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Abstract

The ambipolar radial electric field in a nonaxisymmetric plasma can be described by a

model nonlinear diffusion equation with a cubic nonlinearity is studied. An explicit analytic
step-like form for the solitary wave is found. It is shown that the solitary wave solutions
are linearly stable against all but translational perturbations. Collisions of these solitary
waves are studied and three possible final states are found: two diverging solitary waves,

two stationary solitary waves or two converging solitary waves leading to annihilation.

T Also Department of Physics

nonlinear diffusion equation. This equation is shown to possess solitary wave solutions. A




I. Introduction

In recent years there has been growing interest in solitary waves and solitons since they
are exact nonlinear solutions to certain classes of partial differential equations. Solitary
waves are defined to be nonlinear solutions that propagate with a constant velocity (c).
The shape of the solution may be step-like as in the nonlinear Klein-Gordon equation!—*
or pulse-like as in the case of the regularized-long-wave equation.*® Sometimes solitary
waves possess additional properties; for example, the velocity (c¢) can increase with the
wave amplitude (A) and the width (k') can decrease with the wave amplitude. Thus
travelling shock wave type solutions are included in this definition. Solitons can be loosely
defined to be solitary waves which have the further property that if a soliton interacts
with another soliton then after the interaction the original structures are preserved and
the velocities unchanged. Solitons have all or part of the inverse scattering machinery
6

available for integration.

In this paper we shall demonstrate that the radial electric field equation:. in.a

__nonaxisymmetric torus possesses solitary wave solutions which we name ambipolarons.

We find the specific analytic form for these ambipolarons for a well known model of the
diffusion coefficients. We examine the linear stability of these solitary waves and show that
they are stable except for translation. Finally we examine their interactions numerically

and show they are not solitons; they lead to new structures when collided.

I1. Solitary waves from the radial electric field equation

The radial electric field for a plasma confined in a nonaxisymmetric geometry is de-
scribed by the radial component of Ampere’s law combined with the continuity equations

for density and temperature. In terms of the particle fluxes, this electric field equations is

OF 2D6( 8E> )

€l— = — Zoel'o(E,no, T, € ——\r—
J_at Za:aa(ao’a)+trar or
where F is the radial electric field, ¢ is the low frequency perpendicular dielectric function,
. Zg is the charge number of species “a”, and I', is the particle flux of “a” which is a nonlinear
function of E, the density n, and temperature T,. In the diffusion term ¢; < 1 is the

inverse aspect ratio, and D is the electric field diffusion coefficient” arising from the finite

orbit deviation from the flux surface and which satisfies D = O(3_, Z,el'a /0% E/0r?).
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The diffusion equation in (1) is a nonlinear equation which has the property that
Yo Zal a=0 may possess several real solutions.® Typically in magnetic fusion applications
>0 ZaT4 is found to have one or three real zeroes. It is of interest to study the types of

-solutions of (1) in order to gain insight into the difficult problem of solving (1) coupled
with the (nonlinear) equations for the density and temperature.

It is easy to see that (1) allows solitary wave solutions. The macroscopic relaxation
time of the electric field in (1) is 75 = €1 /(> _, Z,e0T,/OF). For parameters typical of
fusion experiments it is found that 7g < 7, where 7, is the relaxation time of the density
and temperature. This means that if the electric field, density and temperature equations
are started with arbitrary initial conditions, the electric field will relax first with the density
and temperature in (1) being the initial conditions. The electric field will then change on
the slow 7, timescale as the density and temperature change. If F; and E3 are two real
solutions to ), Z,I'y, = 0 and the initial condition on (1) is near E; in part of the space
and near E3 over the rest of the space then there will be a region of space where the initial

conditions will vary from E; to Fs. If this region is thin, that is, small compared:to-the

-~macroscopic-length-scale-of-the-density-and-temperature-(typically-the plasmaradius)-then — — - -

we can define a stretched variable n = r/(e;v/ D) across this region and keep only second
derivatives in (1) to obtain

’E

OF _ _ Y ZseTu(E) + FR (2)

ot

Here we define { = t/e;. Since n > r{e; < 1) we can extend the range of 1 from —co
to +oo and impose the boundary conditions on (2), £ — E; as n — —oco, E — E3 as
n — -oo. In addition, since the density and temperature dependence in the flux varies
on the long macroscopic length scale, this spatial variation can be neglected in (2) where
we are concerned with the boundary layer for n ~ 0(1) (hence r = 0(et)). We look for
solutions of the form u(z) = E(n — ct) where z = n — ¢f and ¢ is an undetermined constant
speed. On substitution of this form in (2), multiplication by du/dz and integration from

. 2 = —oo to z = +o0 with the condition that v’ = du/dz — 0 as 2 — +o00 we obtain

co E;
c/ (v')2dz = [E dEZZa,el‘a(E) =V (Es)-V(E;) (3)

-0 1

where we define the potential V(E) by V(E) = fE dE Y, Z.el'o(F). This indicates that

a real velocity c exists and hence a solitary wave solution to (1) is possible. Furthermore
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we can see one of the solutions E; or E3 is dominant in the sense that if V(E3) > V(E;)
then the solitary wave will propagate in such a way so as to create E; at the expense of
FE3. In this case E; is dominant. The opposite conclusion holds if V(E3) < V(E;). We
propose to call these solitary wave solutions ambipolarons in view of their origin in the
calculation of the ambipolar electric field in a plasma. We observe that V (E) was used in
Ref. 9 to investigate stability of constant electric field solutions.

We note that nonlinear diffusion equations like (2) have been studied both for their
mathematical content!® and as models for physical processes. These range from the spread
of advantageous genetic traits in populations' (Fisher’s equation) to signal propagation

in bistable transmission lines'? to pattern formation in diffusing and reacting media.'3

ITII. A model equation for the radial electric field

In order to obtain an explicit analytic form for the ambipolaron we study a sim-

ple model of (1). If we consider a single ion-electron plasma and take a constant.elec-

_._tron temperature T, and constant ion temperature T; then the flux for species. a is. ...

Po = =Dy n(n'/n — Z,E/T,) where the density is n = n, = n; and n’ = In/dr. We

choose a model for D,,, and D, valid for a bumpy torus!4

1 T, \21 1
D,, = 1_2(BORO) Ve L+ (E/T4)2(Ts/(rBova))? (4)

where R, is major radius, B, is the magnetic field on axis, v, is the collision frequency of

species a. Equation (1) then becomes

?5_325:_ (€3 + af + B) 1 . (5)
oot (14 e(de/np?) <1 + £2(d;/n)?)

In (58), aa = n(Ti/Ta)*Ta/(aprBov,) where a, is the plasma radius. ¢ is defined
by € = auE/T; — A,/3 with A, = —(n'/n)ay(dea? — dia?)/(de.02(T:/T.) + dic?)
and d, = (n/12)(Ta/(BoRo))2/(1/aa,z2j). The dimensionless time 7 is defined by 7 =
t/((eLT:/(neal))n®/(0?d.(T:/T.) + d2d;)) while n = r/e;/(DT;/(nale)n®/(a?de(T;/T.) +
a?d;))1/2. The parameters o and § in (5) ‘are given by @ = R — fifb/3 and 8 =
AnQ(R/(3Q) — 1) — 243 /27 where R = n2(de(T:/T.) + di)/(a2de(Ti/Te) + o2d;) and
Q = (de — d;)n?/(d.d? — d;d?). The parameters a and § are functions of radius through

their dependency on n(r), but on the scale on which n = 0(1) this spatial variation can be
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neglected. A good approximation to (5) is

9E 9%
E—a—nz=—(53+af+5) (6)

since it is clear that the positive definite denominators on the righthand side of (5) will
only cause 7 and 7 to be rescaled by some £ dependent factor. Hence, they will cause
some distortion of the solitary wave associated with (6) without introducing any different
physical content.

In (6), the cubic on the right hand side can have one or three real roots. The condition
for three real roots is &/27+ % /4 < 0 which implies a necessary condition of & < 0. From
the definition of a and £ this can be satisfied at the edge of the plasma where the density
gradient is the steepest. On the range ne(—oo, 00) three steady state solutions of (6) are
obvious. If the three roots of the cubic are €1, &, £3 ordered such that £; < £ < €3 then
¢ =¢&;,1=1,2,8 is a steady state solution of Eq. (6). Furthermore, if we write the RHS
of (6) as —V'(E) then the solutions &;,7 = 1,2, 3 are the stationary points of V(E).: From

(6) we can easily see by usual linear stability analysis that minima of V (E) are stable

““while'maxima are unstable. By integration of the RHS we see that €; and €3 are minima

and hence stable while £; is necessarily a maxima of V(E) and hence unstable to small

perturbations.
We also know from the analysis leading to (3) that (6) has a solitary wave solution.

For (6) an explicit analytic form for the ambipolaron is
A .
E(r,m) =u(n —cr) =ulz) = g(tanh kz—d), (7)
where d = D/A and the offset, D, satisfies the cubic
D®+aD+p=0. (8)

The amplitude A satisfies
A* = —3D?% — 4¢ (9)

(note that o < 0 for three real roots and hence A is real), the wave vector k satisfies

4]
k= 10
23 (10)
and the wave velocity ¢ is determined in terms of the offset by
3d [ A?
= —|— . 11
‘T ( k ) (11)
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With A given by (9), the three roots of the cubic are D, —A(1+d)/2, A(1—d)/2. Hence
we can see that if we choose one of the roots of the cubic to be D then the ambipolaron

expressed by (7) will have asymptotic limits on the other two roots. This means that there

- are six solitary waves represented by (7). Three arise because we can choose any one of

the roots of the cubic to be.D while for each D, A can take positive or negative values as is
clear from (9). We can also see that if one asymptotic limit of the ambipolaron is a stable
root &3 or £3 and the other is £, then we necessarily have V (&;) — V(€;1,3) > 0 and so the
stable root will be the dominant root. That is, the solitary wave will always propagate
so as to annihilate the unstable root and increase the stable root. Note however that this
annihilation will only be linear in time whereas if £ = &, for ne(—o0, co0) then the plasma
will decay exponentially fast away from &5.

In Figure 1 we show three of the ambipolarons for £, < 0 and £, > 0. For £, < 0
we have V(&3) < V(£1); hence the ambipolaron with asymptotic limits 3 and &; will
propagate so as to enhance &3 and annihilate £;. For & = 0,V (€3) = V(€;) and the
ambipolaron will be stationary. For &£ > 0, V(&) > V(¢;) and the ambipolaron. will

~-propagate-so-as-to-annihilate-£s:-In-Figure 2-we -draw-the-(f;a) space where three real--—- - -

roots occur and indicate the regions where ¢5 >< 0. The velocity c; is the velocity of the
wave with D = D;(1 = 1,2,3).
We observe the similarity between this analytic form for ambipolarons and kinks which

occur in ¢* field theory.!=* Kinks have the form

oK = :Eta,nh(n_no)

\/5 .

for any constant 7, and satisfy the steady state nonlinear Klein-Gordon equation which is

¢ _ 9% _

ar2 ~ an? [¢3_¢]:0

This corresponds to choosing § = 0, = —1 in (8) and then taking the root D = 0 which
gives ¢ = 0. Unlike the theory of kinks, the nonlinear diffusion equation is not invariant
under a change in the direction of time. This will lead to significant differences between
the interactions of two ambipolarons and the interactions of two kinks. However (6) is
invariant under the change n — 5 — n, for any n,; hence in (7), if u(z) is a solution of (6)
then u(z+ a) for any constant a is also a solution. This is just the statement of translation

invariance.




IV. Linear stability of ambipolarons

We can investigate the linear stability properties of those ambipolaron solutions in
the following manner. We define ¢(z,7) by &(n,7) = u(z,7) = 9¥(2,7)e~°*/2. Then (6)

becomes

9y _ 6F[Y]
ar &9 - (1)
where the Liapunov functional F[¢] is defined by
oo 2 4 :
Fly] =/_OO dz{ (¢2) + %<Z + a) P e 4 e ”/2} (13)

with 6/ 69 being the functional derivative. If we denote the ambipolaron by ¥4 (v,bA =

e°*/?(A/2)(tanh kz — d)) then it satisfles 6 F[¢4]/6¢ = 0. Furthermore, it is stable if
62F[69* > 0, and a necessary condition for asymptotic stability is dF/dr < 0 where
equality is achieved when 9 = 4. The latter condition is automatic for equations. of the
form of (12), for dF/dr = [ (6F/6¢)0¢/drdz = — [% (6F/6¢)?dz. In order to Venfy

~~the former we-expand-F[¢| about F[¢z] by writing ¥ =z + n and obtain

2 62 2

1 [ B 3A :
Flha +n] :F[¢A1+—/ den§ = + (—+a) +—(tanhkz~d)2}77. (14)
2/ o oz 4 4 )
From (14), we see that if we solve the eigenvalue problem
—9? 2 3A2
[8_z2 + <Z + a) + T(tanh kz— d)z] Nen = Wl (15)
where the eigenvalues are w,,, m > 0 and w,, > O for all m, then we will have (52F/5¢2 >0

and hence the ambipolaron in (7) will be linearly stable. Conversely if for any m, w,, <0

then the ambipolaron is linearly unstable.

From the definition of ¢ [(8)-(11)], we can see that for d > (2/3)/% and d <
—(2/3)/2, ¢*/4 + a > 0 which implies from the theory of Sturm-Liouville equations?®
that all the eigeﬁvalues wp, are positive. In fact this is true for all d. To see this we write
(15) as the Schroedinger equation

d*nm

2+ [en —20)|1m(0) = 0 16)

where y = Az/Zﬂ, € = 2(4wm/A2 -2 - (9/2)d2) and the potential 2U(y) is given
by 2U(y) = —6sech’y — 12dtanhy. We note from the definition of U(y) that (16) is
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invariant under the transformation d — —d,y — —y hence we need only consider (16) for
~1<d<0.Ford=0, U (v) is a symmetric well in which the quasiparticle described by
(16) moves. It is well known that for a symmetric well we can expect to find bound states
(discrete eigenvalues) as well as continuum eigenvalues. As d — —1 the well becomes more
and more asymmetric and we can expect to find bound states can fit in the well and only

continuum states will exist. This Schroedinger equation (16) can be solved exactly!®. It

is found that for —1/6 < d < 0, there are two discrete eigenvalues as well as continuum

states. The two discrete eigenvalues are, for m = 0,
wo =0, no(y) = e#¥sech?y (17)

and for m =1

A% /3 2T L\ 6dy 1 tanhy
=—(Z-= = 1- .
w1 Z (2 2d), n1(y) = e”“¥sechy 1—3d+1—3d (18)

The continuum eigenvalues satisfy wx > wi. We can see from (17) and (18) that therefore

Wm = 0 for all m. For —2/3 < d < —1/6, only the m = 0 discrete eigenvalue:exists.

For —1 < d < —2/3, only the continuum eigenvalues exist. The eigenfunctions for ¢ > 0

~ can be obtained by replacing y by —y in (17) and (18). The m = O eigenfrequency is the

translation mode. This also exists for the kink in ¢* theory. Such a mode must exist since
as pointed out previously z — z 4+ a in u(z) will still give a solution to (6). The form of
the eigenfunction in (17) follows since n o Y a(z + 62) — Ya(z) = 62094 /02. The m =1
eigenfunction corresponds to the shape mode found in ¢* theory. This is a perturbation
on the shape of the ambipolaron around z = 0 which vanishes for z — -o0.

We have shown that for all values of d,w,, > 0. Hence we arrive at the conclusion that
except for the neutrally stable translational mode, the ambipolaron solution (7) to (6) is
linearly stable. This is true even if one of the asymptotic limits of the ambipolaron is the
unstable solution £5. We speculate that this surprising conclusion is related to the result
from quantum field theory® that the kink solution is completely stable since the potential

barrier in function space separating & = u(z) from & = £, 5 3 is in some sense infinite.

V. Generalized ambipolarons

We have shown that (2) possesses solitary wave solutions. More generally it can be

shown that nonlinear diffusion equations of the form

ok 0*E
51 " a2 + f(E) (19)
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possess unique bounded solitary wave solutions’® under some relatively weak conditions
on f(E). The theorem in Ref. 10 states that if f(E) =0for E = E;,E; and f'(E;) <0,
f'(E3) < 0 with f(E) <0 for E near E; and f(E) > 0 for E near E3 then there exists a
unique bounded solitary wave solution of (19) u(n — ¢t) with u(—oc0) = Ey, u(co) = E3
and F; <u < Fj.

We note that the ambipolaron with D = D, (the intermediate root of (8)) satisfies
the requirements of the theorem in Ref. 10 and hence is unique. However if D = D;
or Dz then one of the limits of the ambipolaron is Dy which has f' (D3) > 0. Hence the
requirements of the theorem are not satisfied for this ambipolaron. This raises the question
of whether it is unique. As a partial answer to this question we have studied (6) for the
special case f = 0 to see whether other solutions are possible.

If we substitute u(2) = u(n — ¢t) in (6) we obtain the ODE

W +eu — (uP+ou+B) =0 (20)

where u’ = du/dz. We shall look for solutions of (20) of the form S

u(z) = f(2)/9(z), (21)
where ‘
f=ao+a e +a_e %2 (22)
g=b+byer b _eF2 (23)

The ambipolaron solution in (7) is obtained by taking a, = b, = 0,ay = A/2(1 —
D/A),a— = —A/2(14 D/A),by =b_ = 1. Clearly the form for u(z) in (21) is a general-

ization of the solitary wave form in (7). We define o = +1 and
Dy = ao/bs,a = ao/b, (24)

B =byb_ (25)

then a solution like (21) exists if and only if the following seven relations are satisfied

b2(D% + aDy + f) = 0 | (26)

szo{ — k(k — oc)(a— D) + 3(aD2 + B) + a(2Dy + a)} =0 (27)
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ba{kz [bg(a — D,) +40B(Dy — D_)] + ack[bg(a - D,) —20B(Dy — D_)]
+3B(Dy D D_ + ) + 3b2(a*Dy + f) |

+2B(D_, +2D,) + ab?(D, + 2a)} =0 (28)

| bo{ — 3k2B(D, + D_ — 2a) — 3¢kB(Dy — D_) + 6Bf + 6BaDy D_

+b2a® + 028 + 2aB(Dy + D_ +a) + aabg} =0. (29)

We note that by and b_ occur only in the combination B = b4b_. This is because (20)
is invariant under translation in z hence the solution (21) must remain a solution upon
translation. The ambipolaron solution can be obtained from the set (26)-(29) when b, and
a vanish.

We now consider (26)-(29) for the special case § = 0 and show that there are other

nonlinear solutions to (20). For bounded solutions at z — oo we want b, # 0; hence,

from(26) e e e

D2+ aD, =0. (30)

We take a < O (for three real roots); then D, = 0,++/—a. If we choose D, = 0 then
from (27) we obtain o = k(k — oc) and therefore ¢ = 0,a = k2. From (28) we find
bZ(k% + 2a) = 0 whence b, = 0 and only the a, = ab, terms in (18) survive. These yield
8Bk? + a? = 0 which implies B > 0 and

e, = 2V2B+v—a.
This completes the solution for D, = 0, which can be written

u =2/ —asec (\/3(2 + zo)> (31)

for any constant z,. We note that it has spontaneous singularities in it (at (z+ 2,)v/—a =
(2n+1)7/2,n =0,1,2,...) and therefore is not the ambipolaron solitary wave.

We next show that when b, = 0, the only possible solution either has a, = 0 and
hence corresponds to the ambipolarons or has D, = 0 and is the solution in (31). To prove
this we note that when 8 = b, = 0 (26)-(29) reduces to (30) together with

—k(k —oc)a, + 2a,D% = 0 (32)
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40k*B(Dy — D_)—2¢kB(Dy — D_) +3BD,D,.D_ + 3a2D,
~ D2B(D_s +2D,) =0 (33)

6Bk*a, +6Ba,D D_ +a® - 2D Ba, =0 (34)

where we have used D, # 0 to infer « = —D?2 from (30). It is clear that (32) has two
classes of solution depending on whether a, vanishes. If a, = 0 one obtains from (33) that
Dy — D —_ A = 8k? which is the § = 0 limit of (7). Hence we take a, # 0. Then (34)

- gives

a?=2B(D2-3k>-3D, +D_).

From (32) we obtain ¢ = 0 and k? = —2D2 which give in (34)
5D ~2D,D_—oD,(Dy—D_) =0. (35)

However k? = —2D2 implies that D_ = +D_ which on substitution in (35) indicates

__ that there is no solution for D, # 0. Hence we see that for § = 0 = b, the only regular,

bounded solutions of the form (21)-(23) are the ambipolaron solutions.

In a similar manner we can obtain the solutions of the form (21) when b, # 0. The

solutions require o = —m? < 0 and are specified by
¢c=0,k*=2m?, (36)
Dy =—-D_=mr, 7==1, (37)
b2/B = 4m?/(m? - a?), (38)
and
s = sgn(m?® — a?). (39)

The parameter a is free. The solution is then

(20 + w7 /T = a(¢ - /<)
[Zm + puy/Im? - a?|(¢ + s/g)]

u(z) =m

where ¢ = ek(+2) ) = +1 7 = 41, and s = +1. The parameter u arises from the

solution to (28). All three signs can be chosen independently, although a and s must be

11
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chosen consistently with (39). Thus (40) has eight distinct families of solutions. If a = 0

then one finds two solutions
u = mtanh(kz/2) : (41)

and .
u = mctnh(kz/2). (42)

The solution in (41) is the D = 0 limit of (7). The solution given by (32) is new but has
spontaneous singularities in it (at 2 = 0). For a # 0 there are obviously bounded solutions
in (40) (s = +1,u = +1). However they are all translations of (41). We show this in the

following manner. Supposing first that m > a, we introduce @ such that

a/ [\/ﬁ—_az} = sinh#,

m/ [\/WJ = cosh ),

_Wealso let ¢ = k(z + z,). Then, since s =1 for m > a, we can write

u = m(sinh @ + 7 sinh ¢) /(cosh 8 + cosh ¢).
Using elementary identities one finds that
v = mtanh [(H—I-'rqﬁ)/Z], for m>a.

Thus (40) is simply a displacement of (41).

For m < a, the definitions of sinh # and cosh # are interchanged (since we must have
cosh? — sinh? = 1), and s = —1. The result is to yield the above, tanh(f — ¢)/2, solution
when 7 = —1 and

u:mctnh[(0+¢)/2] for m<a,

when 7 = 1. Of course this generalizes (42). Hence we conjecture that for 8 = 0 the
ambipolaron solution is the only bounded nonlinear solution to (20). We speculate that
for § # 0 the same conclusion holds even when the conditions on f(E) after (19) are not

satisfied.
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V1. Collisions of ambipolarons

An'important difference between a solitary wave and a soliton is that solitons are
solitary- waves which interact with each other in such a way that the original structure
of each soliton is unchanged after the interaction. In this section we have numerically
examined the interaction of two ambipolarons in order to elucidate the nature of these
solitary waves.

The nonlinear diffusion equation (6) was solved by a split-step fast Fourier transform
method.!” The linear dispersion was solved exactly in the Fourier space and the nonlin-
ear terms advanced in time by using the partially corrected 2nd order Adams-Bashforth
scheme.'® Typically computations used 27 grid points and a time step of 0.002.

The initial condition for (6) was chosen to be

A D A
E(n,t=0) = [gtanhk(n +10) — E] + [— Etanhk(n — 7o) —

This is the sum of an ambipolaron and an anti-ambipolaron (4 — —A) sitvated at n =

—n, and n = 7, respectively with an offset added so that they' do not interfere with
each other if they are widely separated. We can see this by noting that for n < —n,,
E(n,t =0) - —(A+ D)/2, for —n, < n < 1o, E(n,t =0) — (A — D)/2 and for 1 > n,,
E(n,t =0) - —(A+ D)/2. Hence each solitary wave has the right asymptotic limits and
each will be an (approximate) solution to (6) if n, >> 1.

Three types of time dependent solutions have been found. These are shown in Figures
3-5. If D = D, then from Figure 1 we see that the two ambipolarons will diverge. This
is shown in Figure 3 where the wave fronts diverge with velocity given by (11) until they
hit the boundary of the space and annihilate. As previously mentioned, the ambipolarons
move in such a way as to enhance the stable root &5 at the expense of the unstable root &;.
If D = D; = 0 then each ambipolaron will remain stationary. This is observed in Figure 4
where the pulse-like structure composed of the two waves persists. This indicates that for
D2 = 0 this soliton-like structure is a steady state solution of (6). If D = D3 then from
Figure 1 the two ambipolarons will converge. This is seen in Figure 5 where the two waves
_ converge at the speed given by (11) until they. mutually annihilate each other leaving the
system on the stable root &;.

Thus unlike solitons the interaction of these solitary waves can cause their destruction.

However a pulse-like solution can arise when two ambipolarons exist.
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VII. Conclusions

Finally, if we return to dimensional variables we can obtain the size and speed of
the ambipolarons in (7) for typical parameters. We take a, = 20cm with T, = T; =
300eV. The diffusion time 7, ~ 10 millisecs while 7z =~ 1/50 millisecs. Therefore, the
approximation used to decouple (1) from the density and temperature equation (rg < 7,)
is clearly satisfied. We choose a cubic density profile with n(r = 0) = 5 x 10'® and
n(r = ap) = 1 X 10¥e¢m=3. The three real roots for the RHS of (6) exist for the last
2cm of the plasma. The electric fields in this region are in the range 15-150V/cm. The
length scale over which the ambipolaron changes is of the order of 0.2cm which is a few
ion gyroradii. The velocity of the ambipolaron is in the range 1 — 3 x 10°cm /sec which is
much smaller than the ion thermal velocity which is 16 x 108cm/sec.

We conclude that these ambipolaron solitary waves could exist in an experiment.
Unfortunately, no experiment to date has observed them. Future work will address the

question of how these solitary waves are modified when o« and f are allowed to be slow:

functions of space.

Acknowledgements

The authors would like to acknowledge useful discussions with S. Eliezer, K.C. Shaing
and the help of Jim Meiss. One of the authors (DEH) would like to acknowledge the
hospitality of the Institute for Fusion Studies, where this work was started. This research
was sponsored in part by the Office of Fusion Energy, U.D. Department of Energy, under
contract DE-ACO05-840R-21400 with Martin Marietta Energy Systems, Incorporated. This
work also supported by DOE Contract #DEFG-05-80ET-53088.

14




References

1. R. Rajaraman, Phys. Reports 21, 227 (1975).

2. T. Sugiyama, Prof. Theor. Phys. 61, 1550 (1979).

3. D.K. Campbell, J.F. Schonfeld and C.A. Wingate, Physica 9D, 1 (1983).
4. M. Peyrard and D.K. Campbell, Physica 9D, 33 (1983).

5. P.J. Morrison, J.D. Meiss and J.R. Cary, Physica 11D, 324 (1984).

6. M.J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transforms, (SIAM,
Philadelphia, 1981).
D.E. Hastings, Phys. Fluids 28, 334 (1985).

8. H.E. Mynick and W.N.G. Hitchon, Nucl. Fusion 23, 1053 (1983).

9. K.C. Shaing, Phys. Fluids 27, 1567 (1984).
10. P.C. Fife and J.B. Mcleod, Bull. Amer. Math. Soc. 81, 1075 (1975).
11. R.A. Fisher, Ann. of Eugenics 7, 355 (1937).
12. J. Nagums., S. Arimoto and S. Yashizawa, Proc. Just. Radio Eng. 50, 2061 (1962).
13. P.C. Fife, J. Chem. Phys. 64, 554 (1976).
© 14. L. Kovrizhnykh, Sov. Phys. JETP, 29, 475 (1969). |
15. P. Morse and H. Feshbach, Methods of Theoretical Physics, (McGraw-Hill, 1953, New

York) p.736.

16. ibid, p. 1651.
17. F. Tappert, Lect. Appl. Math 15, 215 (1974).
18. J. Gazdag, J. Comp. Phys. 20, 196 (1976).

~

Figure captions

The three ambipolarons for A > 0 and £, >< 0.

(B, @) space showing the regions where ¢, (<)(>)0.

Two diverging ambipolarons (o = —1,8 = 0,z, = 10,D = D;.= —1).
Two stationary ambipolarons (o = —1,8 = 0,z, = 10,D = D, =0).

T W W N

Two converging ambipolarons (e = —1,8 = 0,z, = 10,D = Ds = 1).
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