressure fluctuation ép(t) relative to the

potential fluctuation through

| 0T g i de
Sp(t) = - e [ e K at : (A.3)-
n n
'Vfrom which it follows that
: ' ,
pSp* - p¥Sp = zglk é% lo] . (A.4)
‘ n.

Calculating the vE-VSp convection as in equation (19),
we obtain. |

4

It Gp(z) = -igk sin(2gx) (¢8p* - pp*) . (A.5)

where again the exp[2ik(y - ut)] variation cancels.
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Using equation (A.4) we may integrate equation (A.5)

to obtain

p2) = _2%[; sin(2gx) [I«p(t) 12 - Je(0) 12] . (n.6)

Repeating the third-order analysis in Section II.B now
.gives the nonlinear oscillator eqguation

-2
d%p .o dp 2 | 2 2 2 _
—5 - 2iQ Fgx -k {u(u - uk) t Y, - g |o(t) | }W = 0

™ | (A.7)

where Q = k(u - ¥%u) is the frequency shift from the

linear frequency %ku,  in the unstable domain 2y, > ]ukl .

At small amplitudes the 6scillator‘(A.7)‘gives the wave:
. dispersion relation w(w. - kuk) + kzyg =0 with w = ku
and the constant amplitﬁde é = ¢ ¥AO. In equation (A.7)
we restrict consideration to initial data for which
lo(0) | &<y, /q .

In the unstable domain we introduce the discriminant.
of the linear dispersion relation through Yi = kz(Yg —_%uﬁ)

‘and transform away the dependence on Q by introducing

Ce(t) = y(t) exp(igkt) to obtain

2 : : ,
¥ 12 Ck22 1% ) = o . (A.8)
o - w12 0 ,

In terms of amplitude and phase variables y(t) = a(t) explia(t)]

we obtain from équation (A.8) the phase integral

2, da _ .2 _
a“(t) ac f_ constf_ = . 2,0, (A.9)
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and from the amplitude equation

2

da _ _av
dtz - da
with the energy integral
1 /da 2
3 (8) +v@ = E (A.10)
where
a4&2 _ : _
0 1%% 1 2.2 1,224
via). = 3. 2 -5 1a +7kq7a . (A.11)

It is convenient to follow equations (28) through (30) by
’ihtroducing the scaled squared amplitude x(t) ='a2(t)/a§
where ap = V2 (vi./kq) and the scaled time = = 27, t

to obtain

1/2
= = % [gx - vg + xz(l - xﬂ (A.12)

where € and v, are the rescaled constants of integration

0
in equations (A.9) and (A.10) given by ¢ =,k2q2E/2&ﬁ and
2 472 4 6
vo —‘aoaok /4Yk. | ,
The general x(T) ‘depends on the constants of integra-
tion g, Vo through the roots of cubic XZKX - 1) -ex + vg‘=.0.
The motion of most interest appears when g, Vo << 1 which

describes the first departure from the exponential pulse
a(t) obtained in the text.

For small v the motion occurs between the maximum

0
root x; # 1 and the positive root of the approximate pair
‘ %
of roots at Xy 3 =.i(v§ + %82) - %¢ . The index of the
, .




elliptic
phase is

The

limit of

that x

with the

in the reference time at which max.a(t) = a

(1 -

2.7 Vo ©

function

p =

integral

- x(9)

6 =1 =
1.0 .

vo)/(l +

0,

For small ¢

.33

is m = (x

%

1 xz)/(xl —vx3) and the

‘%bﬁ -X3)T .

of equation (12) is
X, - x‘mén26 X, = X msn29
L2 3 T2 3

1= msn26

X = X,
and v

ve) S 1, and we obtain the exponential

the elliptic functions. Using these limits and

0

a(t) =

finite period.

2
a

(Oy/ai , We recover the exponential,pulse

22(0) + a2 %

+ a2(0) cosh(y,t)

coshKth)‘

a(0) (A.14)

2
ar,

Taking into account the translation

L this result

(A.14) is equivalent to that given in the text.
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Figure Captions

Fig.

Fig.

Fig.

Fig.

Fig.

1

The'unstable'range'of azimuthal:wévenumbers as a
function of increasing temperatUre gtadient is
shown in (a).with one mode unstabie and |

(b) two modes unstable. Fig. lc shéws a typical
sequence for bifurcations in the amplitudés of the
nonlinear oscillations as a function. of increésing

temperature gradient.

The parametric dependence of the single mode
amplitude aL(n,en,q) compared with the root=mean-

square'amplitude'from‘renormalizeduturbﬁlence theory.

Thermal conductivity as a function of the temperature

~gradieht showing three regimes: (1) conduction for

n <'nc ’ (2)_convection with a collisional phase
shift Ng < n < ncY , and (3) convection with a

collisionless phase shift n > nc"'

Convective motion of the.guiding centers in the
single drift mode with amplitude' ar -
Onset of stochastiecity in the flow along the

separatrix due to the addition of a small

perturbation (3%) with comparable wavenumbers.
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