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Abstract

_.The.role of impurity dynamics in resistivity gradient driven turbulence is investigated.in... - .. -

the context of modeling tokamak edge plasma phenomena. The effects of impurity con-
centration fluctuations and gradients on the linear behavior of rippling instabilities and on
the nonlinear evolution and saturation of resistivity gradient driven turbulence are stu&—
-ied both analytically and computationally. At saturation, fluctuation levels and paraticle
and thermal diffusivities are calculated. In i)afticular, the mean-square turbulent radial
velocity is given by (92) = (BoL,/ B,)? (L; 14 Lz_l)2 . Thus, edged peaked impurity con-
'centrations tend to enhance the turbulence, while axjally peaked concentrations tend to
quench it. The theoretical predictions are in semi-quantitative aéreement with experi-
mental results from the TEXT [Bull. Am. Phys. Soc. 30, 1443 (1985)], Caltech [Phys.
Fluids 29, 309 (1986)], and Tosca [the 12th European Conference on Controlled Fusion
and Plasma Physics Vol. I, p. 311 (European Physical Society, P;udapest, 1985)] tokamaks.
Finally, a theory of the density clamp bbserved during CO-NBI on the ISX-B tokamak
[Plasma Physics and Controlled Nuclear Fusion Research, Vol. I, p. 377 (JAEA, Vienna,

1981)] is proposed.




. I. Introduction
It >is Weil known thaf t-dkamék edge plasmé,s are stroﬁgly turbulent, with large density
- and.electrostatic potential fluctuations® =% and large particle diffusivity®—® frequently being
.- .observed:Understandingtokamak-edge turbulence is important in order to optimize limiter .
.and" divertor ‘design; and- in -order to- exploit-improved- confinement regimes,.such as the
ASDEX H-mode,® which are sensitive to conditions at the plasma boundary. However, in
view of the accessibility of edge plasmas to electrostatic and magnetic .probes, tokamak
edgé turbulence is also an excellent trial model or test case for theories of plasma turbulence
‘and anomalous transport. -
One theory of edge fluctuation dynamiés is based on resistivity gradient driven
(rippling mode) turbulence.’® This model is described by reduced, resistive magnetohy-

drodynamics and a resistivity evolution

EII = 770jz + 720

di/dt — xTVﬁﬁ — —6,dno/dr,
where ©,. is the radial E % B convection. Fluctuations are driven by the re51st1V1ty gradlent :
via Ohm’s law and the Lorentz force term of the vorticity evolution equation. While
this model has been shown to have many attractive qualitative features,'® the stabilizing
effect of parallel thermal conduction xT severely limits the range of applicabﬂity of the
theory. However, recent theoretical and computational investigations'! have demonstrated
that the predicted fluctuation levels and diffusivity are, in fact, relatively insensitive to 7.
This rather counterintuitive result is a consequence of the departure of nonlinearly evolving
resistivity gradient driven turbulence from its linear antecedent, the rippling instab.ility.l2
In particular, the radially asymmetric mode structure is nonlinearly modified, so that
“the resistivity 7 and potential ¢ perturbations decouple from the current perturbation
J.. Hence, J, ~ 0 in the region of interest, so that the nonlinear evolution of resistivity
gradient driven turbulence is described by the equations

~ B.V)¢ = il

dn dno
T XTV”U = _’UT‘?
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-~ Note that one consequence of current decoupling is that the vorticity equation is eliminated

from the nonlinear vdyr.lamics. Asa reéult, the characteristic radial scale Ay is determined
1/4
by thermal conduction and cross-field, turbulent diffusion, so that Ay = (Dk / XTk'hz) ,

‘where-Dy is the. cross-field. diffusivity of the resistive perturbation and. kil =ky/Ls, L, is.

the shear length.. Saturation-occurs when Dy and A) adjust so that resistivity- gradient -

drive (9,7), dno/dr balances thermal dissipation xr <( V”ﬁ)2>k. Thus, at saturation, Dy =
(LsEq /LnBz)‘l/ 8 (XTkI’I2>—1/3. The weak dependence of Dy on x7 is indicative of the
qualitative difference between the linear and nonlinear dynamics of the resistivity—gfadieﬁt-
driven turbulence model.

Prior investigations'®~® of rippling modes have dealt primarily with thermal re-
sistivity fluctuations, driven by femperature gradients. In this paper, a model of résistivity
gradient turbulence which incorporates both impurity density (Zéﬂ‘) and temperature fluc-
tuations and gradients is discussed. As originally proposed by Rutherford,*® fluctuations
‘which in turn drive rippling instabilities. Thus, for n = Z.gnsp, where g, is the Spitzer

resistivity,

- dnsp = 5
n= e < dT > T+ Zeffnsp-

For the prototypical case of a single, low-Z impurity species, the Z.g fluctuation dynamics
are described by :
dZeg(r)

S5 v g Wealr)
dtZeﬂ' )x_zV”Zeff Uy dr .

The parallel diffusion operator x., Vﬁ isa consequence of the fact that parallel impurity flow
is determined by the balance of the parallel impurity pressure gradient with impurity-ion
friction. Thus, the Z.g evolution equation can be included along with Ohm’s law, the vor-
ticity equation and the temperature evolution equation in a more complete model of Tesis-
tivity gradient driven turbulence. Indeed, since x, = v2,/Z%v; < xr, impurity-gradient-
driven rippling modes are significantly more robust than their temperature-gradient-driven
analogues.

In this paper, the role of impurity dynamics in resistivity gradient driven turbu-

lence and tokamak edge plasma phenomena is discussed. A key difference between impurity
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and temperature dynamics is that in contrast to nsp(r), which virtually always increases
* with radius, the Zg(r) profile may peak either on axis or at the edge‘. Thus, the impurity

‘gradient .can. either. enhance (edge-peaked Z.g(r)) or. oppose (axially-peaked Zeg(r)) the

.. temperature gradient drive. However, since x, < xr, the impurity dynamics determine

the linear evolution of the rippling instability.. Nonlinearly, the decoupling of J, from Tlspy P

and Z.g results in a simplified set of renormalized equations

- Bzvl|¢ = Zeff'r]sp'jo + Zeffﬁspjo
2~ DTazﬁsp _ A _d'r]_o

TXTVie — DTG = ey
. 8 Ze dZ s
2 z e ~ [¢}
- sz”Zeﬁ' -D B2z —Vp ar
which describe saturated resistivity-gradient-driven turbulence. = The mean-square

turbulent radial velocity derived via nonlinear calculation is given by <1A).fj;>:. =

L,Ey(1+mn,)/L,B, % Thus, While'.nz > 0(n. < 0) indeed tends to enhance (quench
n -

~ the turbulence, the insensitivity of the saturated state to parallel transport is manifested -

by the relatively modest value of the ratio D?/DT ~ (xr/x.)Y® ~ (m;/m¢)*/®. There-
fore, the principal consequences of the inclusion of impurity dynamics in the resistivity-
gradient-driven turbulence model are an increase in the domain of linear iﬁstability and
the poésibility of meaningful estimates of density mixing lengths and fluctuation levels.

The principal results of this investigation can be summarized as follows:

i) The basic resistivity gradient turbulence model!! has been extended to include
impurity dynamics. Impurity concentration proﬁles-peaked at the edge (on axis)
tend to enhance (quench) the turbulence. In most cases, the impurity dynamics
dominate the linear evolution of resistivity gradient driven turbulence.

ii) The saturated fluctuation levels and thermal and impurity diffusivities have been
calculated and the density, temperature, and potential fluctuation levels have been
determined. . The predictions of the analytic theory are in good agreement with
the results of nonlinear, multiple helicity calculations. In pa.rticulal‘; n/ng > T /7o,

n/ng # e® /Ty, and typically ™ > 2 while increasing as 7 — a. These properties

o
- 7 are consistent with results from studies of tokamak edge turbulence.*
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iii) The cross-field particle diffusivity has been calculated, and is given by

~ Ey L, 43 712 —1/3
-Dn = [B_zz;(1+77Z)J (le\'” )

‘ ) 2R2
~ T5/6p1/3 g4/ q?vff/? (1/L, + 1/L2)4/3 )

where ¢ and § have the usual meaning of safety factor and shear. Note that fyp—

ica.ﬂy D, % 10%cm?/sec and that D,(r) increases as 7 — a. Also, D, scales

favorably with plasma current and unfavorably (for ¢ not held fixed) with B,.

Calculation of magnetic’ fluctuation levels and the associated thermal diffusiv-

.ity.indicates that the dominant thermal tra;nspoft mechanism is convection; i.e.,

Q = TT,. These predictions are consistent with results from ‘ex?eriments on the
- TEXT® and Caltech” and Tosca® tokamaks, respectively.

iv) A mechanism which explains the density clamp?!® observed during neutral beam .

diffusivity is proposed. This mechanism requires that Zeg(r) be peaked at the

edge. | |
© The remainder of this paper is organized as follows. The basic theoretical model
of -resistivity-gradient-driven turbulence with impurity dynamics is discussed in Sec. II.
In Sec. III, the linear theory is presented. The nonlinear evolution and saturation of
resistivity-gradient-driven turbulence are discussed in Sec. IV. Fluctuation levels énd,
anomalous transport coefficients are discussed in Sec. V. Section VI contains a discus-
sion of applications of the theory to tokamak edge plasma phenomena. In Sec. VII, a

summary and conclusions are set forth.

(S

__gpf_ir_lj_gc_t:j_gl_i_ in terms of an impurity gradient-induced enhancement of the particle -




_II. Theoretical Model

The reduced re51st1ve ma.gnetohydrodynalmc (MHD) equatmns in cylmdnca.l geometry

are "
8 EN
B=2 Bvg=n, | ®
du ' '
heh 2
— =B v“Jz, (@

where 1) is the poloidal flux functlon ¢ is the fluid stream function (¢ = @ / B, where ®

is the electrostatic potential), J, is the current density,

1y
J, =—V3
Mo e

and U is the component of the vorticity in the z-direction
U =91 (onT.8)

The coordmate zis taken tc_)__extend along the axis of the cylinder; pr, is the mass density.

In Eqs (1) and (2)

Q>|Q3

d
d_iz +(VJ_¢XZ) V

and

- 0]
BZV”E(VJ_’QZ)XZ) V+B a—

are the total convective derivative and the parallel gradient. To describe rippling instabili-
ties, a-resistivity evolution (thermal balance) equation is necessary. Moreover, in a piasnia
with & significant level of impurities, the resistivity 7 will depend not only on T, but also on
the quantity Zeg = 1+ Z?ny/n,. For simplicity, we assume that only one impurity species
is present having charge Z, and density ny i.e., n = nep(Te) Zeg. Hence, two equations; one

for nep(Te) and the other for Zeg, describe the resistivity evolution. The equations are:

d " :

1 = VIXTV | 7sp, (3)
d . .
Fi 2 = V)X VnZeﬁ, (4)

where ng, = mve;(Te)/noe? is the Spitzer resistivity, xr is the parallel electron thermal

- conductivity, and x; ='v7, ;/Z%v;; is the eflective transport coefficient for impurity ion
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- flow along field lines, resulting from the balance of the parallel impurity pressure grachent
with 1mpur1ty—1on friction. _ |
"Equation (4) has been derived from an impurity dynamics model proposed by
- Rutherford'® and only a summary.of the derivation is given in the appendix. Equations
~.(1)-(4)-together:with the relation. n.= 7., Zeg, constitute the basic impurity-gradient-
driven turbulence model. These equations are used without further approximation for
the numerical calculations described in this paper. To facilitate a11ai3rtic calculations we
further simplify this basic model by introducing the electrostatic approximation, i.e., % = 0
Cand V| = VI(IO) =b- ﬁ, where the vector b is a unit vector parallel to the equilibrium
magnetic field. The validity of this approximation for rippling instabilities was discussed -
in Ref. (11). Employing the electrostatic approximation and writing J,, Nsps and Zeg as

a sum of average (indicated by subscript 0) and perturbed (indicated by tilde ~) pieces,

Egs. (1)-(4) become, for 7} = flspZeft.0 + Nsp.0 Zesr

0
mzlzvid):Bzvﬁ )‘]za (6)
\ dﬁSP - (0)2 1 8¢ d’r]Sp 0] . | (7)

a XTVi e =g g

d - 0)2 5 10¢ d
=gV Zg= 220
dtZeff Xz | et 50 2y Zefro

(8)
As a consequence of the electrostatic approximation, Ohm’s law (Eq. (5)) has been

linearized. Therefore, the current perturbation J, can now be eliminated from Eq. (6),.

yiclding three noulinear equations for ¢, 7jsp, and Zeg-.

Pm d (0)? ']0 (0) n
— _—v S0y 9
B') C{L _l¢ ] c,b B Il (?’0))‘ ( )
d ~ (0) - 1 (9¢ dT]sp.O
\Y% sp = —— — ——— 10
e T R R (10)




azeﬂ' - sz|(| ) Zeff - *;%$Zeﬁ'0 (11)
- Equations (9), (10) and (11), for the vorticity, Spitzer resistivity, and impurity 'density
_evolution, constitute the basic resistilvity—gradieﬁt-driven turbulence model tb\be used in

the analytic calculations.

III. Linear Theory

In this section, the linear instability described by Egs. (9)-(11) is studied in detail. This
- system of equations reduces, in the linear approximation, to a single second-order equation,

d? h 1, b b,x ‘ : N
— - =22 _ - z =90. {12
d? (4m 1+bpz2 1+ bzmz) =1 (12)

T—"Trs

is the dimensionless radial variable and zg is the resistive singular layer width,
B2 ’
z

e e [7
Ls nOJzO

bp = =2
"I, B,

Mo 4m?

1
redVTR’

Here, L, = [dlnne,/dr]”" and L, = [dfnZ.g/dr]”" are the gradient-scale lengths of the
Spitzer resistivity and the impurity, and Ly = Rog?/rs¢’ is the magnetic shear scale length.
A key dimensionless ratio is S = 7 /THp, where TR = poa® /Mo is the resistive diffusion’
time, and 7z, = Rg/Vy4 is the poloidal hydromagnetic time with V4 = B, /( topm ) /? the
Alfvén speed. Here Rq, a, rs, and m denote major radius, minor radius, radial location
of singular layer, safety factor, and poloidal wave number, respectively. The first term in
Eq. (12) represents inertia and the second represents field line bending. The last two terms

~ describe the instability driving force (67 and §,) reduced by the relevant transport effects

8
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(br and b,). We note that é7 and 6§, are proportional to the Spitzer resistivity and Zeﬁ“
7 grddiellts vrespect“iv‘ély,lr Whilé bT éﬁd ‘bz afe proportiblﬁél to xr and X 2 ‘Th‘e.refo.l;e,i .the ciéaﬁ
SRS hydrogenicplasﬁamodel‘corresponds to 6, = 0, and the isothermal plasma to 7 = 0 and
br = co. |
-~ In-the -absence - of -an -impurity - species, Eq(12) has-been studied -in -detail in
Ref. (13); There it was shown that in the limit of 116 thermal conduction, the growth rate

is giiren by12

_ (Smd®RoL, 215 todz0(7s) 4/5 2oL o p3/5 ' '(13)
7 o 47"ng B, R o - v
In the large thermal conduction limit, the growth rate is greatly reduced, and is given by'2
2/3 . 4/3 S\ 4/8 1/3
=1 3452R8 L“:'Ts / /J’OJZO(TS) / 770(7'3) / -1 770/ (14)
7= 1. az ——Lzm —B_ '—‘—IJI TR X 4/3 . .

We note that the parallel electron thermal conduction does not completely stabilize the rip-

pling mode because this effect is negligible near =0, as easily seen in Eq. (12). Since most

__discharges of large present day t okamaks are characterized by relatively high temperature S ——

Eq. (14) is more appropriate than Eq. (13), even near the edge.

The linear growth rates predicted by Eq. (14) are already quite small, and the
inclusion of elecfron kinetic effecfs tend to stabilize the mode. For these reasons, rippling
modes have been ignored except in the context of edge physics. HQwever,v as proposed bsf
Rutherford, rippling modes driven by Zeﬁr—gradienté can be unstable with large growth rates
even in the case when parallel electron conduction is large.! In contrast to the rippling
mode in clean plasmas (driven by temperature-gradient), the impurity driven rippling
mode is quite insensitive to stabilizing electron kinetic effects beca.u_se the Z.g-evolution is
governed by ion dynamics rather than electron dynamics. |

Rutherford considered the isothermal limit (6, # 0, by — o0), in which case

Eq. (12) can be simplified to

d? 1, b,z
— — —p = O 15
da2? (4”3 1+ bv> ¢ o)

Equation (15) has the same mathematical structure as the case of {he clean plasma (6, = 0)

case. Therefore, the linear growth rate for b, < 1 is given hy

_ SmadRoL, 2/5 tod 20 (7s) 4/57_—1 (16)
7= 47’5112 Bz B

9




vFor b, > 1,

=134 80 (Lems (BT )\ (w7 (17)
- T a2 \Lim B, woxs ) B '

. The isothermal model demonstrates the robustness of'the impurity gradient driven rip-
pling instability, even in a relatively high temperature regime. However, it is somewhat |
oversimplified, and fails to describe interesting features which are related to the relative i
sign of the Spitzer resistivity and Zeg gradients. When there is only one driving term
(either 6, = 0 or 67 = 0), the growfh rate does not depend on the sign of § (only on the
magnitude). But in general, when both driving terms are present, the growth rate can
be,signiﬁcant.ly reduced if the Spitzer resistivity and impurity concentration have opposite
gradients. In order to study this effect, linear grthh rates have been obtained numerically
from the initial value code ‘KITE’'” which is described in Sec. IV. We consider the m=20,
n=8 mode with typical Macrotor edge parameters. The results are summarized in' Figs::1,

In Fig. 1, linear growth rates are plotted as a function of L, for L, = 0.32a aﬁd |
various values of x7 (and x, = 0.025xr). Growth rates for L, > 0 are larger than those
for L, < 0. The condition L, > 0 implies that Z;ff is peaked at the edge, so that the
gradients in Z.g and ng, have like sign. This important feature, which is not accounted
for in the isothermal model, manifests the sensitivity of the instability dynamics to the
Zeg profile. Figure 2 demonstrates close dgreement between results from the initial value
code and those of the shooting code described below. The shooting results show the
crossing of eigenvalues at L;'a & —2.3, which yields the minimum growth rate of the
most unstable mode. The structures of the electrostatic potential eigenfunction and the
effective potential of Eq. (12) for three different values of.Lz‘1 are plotted in Fig. 3. For
L7'a > —2.3, the eigenmodes with electrostatic potential ¢ peaked outside the rational
surface are more unstable than those with ¢ peaked inside the rational surface. On the
other hand, for L7 'a < —2.3, the eigenmodes with ¢ peaked inside the rétiona.l surface
are most unstable. At L;'a = —2.3, two branches of eigenmodes are degenerate thus
yielding the same growth rate. Typical eigenmode structures for the most unstable modes -

as obtained from the initial value code are plotted in Fig. 4. It is apparent from the
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- . figures that ¢, T, and Z.g are peaked away from the mode rational surface, in.contrast

to the current perturbation which peaks at the rational surface. As is characteristic of

- resistiv.ity‘-.grandien’c=driven.turbulence,k11 the ¢,. T, and.Z.g profiles are further shifted away

.- fromrational surface as the fluctuation level increases: Consequently, the potential, Spitzer
resistivity, and Z.g perturbation effectively ‘decouple’ from-the current perturbation. This
decoupling allows considerable simpliﬁcation in the theoretical description of the nonlinear

saturated state, as we shall see in the following section.

IV. Nonlinear Theory

In this section, an analytical theory of the nonlinear evolution and saturation of impurity-
gradient-driven turbulence is presented. The nonlinear saturation mechanism is identified

and the levels of turbulent impurity and thermal diffusion at saturation are calculated.

We consider dynamical turbulent saturation for a finite- gradient resistivity proﬁle, rather : -

~ than saturation by quas111nea.r flattening of the backéfound re51st1V1tV grad1ents Thisisa

“.:..natural assumption for tokamaks, because the temperature (1mpur1ty) profile is maintained

by the competition of plasma heating (impurity source) and transport. This assumption
1s fﬁrthor justified by the robustness of the saturation mechanism we consider. It consists
~of turbulent diffusion-induced broadening of the resistivity perturbation which efficiently
couples to the 1mpur1ty drag on the ions. This saturation mechanism persists in the |
presence of quasilinear flattening of the background resistivity gradient and may reasonably

be assumed to dominate ‘quasilinear relaxation.?

In a previous iﬁvestigation,ll the saturation of resistivity-gradient-driven turbu-
lence was specified by the time-stationarity of energy-like integrals quadratic in the fluctu-
ation levels. This specification also provides useful insight in the present case. The relevant

energy-like quantities are:

E, = 1/2/d3$|v¢¢[2,

= 1/2/‘133’-["-751)'27

E, = 1/2/d3:c|Zeff{2.
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- From Egs. (9)-(11), it can be shown that Ej, Er, and E, evolve according to:

~ 0) 412 ‘
/d3 ¢ Jz"v(‘” <n> |vn a N (18)

OE;
==

?r'

8B s [ x18¢d © |2
=T - R v 19
Bt /d m[ e 96 dr 0 T ”l i) ] (19)
OE, s s 10¢ d 5 |?]

2 = i —xz |V 2, 20
= /dm{zeﬂ.raadzﬂ Xz [V Zet (20)

Equation (18) states that the fluid kinetic energy evolves by competition between a desta-
bilizing J x B force induced by resistivity perturbations and a stabilizing J x B force
induced by the magnetic field line diffusion. Equation (19) states that the mean-square

Spitzer resistivity fluctuation level is driven by relaxation of the average gradient:(note

that {(iap/7)(96/09)) is the average radial Spitzer resistivity flux) and damped by dissi-

pation due to x7. The evolution of mean-square Z.g fluctuation level is similar to that of
" the ’SpitZer-r.esisfiVity fluctuation level. Clearly, in the turbulent steady state, the energy-

like quantities Ey, Er, and E, are stationary in time. It should be noted that requiring

0

3 — E) = 0 is equivalent to imposing

/ B V(O)L = 0.

A sufficient condition for satisfaction of this criterion is J, = 0. This condition is satisf_ied
as the turbulence evolves nonlinearly so that the resistivity and potential peri;urbatidns
shift away from the rational surface where the current perturbation is localized. Thus
J, is approximately zero in the region of intérest. Consequently, the vortiéify equation
decouples from the evolution equations for .??sp‘ and Zeg. Furthermore, Ohm’s law with
J.=0 provides a simple relationship between ¢, ng, and Zeg, so that steady state impu-
. rity driven turbulence is described by Nep and Z.g evolution. Time stationarity of the
remaining energies, Er and E., is satisfied as the widths of the resistivity and potential
fluctuations broaden to the point where parallel heat conduction XTV” (0)® and umpurity

“ion drag, "y, v ‘balance the Spitzer resistivity gradient and Z.g gradient sources. The

I
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; --.broademng of the re51st1V1ty and potentxal perturbatmns results from 110n1111ear convectlon

and grows in magmtude as the ﬂuctuatmn amplitudes increase. The degree of broademng,
‘1.e., the radial:scale of the fluctuations, at any given fluctuation level, is determined from
.- renormalized evolution equations for Nsp and Zeg.

- To .obtain -the: renormalized- evolution. equations we use a standard. iterative
method.!! Renormalization is performed by substituting for Tep T and Z .5 the terms
ﬁs(i) 7, and Z:fzr) » Which are driven by the direct beat of the test (k) and background. (E’ )
modes. Following previous investigations of resistivity-gradient-driven turbulence,!! we

k= ﬁspjc" Zeﬂ.—£ = Zeﬁ“.lz’ and ¢—E: QS]'C‘, and

neglect ¢](;2)”. Using the symmetries, Tep.— K

retaining only the (dominant) radial diffusion term, we obtain the renormalized resistivity

equations,
0 _ . T 82
Ensp.l—c' + XTk”nsp,I; - Dk oz 2nsp E= Zkg(‘ék d . (21)
9 ; H° ' dZeﬁ' 0
52 eﬁ'}\,+XZl"”Z DEB 2Z '_ —Zkggﬁ"‘
where |
—~1
D? = Zk’(glfék:lz [7k+k' +XT(]¥|| + k") ] , - (23)
kl
2 12 2 [ . 2]t
= Zk old7| [’7,;+,;, + Xz (ky + Kyp) ] , (24)
]_c'/

Here, the diffusion coefficients Dg and D?Z represent the crucial nonlinear effect of random
- convection of resistivity by fluid turbulence.

The natural radial scales for turbulent resistivity fluctuations in the saturated
state are determined by the asymptotic balance of thermal conduction or impurity-ion

drag with the turbulent diffusion. From Eqs. (21) and (22), these scales are found to be

AL = D k) . (25)
and

AL = (Di/x:k) ") (26)
where ky = I\ |- Note that the radial scales AL and Af are amplitude dependent through

the pote'nua,l‘ﬂuctuamon amplitude dependence of the Dy’s. Hence, in the nonlinear

13
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- - regime, the basic radial scales are determined not by the linear eigenmode Width, but
by fhe tuﬂauleﬁf éorrelation lengths. To explicitly express the potential fluctuation ampli-

tude dependence in terms of Ag and A, we substitute for DY and D% in Egs. (25) and
-+ (26); using Eqgs. (23) and (24). We-first,-however, simplify Eqs. (23) and (24) by using a

- Markovian. approximation in.the.resistivity.response funct.ions,.so..that.we.. can write: .

@

D~ Ty | e
(Y | |

D szilz(Az) (28)

where k” (ky )rms /L, <63> is the mean square radial velocity defined by

=3

(20)

and AT and A® are evaluated using ]» Substituting Egs. (27) and (28) into Egs. (25)and -

(26) then yields
(AT = @) xaky? (30)
and o
(8%)° = (7)™ R (31)
where kfl is evaluated at Eil' It is clear that the nonlinearly saturated state, characferized
by vthese nonlinear scales AT aﬁd AZ?, and the condition jzzO, is radically different in
cliaractér from the linear regime.

We now determine <’D£> at saturation. Using Ohm’s law with J,=0 in order to

eliminate ¢, the renormalized resistivity evolution equations in the steady state are given

by ) .
and i o '
(Xzzcl’lzzg ~ D2 j;) Zgr = Lié—j% <Zeﬂﬁ + "%q”m) : (33)

where Eg = 7ep.0Zeft.0J5,- The content of Egs. (32) and (33) is essentially equivalent to

" that of requiring time stationarity of the energy integrals Fr and E,, i.e., that saturation

‘14




.. represents the dynamically regulated balance between Spitzer resistivity gradient drive (or_

Zem-gradient drive) and the radially dependent parallel thermal conduction (or impurity

drag on ion flow). To determine fluctuation levels at saturation, Egs. (32) and (33) can be

...multiplied by Z:H and integrated over z -in order to yield a closed set of coupled ,algebraic

. equations-for the quantities -f dmZ:Hﬁ-sp -and- [ dICIZeﬁ‘IZ-; - This procedure for specifying. .- --- - -

saturation, while equivalent to the conditions OFr /8t = 8E, /8t = 0, is preferable since it

yields closed equations. The conditions 8Fr/8t = 8E,/8t = 0, on the other hand, gives

two equations with three unknown quantities, [ dz|7[?, [ dz|Zeg|?, and [ defip Z%.. The

two coupled equations obtained from Eqgs. (32) and (33) are

LB nepo /|1
(21T ) (Z|n) — 2 B
(2170 2ln) - 75 722 (2

Z

2) .

(216712)(212) ~ Lo 2252 (212 o) (Zh) =0

L.B, Tlsp.0
o2 L,Ey 1
7T — kl 2 D’__}"‘__ _ s—0 -~
O ® T R 922 T LB, 2
o? LEy Zego 1l
L:_/zﬂlzz .DE _sOe._
X=H k Oz? L.B, Msp.0 x’ _
and

(a|Q[b) = /;OO dz a*Qb/ /;QO dx a*b,

(a|b) = /_oo dz a*b.

In order to have a non-trivial solution of Egs. (34) and (35), it is necessary that

; L Eq Tsp.0 1
Z\cT 2 Bz 2z
(Z1E5 ). L,B. Zeﬁ~,0< z > |
. = 07
LSEO ZefI.O 1 ! 2
- Z |~ 2L Z
LZB“ Tlsp.0 < x ??> ’ < I I >

- (34)

(35)

(36)

We have previously noted the asymmetric nature of the mode structure of the

resistivity fluctuations 7s, and Z.g. This asymmetry, present in the linear plase, is further
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- developed in thie saturated state where decoupling occurs. The asymmetry is responsible




« ..for maintaining the energy input from the gradients since, for radial eigenfunctions of even
bpkarityv, ﬁhe s‘our'ce ferms in Eq. (36) rwould vanish. As a consequence, the region = ~ 0 is.
© .irrelevant. in.the integrals.of Eq. (36), even for the.integrand‘ of <Z é 77> which remains
- :small near.z=0.. The matrix elements in Eq. (36) all reduce to moments of the wave
functions Z.g-and Tlsp With respect-to-various-powers of z: The wave functions have well
defined widths, so that the moments yield appropriate powers of the mixing lengths AT
and A*. When the integral involves the product of wave functions Z.g and 7], the smaller of
the two widths A” and AT determines the overall width. From Egs. (30) and (31) and the
- fact that x7 > x., we note that AT < A*. We also substitute for the diffusion coefficients
- DT and D? in terms of the widths AT and A® using Egs. (25) and (26). Following this

procedure yields

E Ls ) E Ls TNsp.0 1
, klz AT 2 0 _ 0 sp.0 1
xrky " (A7) B.L,AT’ " B.L, Zego A \
I | R | -1 ¢ SU ¢: 14 N
EoLs Zegro 1 )2 5 . EoLs 1
- kL2 (A)? = -
B.L, npo A7 XM AV -5

Substituting for AT and A* from Egs. (30) and (31), and evaluating the determinant

yields the saturation condition
~2\1/2 L, E, .
O = ——(1+mn,), (38)
@)= 103,

where

The mean square radial velocity exhibits the predictable scaling with réspect to the mag-
netic shear scale length and the scale length of the driving gradient. Because two gradients
drive the turbulence, Eq. (38) includes both L,/ L, and L,/L, terms. Furthel‘lnoye, due
to the asymmetric nature of impurity gradient driven turbulence, the relative direction of
the gradients has a strong effect on the fluctuation level.

To obtain expressions for the turbulent diffusion coefficients of Spitzer resistivity

and Z.g, we combine Egs. (27), (28), (30), (31), and (38), yielding

E Ls 4/3 ,
Df )| f ok, (39)
)
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.and

.z. EOLS_. S 4/3 /2”13 . .
i~ [pand] foer, (40)

We observe that the-turbulent diffusion’ coefficients are only: weakly dependent upon xr

- (or x:). - This contrasts sharply with intuition based on linear growth rates and linear -

eigenmode widths (D ~ %) which predicts much stronger dependence on x7(x,) and
1

c01léequelltly, much lower saturation levels. Also, note that <ﬁf>1/2 = (LsEo/LyB,)(1+n;)
and that since D ~ x~2, D*/DT ~ (xp/x,)"3 ~ (m;/me)'/®. Hence, the insensitivity
of the saturation level to parallel transport parameters is also manifested by the relatively
-modest increase in <13;°‘>1/2 and DT when impurity dynamics are taken into account (n. #
0), as well as by the relation D*/DT ~ (m; /me)*/8. Thus, the principal consequences of
retaining impurity dynamics are an increase in the domain of linear instability and the
possibility of meaningful estimatbes_of density mixing lengths and fluctuation levels..

After the completion and pr(-zsentation17 of the results of this study of the coupled

~thermal, Z.g-gradient driven problem, an alternative derivation of the results for each” |

individual cases was proposed by Connor.'. In that work, Connor derived a ‘scaling’ of
Myms ™~ X;E’/ 4 (root-mean-squared value of pdloidal 'Wavenulﬁber) using invariance tech-
niques. By way of comparison, we treated myms as a number in Ref. 11 and Ref. 17 (note
that the only direct comparisons possible are with Ref. 11, which dealt with the pure ther-
mal case). This diﬁeréncé then propagates through all predictions of transport scalings,
fluctuation levels, etc. We feel our approach is superior for the following reasons. First,
Connor’s scaling applies only to a narrow range of xr values. Second, Connor’s dimen-
sional analysis omits important physics considerations, such as the applicability of current

decoupling (J, = 0 in growth region), which requires

2 o2 AT>277o(rs)pm(rs)
’ < _._Q.S" —_— —_——,
XT TR < a 770(0) pm,(o)

and the restrictions imposed by the inequality 8/8z > kg, which requires

_(§\? ro L,B.
m. < - / .
M8 g XT Rg LsEO

Indeed, Connor overlooked the possibility that the inequality 8/8z < kg is violated for

" larger m. Botlirof these considerations strongly bound the range of variation of 7y, from

17




* . below and above, and make ‘scalings’ of Myms rather dubious. Furthermore, numerical

results and detailed analysis'® indicate that my,, is nearly insensitive to parameter vari-

- ation and Scaling. ‘Hence, we feel that the most physical approach is to leave my,,s as a
parameter.
. .We have studied three diinensional-—multiple»-helicity-»impurity—gradient-driven tur-

bulence numerically in order to test the analytical results derived in this section. The initial

value code KITE?® which has been used for the resistivity-gradient-driven turbulence!! has

been modified to incorporate the Z.g evolution (Eq. (8)). Details regarding the numerical
scheme used in this code and the convergence studies for resistivity-gradient-driven turbu-
lence calculations are discussed in Ref. 20. In this Work, we consider a cylindrical tokamak

equilibrium with the electron temperature profile,

7o

T.(r) = T.(0) <1+ (—)>/ (a1)

-~ where-rg-=0:63;-and-an-equilibrium-current profile; ==~

. B. 2 (T.(r)\*? Zea(0)
Tl = (7)) 7% )

_ _,UaoRo q(0)
where ¢(0) = 1. Profiles for T,, Z.g, total resistivity, and g are plotted in Fig. 5 for three
different values of L,. It is apparent that cha,ngesb in the ¢ profile arising from Z.g profile
changes are small.

Thé numerical calculations have been perforined in the same way as described in
Ref. 20. An annular region around the singular surface of the 5/2 resonance has been
considered. The width of this annular region in radius is approximately 0.40a and the
radial grid spacing used is Ar = 1.8 -107%a. In Fig. 6, we have plotted the time averaged
mean square radial velocity level at saturation as a function of radius for three different
values of L., and compared it to the analytical results given by Eq. (38). As discussed in
Ref. 11, the value of F given in the figure does not include the contribution of the resonant
helicity (test) mode al the corresponding radial location. The rather strong dependence
of Eonn, = <iﬂ ), as predicted by Eq. (38), is clearly shown in Fig. 6.

The agreeinent of numerical results with analytical prediction is very good for

- the cases where L, = —0.65q and L, = co. For L, = 0.91a the analytical prediction is
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- lower approximately by a factor Qf two. In this case, a large value of th_e saturated kinetic

énergy, and the resulting inérease in the Reynolds number imply the need for higher spatial
. resolution. Hence, a broader m spectrum is required to represent the turbulent state at
- saturation. For this reason, limitations on present computing capabilities make it difficult
to.study cases with impurity .dens-i'ty. profiles sharply peaked at the edge. Nevertheless, the
predicted scaling of E with the effective gradient (14n,)/L, is in good, semi-quantitative
agreément with the results of numerical calculations. Note that this study also constitutes

a further, more general test of the basic resistivity-gradient-driven turbulence model.

V. Fluctuation Levels and Anomalous Transport Coefficients

In the previous section, the basic nonlinear spatial and temporal scales (mixing lengths and
correlation times) which characterize impurity gradient driven turbulence were identified

and used to determine saturated turbulence levels. In this section, analytical expressions.

for the temperature f / To, density 7i/ng, and potential fluctuation levels are derived and
used to calculate electrostatic convective particle and thermal diffusivities. The r.élated
magnetic fluctuation levels and the associated thermal conductivity are also estimated.
The results compare quite favorably with several experimental observations from tokamak
edge plasmas. .

Temperature fluctuation evolution is determined by Eq. (21), so that

T ‘o N T2 -1 67*1( ' ' |
— | = (x7Tk/ 43
<T0>k <XTkl| = ) Ly ( )
-and, from Egs. (27), (30) and (38),
T Ay 1 (LB Y s
('f) Iy " Ir (L_B < W) Gerkf)™" )

Note that the eflective {urbulent mixing length for temperature fluctuations is A, the
thermal conduction layer width determined by pa.réllel and radial diffusion.

Similarly, ion densily evolution is governed by the continuity equation, Eq. (A1),
where the compression term is determined by the balance of the parallel ion pressure

- gradient with ion-impurity. friction. . Thus, by = —XZVI('O)(ﬁ/nO). Hence, noting that
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o J.~0 follows from decoupling, density fluctuations evolve according to _ N
‘ - d 2 n 1 dno
=, VO — =0, | —— 45
(dt Xz V| )no vk(nod'r')’ (45)
:so'that A* is the characteristic spatial scale for density fluctuations. Hence,
[ n -13 N
o N ) O - (a6
| <n0>k (k V=% L L (_)
where L' = —(1/no)(dno/dr) is the density gradlent scale length. Using Eqs. (28), (31)
and (38), it follows that

- z 1/3

(2) ~oio k(BB ) re
Note that the effective turbulent mixing length for density fluctuations is AZ. Since x1 >
Xz, it follows from Eqs. (30) and (31) that A* > AT and hence that (7/70)rms > (T/T0)rms:
for Ly, ~ Lg. Thus, the disparity between the density and temperature correlation lengths
A?, AT can reconcile the resistivity-gradient-driven turbulence model with the experimen-
tal observation®* that (7/n0)rms >'(T/T0)rm‘s. Finally, note that Eq. (47) corrects and
“~supercedes the density fluctuation level estimate given by Eq. (26) of Ref. 11,7~
The potential fluctuation level can be easily calculated using Eq. (38). It follows

(£> %_[<_63>]1/2 _ <E0Ls> (L+7:) ()

Ty kepscs : Ban (kepscs) .

Note that unlike the more familiar drift wave turbulence models where 7/ng ~ [e|® /Ty ~

directly that

3ps/Ln,?* resistivity-gradient-driven turbulence is characterized by the nequahty of den-
sity and potential fluctuations; i.e., f/ng 75 le| /Tp.

In Fig. 7, (A/no), (le|®/Ts), and (T/Tp) are plotted as function of radius for
Macrotor?? edge parameters and profiles, with 7, = 0. In Fig. 8, a similar plot is given,
with n.=1. Note that e®/T increases dramatically with 7,. In examining Figs. 7,8 it is

~ useful to recall the parameters scaling of the predicted fluctuation levels, i.e.,

(—"—') ~ T8/ B (LY 4 L7 ml /oL B3V (49a)
'n,o’
<T1) ~ T8O L2 (Lot 4 L) m/ oL, BT Y3V /3 (49b)
0
M&) -1, 0/7—1 -1
'T— ~ T 7 (I/77 "l— Lz ) LSVL) (49C)
: 0 .
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-+ where Eo = V,/2nR and T, ~.T; in edge plasmas. It is apparent that (/o) > (T/To)
and that (7/ng) and (e®/T,) have different radial profiles, with (le|®/T,) increasing more

- ---rapidly-with radius: In comparing Figs. 7,8 Wit'lll-experimental results, it is worthwhile to
~-—-note that the roll-over.in 72/n is due to an-increase in-L,, obtained frbm speciﬁé experi-
mental data, at larger/a. Note-that the density dependence of 7 /n is quite weak. Finéﬂly’, -
(7/no) > 3ps /Ly, while fifng ~ 3p, /L, is the typical prediction of drift wave turbulerice

models. '

Several aspects of these results are consistent with data from detéiled studies of

| tokamak edge fluctuations. In particular, the inequality of density and temperature fluctu-
ations, i.e., #i/ng > T/Ty, and the disparity between the radial profiles of 71/n¢ and ed /To

are frequently observed.? The latter observation, and the fact that observed (/o) values
frequently exceed 3p,/L,, strongly suggest that tokamak edge turbulence is not caused

by drift- waves, which are consistent with 72/ng ~ e®/T;. However, several experiments.

____indicate that |e|®/Tp > #/no. Understanding this result rémains a.challenge, particularly. . ... ..

since very large potential fluctuations are observed, i.e., |e|®/Ty 2 .5. However, in com-
paring the profile of |e|q3 /T with experimental results, the possible low frequency effects
of MHD activity should be carefully considered. Finally, note that experimental studies of
the scaling of 71/ng with B, and T, i.e., I, with g, fixed, offer a possible way to distinguish
resistivity-gradient-driven turbulence <ﬁ/ ng ~ T;5/ B, 1 3q> from drift wave turbulence
(ﬁ /ng ~ T/ sz_l), and to bétter understand edge fluctuations, in general.
Having obtained the density, temperature and potential fluctuation levels, the
- convective particle and thermal fluxes and diffusivities can now be calculated straiglltfé‘r~

wardly. The convective turbulent particle flux I', is given by

Iy = ng (4-(7/n0)), (50a)
and the associated particle diffusivity by |

Dy = Ly, (6,(7/75)) . (500)

Thus, using Eqs. (45), (47), (48) and (31), it follows that

. o Eo Ls 4/3 =12 —1/3
' _'L_n(Bz L_ﬂ—(l +"7z)> (Xz Il ) , (51&)
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and

Similarly, the convective turbulent thermal flux Q is given by
: Q = 'IfloTQ ((ﬁr(ﬁ/’no» + <'23.,1(T/T0)>) :Torn—*- 'IlorT 4 (52)

where 't = <6TT> Using Eqgs. (51a), (44), (48), and (30) yields:
noTy [ Eo L, 4/3 i\ —1/3 _i,\—1/3
Q= I <FZ‘LT](1 +77z)> (sz” ) + 7e (XTk” )

_ x:\° | | |
=Toly |1+ 7. | (53)
XT :

where 1, = L,/Lyp. Since (x./xr) ~ (me/m;)/?; nel'y < Ty, for typical values of

Ne. Thus @ = TyT',, so that the thermal flux is due primarily to convection. Note that

 this result is a consequence of the disparity between density and temperature fluctuation
. mixing lengths, i.e., A* > AT, and is consistent with recent results from the Caltech” and

Tosca® tokamaks.
The particle diffusivity D,(r) given in Eq. (51b) is plotted for Macrotor edge

paramefers and profiles in Fig. 9. The parameter scalings of D,, are given by:
Dy ~ T™5/802/3 (L7 4 L74)° L2 B4V, (54)

Thus D,, increases as temperature decreases, but is insensitive to density. These trends are
- manifested in Fig. 9, where D, (r) increases with radius. Note that D,, ~ 4 x 10%cm?/ sec,
and is comparable to Bohm diffusion, but clearly scales differently. In addition, it is
nstructive to compare I'y, as given by Eq. (51a) with that given in Eq. (95) of Ref. (21),
which is calculated using a collisional density-gradient driven turbulence model. In that

case,

l-sirift wa.ve/no ~ TL,I/G'DS[J(R(])/]/:S SB"') (55)

and for Macrotor parameters, D, <. 10%cm?/sec. Thus. the resistivity-gradient-driven
P ? L i/ , R

turbulence prédiction is in better agreement with experimental results from Macrotor,?
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. and offers better prospects for broad applicability, i.e., compare -B? scalings!  Finally,
since Dy, ~ T=5/0 L% [2B74/% o 15/ [ 4/ B2/* [-25-2 (for g1, not fixed), resistivity-
-.gradient-driven turbulénce is a model consistent with particle confinement time 7, degrad-

- ing with .B.;:but-improving with- I, (for qr, not-fixed),-as:observed-on the Text tokamak.®

- It.also.offers. the possibility of reconciling high-edge-temperatures and.strong shear with =

improved particle confinement and steepened temperature gradients.’

Although,t'he impuri‘ty-gré.dient-driven turbulence discussed in this paper is pri-
marily electrostatic in character, magnetic fluctuations are also produced. Here, the mag-
netic fluctuation driven by the tearing parity component of the fluctuation is calculated.
Near the resonant surface, parallel electrostatic fields are negligible, since E) ~ —V"(;g and

k| ~z — 0. Thus, Ohm’s law indicates that

T o~ ﬁ ﬁsp Zeﬂ
J, =2 —Jolr)— = —Jy(r -+ , 56
T2 1) = ~Talr) (n Zm) (56)

—-where-J;o(r)-= Eq/no(r).—The-current-fluctuation-is-proportional to the resistivity fluctus — "=

ation and the local current density. The electromagnetic poténtial fluctuation is obtained

- by integrating Eq. (56) using the constant-¢) approximation.'? Thus
Lo f daJ, = A'5(0), - (57)

where the domains of integration are restricted by the relevant turbulent mixing lengths.

Using Eqs. (44), (47), (30), and (31), it follows directly that

B\ o (Ix(r) TA{erAf
B, ~ Mo\ 9B, L, ' I,

N 712y —2/3 \ 2/3
Too(r)\ [ LsEo 213 (xok'}) <XT >
= 1 2 —_— 1+n. 58
Mo( 5B, ) -Lq,BB( +12) I e (58)
where A' = -2‘]ky| for high m fluctuations. Note that the parameter scalings of

(Br/B,: )rms are, 1151118 JzO(T') = EO/T]O(T);
B. efl

N 2/3]
X |14+mn, (’ 7) .
X-

23

B, _ —1/6 2 _ ZIN2/3 1 5/3
<——) ~ Zg (r)T™ V0P (L + L)Y L L2 B3RV




‘Thus, (B,/B,) is effectively independent of temperature, but is sensitive to Zeg(r), tem-
Hpera,ture gradient L;l and shear, L. Also, it is interesting to note that since x7 > x,,
relatively modest impurity gradients L ! will strongly enhance magnetic fluctuations, and .
.. thus ’fche associated magnetic field line stochasticity and anomalous thermal conduction. -
- w - ~The-anomalous thefmal conduction triggered by magnetic fluctuations associated
with resistivity-gradient-driven turbulence can be estimated using the expression, for thé
case of a collisional plasma, x; ~ xr <E3/Bf> For the L, — oo case, x| ~ Jzo(r)zx;il/s.
Hence, for cool, highly resistive edge plasmas, v, decreases with increasing radius. This
" trend is illustrated in Fig. 10, where x () is plotted for Macrotor edge para;méters and
profiles, with n, = 0. Note that x (r) < 103cm?/sec, and that x 1(r) decreases rapidly
with radius. In Fig. 11, the ratio x| (r)/D,(r) is plotted for Macrotor edge parameters
and profiles. 'It is apparent that x (r)/D,(r) ~ 1072, and decreases with radius. These

© trends, along with the consequences of the inequality 7/no > T/Th discussed previously, -

..imply that according to this model, thermal transport in cool, highly resistive edge plasmas - .-

is primarily caused by convection. This result is consistent with recent results from the
"Caltech” and Tosca® tokamaks. However, in hotter plasma, where J.o(r), To(r) and L7*
increase, or in the presence of impurity gradients, where 1, # 0, thermal conduction due

to magnetic fluctuations may be more significant.




- . V1. Applications to Tokamak Edge Plasma Phenomena

Previous sections have focused on determining the nonlinear spatial and temporal

- scales, fluctuation levels, and particle and thermal diffusivities characteristic of saturated

- -+ resistivity-gradient-driven turbulence. -Here, this information is synthesized and used to

- develop some qualitative insights into”tokamak edge plasma phenomena. -~The specific

phenomena considered include:

i) effects of limiter materials on the energy confinement time, 75

ii) the density clamp'® observed during neutral beam co-injection heating.

- Limiter materials affect energy confinement in Ohmically heated tokamaks. In the
original investigation of impurity-gradient-driven rippling modes, P.H. Rutherford? sug-

gested that an impurity profile-dependent particle diffusivity might reconcile the similarity

of 75 scaling in metallic and graphite limiter discharges with their widely disparate radi- :

—ation-losses:-~The particle-diffusivity-given in-Eq: (56b)-depends-on-the impurity gradient— =~

L;?, so that a metallic limiter (low sputtering coefficient) will result in improved particle

~4/3

éonﬁuement; viz D, ~ L with L, relatively large, but thus also in increased high-
' Z radiation losses. In contrast, a carbon limiter (high sputtering coefficient) will result
in increased edge impurity accumulation and increased particle and (convective) energy
transport, viz. D, ~ L7*® with L small, but also in reduced high-Z radiation loss. Thus,
it appears that the improved confinement associated with the metallic limiter is nullified
by the resulting increase in high-Z impurity radiation.

The second phenomenon is the density clamp,® which occurs during neutral beam
co-injection heating. Originally observed on ISX-B,'® neutral heam co-injection into dis-
charges with increasing line-averaged density 7 (due to gas-puffing) resulted in a sat-
uration of 72, shortly after the initiation of injection. This density clamp phenomenon
is a consequence of degraded particle confinement. Tt was also ohserved that increas-
ing the plasma current I, resulted in increased saturation values of 7. Furthermore,
comparison ol plasina potential ¢, measurements for co-injection and counter-injection
discharges from 15X-B indicates that while the plasma potential is negative (¢p < 0) in

- counter-injection discharges, it- increases and becomes positive (¢, > 0) near the edge
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of co-injection discharges.?® Therefore, while impurities tend to acéumulate on axis in
“counter-injection discharges, it appears that inward impurity transport is inhibited during
co-injection. Thus, a Zeg(r) profile which is peaked at the edge is quite likely.

. - ~The- resistivity-gradient-driven turbulence- particle diffusivity D,(r), given in
Eq. (56b),.has properties consistent with several aspects of the.density clamp phenomenon.
First, D, ~ (1 + )%, so that particle transport is larger in discharges where Zeg(r)
is peaked at the edge (n, > 0). This is consistent with the increase in D,, during co-
injection. Second, D, ~ Ti_s/ GIP_ 2, Hence, particle confinement is predicted to improve
.. with increased current", and edge temperature. These predictions are also consistent with
trends obsefved in experimental studies of particle confinement and the density clamp. Of
course, a quantitative test in the context of the density clamp is required to establish the
validity of the scenario proposed here. However, such a test requires some knowledge of

the impurity profile Zeg(r).

VII.Q Conclusions. — S

In ‘thisAp'aper, the role of impurity dynamics in resistivity gradient driven turbulence and
edge plasma phenoména in tokamaks has been investigated. the effects of impurity con-
centration fluctuations and gradienfs on the linear evolution and saturation of resistivity
gradient driven turbulence have been studied analytically and computationally. Fluctu-
ation levels and particle and thermal diffusivities are calculated and the consequences of
these predictions are discussed. The principal results of this paper are:

1) The hasic resistivity gradient turbulence model’! has been eﬁtended to include
impurity dynanﬁcs. Impurity concentration profiles peaked at the e'dge (on axis)
tend to enhance (quench) the turbulence. In most cases, the impurity dynamics
dominate the linear evolution of resistivity gradient driven turbulence. It should
also be noted théi: the basic scalings, etc., obtained by Kadomtsev and Pogutse®?
for shearless resistivily gradient driven turbulence differ from those presented here.

i1) The saturated fluctuation levels and thermal and impurity diffusivities have been

calculated. The mean-square turbulent velocity is given by

02 ) = {_L__ o
A -

9

=

(1 +772)} ;
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iii)

while

and

)} 4/8/ ey )1/3

The predictions of the analytlc theory are in good agreement with the results of

nonlinear, multiple helicity calculations.
The density, temperature, and potential luctuation levels have been determined.
In particular

_ 1 (L. E s
(/modme 2 (F 5200 ) (o)™

TP L (1L, + 1/L,) m} /LB Y3V

Lt LB

1 (L, E vso
T/To > - ( ~(1 +nz)> (xrk'])/?

N T 5/6 1/3 i (1/[, N 1/L )ml/GL B 1/3V1/3 S

"~ and

e_&3 (L E,

T 7. B ) (1+77M)/(];9pscs) %T'lng(l/Ln -+ 1/L3)L5VL.
n Dz :

Note #/ng > T/Ty, #1/ng # e® /Ty, and typically /ng < 2 while increasing as

- 7 — a. These properties are consistent with results from studies of tokamak edge

iv)

turbulen ce.?

The cross-field particle diffusivity has been calculated, and is given By

Eo L, 4/3 -1/3
D= || (xeR?)

2 D2
~ T"E’/Gnl/sB:é/sg—g—"Vf/s (1/L, +1/L. )4/3 .
32

Note that typically D, 2 10%cm?/ sec a.nd thal D,(7) increases as r — a. Also,
Dy scales favorably with plasma current and unfavorably (for ¢ not held fixed)

with B,. Calculation of magnetic fluctuation levels and the associated thermal

. diffusivity indicate that the dominant thermal transport mechanism is convection;
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- i.e., @ =TT,. These predictions are consistent with results from experiments on
the TEXT® and Caltech” and Tosca® tokamaks, respectively.
v) A mechanism which explains the density clamp'® observed during neutral beam
- co-injection in terms of an impurity gradient-induced enhancement of the particle
- diffusivity is proposed. This mechanism requires that Z;,ﬂ('r') be pea.kéd at the
edge.

In future work, the role of finite diamagnetic frequency effects appropriate to
semicollisional parameter regimes, along with the effects of toroidicity and plateau regime
collisionality, will be explored; Detailed comparison of experimental results with the the-
oretical predictions presented in this paper is in progress and will be discussed in a future

publication.
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. Appendix: Derivation of Impurity Concentration Evolution Equation
- We outline the derivation of Z.g evolution equation (Eq. (4)). The impurity
..density n; and hydrogenic ion density n; each obey a continuity equation of the form,

8 o
‘ &n +v; -Vn+ nV”'v” =0. (Al)

Consistent with the electrostatic approximation the nonlinearity retained is due to E x B

convection. Due to the presence of a strong ambient magnetic field, and the fact that long
ExB

5 is the same for

wavelength perturbations are considered, the cross field flow v | =
* both hydrogenic and impurity ions. However, the parallel velocity components v differ

for the two ion species. Using the definition Z.g = 1+ Z2 I and Eq. (A1), we obtain
N

(3

7) : ' .
g 2ot =~V Vieg — (Zeg — 1)V (vy.r —op14) 5 (42)

where v 1 — v” ;i follows from the parallel equations of motion for hydrogenic and impurity

0 : )
. nimiavﬂ.i = —V”Pi -+ niBEn — neenspd, —_mmiViI(vn,i - ’U||.I)> (A3)

o) ,
n]m]'é'l)”‘[ ==V Pr +n1ZeEj — nee(Zeg — 1)nspJ;

+ ngmavir(v)s — v).1)- , (A4)

Equation (A4) can be greatly simplified if we note that:

i) The impurity-ion friction terms in each of the two paralle]l momentum equations
(the last terms in Egs. (A3) and (A4)) are of comparable magnitudes.
ii) Assuming n;Z < n; ~ n, and n;Z2 ~ n; (i.e.,, Zeg — 1 ~ 1), the Ej term in
Bq. (A4) is smaller than the corresponding term in Eq. (A3),
iii) The fmpurity inertia is smaller than hydrogenic ion inertia,
1v) The J. ferm representing friction with electrons is peaked near the singular surface

and negligible in the region where the resistivity perturbations are significant.

The first condition is a consequence of the decoupling of the current perturbations

J» from the resistivity (77) and potential (¢) fluctuations which are centered off the rational
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- surface for rippling modes and further shifted outward in the nonlinear regime.!? Ttems
i) through iv) indicate that parallel impurity dynamics is dominated by the balance of
- the parallel gradient of impurity pressure with the impurity-hydrogenic ion friction. Thus,

Eq. (A4) becomes
T,V i

)
MGV

(45)

Yl T YT =

where isothermal ions with T; = 77 have been assumed. Moreover, since v < kjvr;,
constant total pressure is maintained by parallel sound wave propagation, ensuring that
Vi |(Pe+P;+Pr) = 0. It follows that quasi-neutrality and constant pressure along field lines -
yield the relation 27i;+ (14 Z)7; = 0. Hence, the relative impurity density perturba,tién is
significantly larger than the relative hydrogenic ion density perturbation, and Zeg = Z2 iy

L2
Using this relation and v;; = (Zeg — 1)vii, we obtain Eq. (4) from Egs. (A2) and (A5).
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. TABLEI
Macrotor parameters:

Various predicted fluctuation levels and particle diffusivity at saturation for typical Macro-
tor parameters (three different Zeg profiles considered).

L, =0.3a, L, = 4.2a, r; = 0.77a, S(0) = 105

Xl = X77Tr/R3 = 2.5 X 105, Ry = 90cm, a = 45cm, n(0) = 10*%cm 3

Br = 2kG, T.(r,) = 15V, n(r;) = 6.3n(0),

Cs = 4.9 x 10%cm/ sec, Q; = 1.9 x 107/ sec, p, = 0.26cm

' _ 5 T ed ]
L, L /a|Er2/a2| [ L - = D, =D,
/a rs/z/a 2/a| Brg/a ("70>rms <T0>rms (Te>m :

040 | 0.74 [ 1.30 | 610 [85x107?|5.7x107%[ 6.9x107% | 5.5x10% |
| oo | 0.77 | 1.62| 268 [5.1x1072[3.4x1072| 4.6x1072 | 3.6x10%
-0.65| 0.79 | 1.89 | - 87 [2.2x107?|1.5x107? | 2.6x1072 | 1.9x10*

34




Figure Captions

Fig. 1 Linear growth rates from the initial value code as a function of L, (Z.g-gradient
scale length).

Fig. 2- Comparison between the initial value code results and the shooting code results.

Fig. 3 The-structures of the eigenfunction (¢) and the effective potential of Eq. (17).

Fig. 4 Various eigenmode (q{), T., Zeﬂ‘) structures for the most unstable modes. |

Fig. 5 The equilibrium profiles of T}, Zeg, 1, and q for three different values of L,.

Fig. 6 .Mea11~square radial veloéity as a function of radius for three different values of L.

Fig. 7 Various relative fluctuation levels <ﬁ/n0, e® /Ty, T/ T()) at saturation as functions
of minor radius for L, = oo. |

Fig. 8 Various relative ﬂuctua,tion levels (ﬁ/no, ed /To, T/T()) at saturation as functions -
of radius for L, = L,.-

Fig. 9 Particle diffusivity at saturation as a function of radius.

... Fig. 10_Thermal conductivity at saturation as a function of-radius.. ..

Fig. 11 The ratio of thermal conductivity to particle diffusivity as a function of radius.
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