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Abstract
This paper describes advances made in the field of energetic-particle physics
since the topical review of Alfvén eigenmode observations in toroidal plasmas
(Wong 1999 Plasma Phys. Control. Fusion 41 R1–R56). The development of
plasma confinement scenarios with reversed magnetic shear and significant
population of energetic particles, and the development of novel energetic-
particle diagnostics were the main milestones in the past decade, and these are
the main experimental subjects of this review. The theory of Alfvén cascade
eigenmodes in reversed-shear tokamaks and its use in magnetohydrodynamic
spectroscopy are presented. Based on experimental observations and nonlinear
theory of energetic-particle instabilities in the near-threshold regime, the
frequency-sweeping events for spontaneously formed phase-space holes and
clumps and the evolution of the fishbone oscillations are described. The multi-
mode scenarios of enhanced particle transport are discussed and a brief summary
is given of several engaging research topics that are beyond the authors’ direct
involvement.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The need to control the behaviour of the energetic ion population and associated instabilities
is one of the key issues for magnetic fusion [1]. Alfvénic instabilities are of primary interest
as well as a primary concern in that regard. They have received an overwhelming amount
of attention after toroidal Alfvén eigenmodes (TAEs) were predicted theoretically [2] and
shown to be susceptible to excitation by fast ions in burning plasmas [3]. An experimental
search for TAEs on TFTR [4] and DIII-D [5] has convincingly confirmed their existence.
Extended subsequent world-wide studies of TAEs, both experimental and theoretical, are
summarized in [6].

In the past decade, the development of new plasma scenarios with internal transport
barriers (ITBs) and reversed magnetic shear has revealed instabilities of Alfvén cascade
(AC) eigenmodes [7–9] with characteristics quite different from TAEs. At the same time,
the spherical tokamak (ST) avenue of magnetic fusion was successfully explored with two
new mega-ampere machines MAST and NSTX achieving very high values of β in the
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presence of super-Alfvénic neutral beam injection (NBI) [10, 11]. These MAST and NSTX
experiments have shown a variety of NBI-driven frequency-sweeping events in the Alfvénic
range, which calls for an adequate theoretical description of the conjectured non-perturbative
nonlinear modes.

Significant progress has been made in diagnostics of energetic-particle-driven modes.
The development of novel mode detection techniques based on interferometry [12, 13] and
phase contrast imaging (PCI) [14], together with improved reflectometry [15, 16], made the
characterization of unstable modes and their amplitudes more reliable. With these diagnostics
at hand, the theory-to-experiment comparison became less ambiguous for all types of modes,
including TAEs. In particular, the interpretation of experiments with multiple modes excited
simultaneously, became possible and consistent with the experimental data [17, 18].

Thanks to the close interaction between theory and experiment, the experimentally
observed modes driven by energetic particles have become a convenient tool for so-called
magnetohydrodynamic (MHD) spectroscopy first discussed in detail in [19] and developed
experimentally in [8, 20]. This type of diagnostics delivers unique information about plasma
properties and plasma equilibrium from the experimentally measured spectra of discrete Alfvén
eigenmodes. In particular, a routine use of the observed ACs in shear-reversed plasmas has
helped a great deal in developing ITB scenarios [21].

The advances in the theoretical description of nonlinear mode evolution have been largely
due to the exploration of the near-threshold regimes typical for most of the energetic-particle-
driven waves [22]. The near-threshold situation develops naturally when the energetic-particle
population builds up gradually and the energetic-particle drive becomes competitive with the
mode damping. The near-threshold evolution of the mode can be characterized as either soft or
hard. In the first case, the mode saturates at a low level reflecting the closeness to the instability
threshold. In the case of hard excitation, the nonlinearity acts to destabilize the mode and push
the system further away from the threshold. Both soft and hard scenarios have been observed
experimentally. The developed theoretical approach has been applied successfully to TAEs
[23–25] and fishbones [26] in an effort to characterize nonlinear evolution of isolated weakly
unstable modes and to use this understanding to interpret measurements of the modes and
fast ions.

A more challenging physics problem to address is multi-mode transport of energetic
particles. This essential step is required to predict with confidence the macroscopic effects of
the modes on energetic particles in burning plasma machines such as ITER [1]. In contrast
to present-day experiments with typical ratio between the orbit width and the minor radius of
plasma ρα/a ∼= 0.1, ITER will have much larger dimensions and ρα/a ∼= 10−3–10−2. Under
such conditions, a single mode cannot affect the transport on a global scale, and only multiple
modes can if they provide overlap of the wave–particle resonances over a significant part of
the minor radius.

The aim of this paper is to review the ongoing theoretical and experimental studies of
energetic-particle-driven instabilities and their nonlinear consequences. The content of the
review is largely influenced by our personal research preferences, which obviously makes the
paper less than comprehensive. Yet, we hope that this deliberately biased description does not
overlook the most challenging points in the continuing effort to complete the energetic-particle
puzzle. The rest of the paper is organized as follows. Section 2 describes ACs in tokamak
plasmas with reversed magnetic shear and their use in MHD spectroscopy. Section 3 deals with
nonlinear properties of the modes driven by energetic particles. Section 4 presents our current
understanding of the bursty ‘fishbone’ instability. Global transport of energetic particles due
to multiple unstable modes is described in section 5. The concluding section (section 6) is an
outline of broader research activities.
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Figure 1. Magnetic spectrogram (Fourier decomposition of the Mirnov coil signal) showing an
example of ICRH-driven ACs with different toroidal mode numbers in a JET reversed-shear plasma.
Reprinted with permission from [9]. Copyright 2011, American Institute of Physics.

2. Alfvén modes in plasmas with reversed magnetic shear

2.1. AC eigenmodes

In the past decade, significant attention was paid to advanced tokamak scenarios aimed at
obtaining ITBs with non-monotonic safety factor profiles q(r). Such plasmas have a region
of magnetic shear reversal, which enriches their Alfvén wave spectra. In addition to the
arising multiplicity [27] of TAEs [2] in the low-shear limit, these plasmas commonly exhibit
the so-called ACs [7–9, 21], also known as reversed-shear Alfvén eigenmodes (RSAEs) [16].
ACs have been observed on JET [7–9, 21], JT-60U [28, 29], C-MOD [14], TFTR [30] and
DIII-D [13]. They are excited by either ICRH-accelerated ions (JET, JT-60U and C-MOD) or by
NBI-produced ions (JET, JT-60U, and DIII-D). Fusion born alpha particles excited the ACs in
TFTR DT plasmas [30], indicating the relevance of these modes to burning plasma experiments.

The AC modes, an example of which is shown in figure 1, are associated with the extremum
point of the shear Alfvén continuum localized at the magnetic surface with the minimum value
of q(r), labelled as q0 [7–9, 21].

During time evolution of the plasma current, the eigenfrequency of the AC, ωAC(t),
changes in step with q0(t) in accordance with the local dispersion relation for shear Alfvén
waves. In the simplest case of cold (low pressure) plasma, this gives

ωAC(t) ≈ VA

R0

∣∣∣∣n − m

q0(t)

∣∣∣∣ + �ω. (2.1)

Here, n and m are toroidal and poloidal mode numbers, R0 is the major radius of the tokamak,
VA = B0/(4πρ0)

1/2 is the Alfvén speed, B0 is the equilibrium magnetic field and ρ0 is the
mass density of the plasma. The first (dominant) term on the right-hand side of (2.1) is the
shear Alfvén continuum frequency at the zero shear point.
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Figure 2. Snapshots of the mode structure for n = 4 and m = (12; 11) during the transition from
AC to TAE. The left column shows the radial profiles of the poloidal components for the even parity
TAE; the right column presents the odd parity mode [32]. Reprinted with permission from [32].
Copyright 2011, American Institute of Physics.

The correction �ω in (2.1) describes a deviation of the AC eigenfrequency from the
continuum, and it originates from the effects of large ion orbits [7, 31], toroidicity [32] and
thermal plasma pressure gradient [33]. In plasma with higher pressure, the deformation of the
continuum itself becomes important due to the geodesic acoustic effect [34]. This deformation
will be described later, but it is important to note here that both �ω and the geodesic acoustic
contribution remain nearly constant on the time scale of q0(t) evolution.

Except in the vicinity of qTAE ≡ (2m − 1)/2n, each AC mode consists of predominantly
one poloidal Fourier component.

As q0(t) approaches qTAE, toroidicity-induced coupling modifies the dispersion relation
(2.1) and changes the mode structure into a sum of two comparable harmonics (m and m− 1),
as shown in figure 2. This transition from AC to TAE is seen as spectral line bending in figure 1
near the TAE gap. The corresponding theory has been developed in [32].

It is observed experimentally that the edge magnetic probe signals from the AC
perturbations peak when the AC frequency enters the TAE gap (see, e.g. [30, 35]). This peaking
can be reasonably attributed to radial broadening of the AC mode during its transition to TAE
(as seen from the plots shown in figure 2). It is noteworthy that the mode can look stronger on
the magnetic probes even when internal (reflectometer) measurements show that its amplitude
decreases in the plasma core [30]. The change in the mode structure correlates with the change
in the mode damping rate during the AC-to-TAE transition [36]. The AC-to-TAE transition
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Figure 3. Left: neutron yield, NBI and ICRH power in JET discharge #40410 with toroidal
magnetic field BT = 3.4 T and plasma current Ip = 3 MA. Right: grand cascade observed at the
time of the neutron rate and Te increase [21].

is also accompanied by notable redistribution of the fast ions [35], although ACs themselves
cause a weaker than TAEs degradation of fast-ion confinement. The relatively weak effect of
the ACs on the fast-ion redistribution can be explained by the AC mode structure: the ACs
with different mode numbers are all associated with the same magnetic flux surface at q0(t)

and are localized in the vicinity of the zero shear point.
It follows from equation (2.1) that the AC frequency tracks the evolution of q0(t) so that the

modes with higher poloidal numbers m have steeper slopes in figure 1. The sequence of modes
in figure 1 is also consistent with (2.1): each mode appears when q0(t) passes a corresponding
rational value m/n. The integer values of q0(t) give rise to so-called grand cascades in which
there are simultaneous unstable modes with all toroidal mode numbers, such as in figure 1 at
t ≈ 5.2 s. This clustering of the ACs has been employed in MHD spectroscopy to find the
exact timing of the safety factor evolution [8, 9, 21].

On JET, the excitation of ACs is observed in almost every reversed-shear discharge with
ICRH or NBI, but these modes do not cause significant degradation of fast-ion confinement
in JET plasmas. On the other hand, the measured discrete spectrum of ACs provides valuable
information about both fast ions and MHD characteristics of plasmas. A particularly important
example is the relation between the grand cascades, integer values of q0(t), and so-called ITB
triggering events [21, 37]. This relation has been first observed on JET, and it is presented in
figure 3. As seen from the figure, the neutron rate in the discharge is constant for about one
second (from t = 6 s to t = 7 s) at a fixed power of NBI and ICRH. However, the yield then
goes up and almost doubles after t = 7 s without any change in the NBI or ICRH power. At
the same time, a grand cascade is detected by Mirnov coils, which indicates that the safety
factor q0(t) takes an integer value at the location of magnetic shear reversal.

In order to investigate the correlation between ACs and ITBs with higher time resolution
and a higher degree of certainty, a technique of AE detection from plasma density perturbations
has been developed [12]. Figure 4 shows an example of the O-mode interferometry (top)
versus Mirnov coils measurements of the same ACs (bottom). Other types of interferometry
measurements, e.g. the far infrared (FIR) interferometry, used for density measurements
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Figure 4. ACs detected in the same discharge with O-mode interferometry (top) and with Mirnov
coils (bottom). Microwave beam frequency 45.2 GHz was just above the cut-off frequency of the
O-mode [12]. Reprinted with permission from [12]. Copyright 2011 by the American Physical
Society.

also detect high-frequency modes, and these now operate successfully on JET [21] and on
DIII-D [13, 38].

With the newly developed diagnostic technique, numerous JET reversed-shear
experiments have demonstrated a close link between ITBs and integer values of q0(t) [21]. The
ITB triggering event is observed on the electron temperature profile Te(r; t) as a spontaneous
steepening of the slope ∂Te/∂r when q0(t) approaches/passes an integer value. Figure 5 shows
an example of such an event with constant heating power applied.

The steepened electron temperature profile either relaxes in a few hundred milliseconds
or develops into an ITB if the main heating power is being supplied when the triggering event
occurs. Figure 6 shows a grand cascade soon after the ITB triggering event. A similar sequence
of events is observed in most of the discharges not perturbed by strong MHD phenomena such as
NTM [21]. This sequence suggests that the spontaneous improvement in electron confinement
is likely to be associated with a gap in the density of the rational surfaces prior to the appearance
of an integer q0 [39] rather then with the very existence of an integer q0 in the plasma [37]. The
link between ITB triggering and low-order rational surfaces inferred from the grand cascades
is routinely used on JET for developing ITB scenarios in the following way. A single discharge
with low power ICRH is performed first at the beginning of an experimental session and the
times of AC appearance are accurately measured. Thanks to the very good reproducibility of
JET discharges, the measured times for the grand cascades with low-order rational values of
q0 are then used reliably in all other discharges of the series to turn on the main heating power
at a desirable ‘target’ value of q0 in order to create an ITB [21, 37]. The correlation between
ITB triggering events and ACs has also been seen clearly in DIII-D [38]. It was, however,
noted that such a link seems to weaken in discharges with higher plasma density.
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We now note an interesting difference between the AC spectrograms in figure 4 (top) and
in figure 6. This difference results from fast toroidal rotation of the plasma in the discharge
shown in figure 6. The plasma spins up due to the uni-directional NBI. The mode frequency
f LAB

n in the laboratory reference frame differs from the frequency f 0
n in the plasma reference

frame by a Doppler shift,

f LAB
n = f 0

n + nfrot(r0), (2.2)

where frot(r0) is the rotation frequency at the mode location and n is the toroidal mode number.
With increasing toroidal rotation of the plasma, the Doppler shift modifies the frequency of
AC significantly. However, the grand cascade is still seen clearly in this case in figure 6 as a
bunch of modes starting at the same time but with frequencies separated by the Doppler shifts.

Measurements of ACs on DIII-D, made with FIR interferometry, [40] give somewhat
different spectrograms than those on JET. The Doppler shift was about 20% of the TAE
frequency in DIII-D (due to the strong E × B rotation) and it had the opposite sign. The
competition between the negative Doppler shift and the upward frequency sweeping due to
the time-dependent safety factor q0(t) forms a ‘hilly’ structure of the AC spectral lines seen in
figure 7.

2.2. Quasimodes

The preferred upward direction of AC sweeping seen in figure 1 indicates that a Schrodinger-
type equation for the AC has a radial potential well for the upward sweeping eigenmodes, as
opposed to a potential hill for the downward sweeping perturbations [41]. However, in some
JET discharges with weakly reversed q(r) profile (about 1% of total number), ACs can also
sweep downwards and exhibit frequency rollover as shown in figure 8. This rollover indicates
a hill-to-well transition for ACs.

The rollover and the downward sweeping can be interpreted in terms of AC quasimodes
that arise on the potential hill and stay there transiently prior to damping at the Alfvén
continuum resonance. The fairly large value of the lowest frequency in figure 8 results from
the deformation of the shear Alfvén continuum due to the geodesic acoustic effect [34]. In the
limit of large mode numbers n and m, both AC modes and quasimodes are governed by the
same wave equation

∂

∂r

[
ω2 − ω2

G − V 2
A

R2

(
n − m

q

)2
]

∂�

∂r
− m2

r2

[
ω2 − ω2

G − V 2
A

R2

(
n − m

q

)2

− ω2
∇

]
� = 0,

(2.3)

where ω2
G ≡ (2/MR2)(Te + 7

4Ti) is the square of the geodesic acoustic frequency and

ω2
∇ ≡ − 2

MR2
r

d

dr
(Te + Ti) − ω

m

∣∣∣∣ eB

Mc

∣∣∣∣ r

nplasma

d

dr
〈nfast〉

is an offset arising from the plasma pressure gradient and from the fast-ion response in the
large orbit limit. Assuming that the perturbation of interest is localized near the zero shear
point r0 such that |r − r0| � r0, one can expand the safety factor q(r) around r0 and look for
a radially extended solution of (2.3) with (r0/m) � |r − r0| � r0. This requires that ω2 be
very close to

ω2
0 ≡ ω2

G +
V 2

A

q2
0R2

(nq0 − m)2 + ω2
∇ . (2.4)
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Figure 7. Top: evolution of the FIR scattering spectrum showing ACs in the DIII-D discharge.
Middle: model analysis of frequency evolution of Alfvén continuum at q0 indicating toroidal mode
numbers in the range from 8 to 40. Bottom: time evolution of q0 inferred on DII-D from ACs
and measured with MSE (Reprinted with permission from [40]. Copyright 2011 by the American
Physical Society).

One can then neglect small radially dependent quantities in the second derivative term of (2.3).
With these simplifications, (2.3) reduces to

∂2�

∂z2
= [λ − ηz2 − z4]�, (2.5)

9



Plasma Phys. Control. Fusion 53 (2011) 054001 B N Breizman and S E Sharapov

            

1.2

1.0

0.8

0.6

0.4

0.2

0
2.95

100

F
re

qu
en

cy
 (

kH
z)

120
-7

-6

-8

-9

-10

140

80

60

40

2.0 2.5 3.0 3.5

log (|δB(T)|)Pulse No: 56940

Time (s)

2.90 2.85 2.803.00 2.75

Ω

q0

JG
10

.2
81

-1
9c
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are for β= 0.005 and β= 0.0015, respectively.

where

z ≡ r − r0

r0

[
V 2

A

ω2
∇q2

0R2

(
mnr2

0 q ′′
0

2

)2
]1/6

is a dimensionless radial coordinate and η and λ are dimensionless parameters defined as

η ≡ (nq0 − m)

(
2m2

nr2
0 q ′′

0

V 2
A

ω2
∇q2

0R2

)1/3

, λ ≡ ω2 − ω2
0

ω2
∇

(
ω∇R

VA

2q0

r2
0 q ′′

0

)2/3 (
m2

n

)2/3

.

(2.6)

The upward sweeping AC modes are solutions of (2.5) with η < 0, whereas AC quasimodes
represent solutions with η > 0 and with radiative boundary conditions at infinity. Let λ(η)

be a complex eigenvalue of (2.5) for η > 0. Of particular interest is the eigenvalue with the
lowest imaginary part, corresponding to the weakest damping. In the limit of large η, i.e. when
q0 is sufficiently far from the m/n rational surface, (2.5) reduces to the Schrödinger equation
for an inverted pendulum [41]. The characteristic lifetime of the quasimode wave-packet can
then be calculated analytically. The corresponding damping rate for large η is [42]

γ (η) = −√
η ·

(
1 − 3

4
iη−3/2 +

21

16
η−3

)
ω2

∇
2ω0

(
VA

ω∇R

r2
0 q ′′

0

2q0

)2/3 ( n

m2

)2/3
. (2.7)

The opposite limiting case of small η refers to perturbations near the rational magnetic surface
with q0 = m/n. In this limit, one can set η = 0 in (2.5) to obtain:

∂2�

∂z2
= (λ − z4)�. (2.8)

The least damped quasimode solution of (2.8) has Imλ ≈ 0.57, with the following dependence
of the damping rate on plasma parameters:

γη=0 = −0.57

2

√
ω2

G + ω2
∇


 ω2

G

ω2
G + ω2

∇

VA

R

√
ω2

G + ω2
∇

r2
0 q ′′

0

2q0




2/3 (
1

mq0

)2/3

.(2.9)
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For intermediate values of η, a time-dependent Schrödinger equation was solved numerically
[42] to give the dimensionless damping rate Im λ shown in figure 9.

A population of ICRH-accelerated ions can provide sufficient drive to overcome the
quasimode damping. Calculation of this drive requires a non-perturbative treatment described
in [42]. In the high-n limit, the dominant contribution to the particle-to-wave power transfer
comes from the turning points regions of the fast-ion banana orbits. As a result, despite the
large width of the fast-ion orbits, the ensuing wave equation retains the Schrodinger-type
structure, rather than becoming an integro-differential equation. An interesting difference
between the ‘true’ modes and quasimodes is that the ‘true’ modes have a rigid structure due
to discreteness of their frequencies whereas rigidity of the quasimodes is due to quantization
of their damping rates.

It is important to note that radiative damping of quasimodes can also be viewed as a result
of phase mixing between different kinetic modes that make up the initial perturbation. As
an alternative to a single radiatively damped quasimode, one can consider a dense spectrum
of kinetic Alfvén modes for which finite Larmor radius (ρi) effects create a potential well to
form bound states [43, 44]. The frequency spacing δω for these discrete kinetic modes is given
by [43]

δω

ω0
= 2ρi

√
Te

Ti
+

3

4

√
q ′′

0

q0

(nq0

m
− 1

)−1/2
. (2.10)

By comparing this spacing with the quasimode damping rate (2.7) in the limit η 
 1, which
refers to the commonly observed flattish q- profiles, we find that the damping rate exceeds the
spacing if

r0

ρim

ω∇
ω0

> 1. (2.11)

This inequality makes it allowable to ignore discretization of the kinetic mode spectrum,
because the timescale required to resolve the neighbouring kinetic modes is longer than 1/γd

by which time the quasimode has either decayed to zero or grown beyond the applicability of
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Figure 10. The second harmonic of AC and TAE is observed in Alcator C-MOD [14] on the PCI
diagnostic (left) and hardly seen on the magnetic pick-up coils (right). Reprinted with permission
from [14]. Copyright 2011, American Institute of Physics.

linear theory. Near marginal stability, i.e. for the case γL − γd � γd, where γL is the linear
drive due to resonant particles, an extra factor (γL − γd)/γd appears in equation (2.11), which
makes criterion (2.11) more restrictive. Violation of this criterion means that the kinetic modes
become distinguishable. Such modes with a broad radial scale have been constructed in [44].

2.3. Nonlinear sidebands and internal measurements

As seen from (2.4), the measured deviation of the AC frequency from the idealized
dispersion relation (2.1) can apparently be used to determine the ion temperature, the electron
temperature or fast-ion parameters, depending on which contribution dominates in (2.4).
Another interesting opportunity for plasma diagnostics involves nonlinear sidebands of Alfvén
eigenmodes. In experiments on Alcator C-MOD [14], measurements of density fluctuations
with PCI in figure 10 show a second harmonic of the basic AC and TAE signals. This second
harmonic perturbation can be interpreted as a nonlinear sideband produced by the eigenmode
via quadratic terms in the MHD equations [45]. The signal at 2ω is nearly resonant with the
(2m; 2n) branch of the Alfvén continuum.

The resulting enhancement of the second harmonic is counteracted by the relatively weak
nonlinearity of the shear Alfvén waves. For shear Alfvén perturbations in a uniform equilibrium
magnetic field, the quadratic terms 4πρ(v ·∇)v and (B ·∇)B tend to cancel in the momentum
balance equation. For this reason, special care is needed to include magnetic curvature effects
properly and to evaluate the coupling between shear Alfvén perturbations and compressional
perturbations. As shown in [45], the ratio of the second harmonic density perturbation ρ2ω to
the first harmonic perturbation ρω is roughly ρ2ω/ρω ≈ mq0(R/r0)(|δBω|/B0), where |δBω|
is the perturbed magnetic field at the fundamental frequency. This estimate is consistent with
recent new measurements on Alcator C-MOD [46]. The estimate for ρ2ω/ρω can be refined via
more detailed calculations, which would provide the spatial structure of the second harmonic
signal for the observed modes. Such calculations together with PCI data would then allow the
determination of the perturbed fields inside the plasma, rather than just at the plasma edge as
with magnetic probes.

Internal measurements of mode amplitude and mode structure have been boosted in
experiments on various machines recently. The mode structure diagnostic is based on
measurements of electron density perturbations. The density perturbation δn, created in a
tokamak by plasma displacement ξ in a shear Alfvén wave, contains a convective part and a
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Figure 11. Minimum safety factor as a function of time for DIII-D discharge 123202. The solid
line is the MSE derived value (with a typical error bar shown). Diamonds indicate the minimum
safety factor inferred from AC (RSAE) measurements. Errors on AC-derived timing are roughly
estimated to be the width of the diamond markers (±5–10 ms) [48].

compressional part [47],

δn

n0
= −ξ · ∇n0

n0
− ∇ · ξ ∼= −

(∇n0

n0
+

2R

R2

)
· ξ.

The convective contribution to δn is due to the equilibrium density gradient ∇n0, whereas the
compressional contribution is associated with the geodesic curvature κ ≡ R/R2, where R/R

is the unit vector along a major radius direction and R is the major radius. In the case of ACs,
the density perturbations measured by the X-mode reflectometry reveal mode localization and
thereby identify the location of magnetic shear reversal. This diagnostic technique has been
used extensively on DIII-D [48] and JET [15]. A more recent PCI diagnostics on C-MOD [49]
enhances this capability.

Based on a model for the AC frequency, a sensitive diagnostic for the evolution of the
minimum magnetic safety factor q0(R, t) was developed and compared successfully with
motional Stark effect (MSE) measurements, an example of which for DIII-D is shown in
figure 11.

The successful use of ‘Alfvén spectroscopy’ on present-day machines has demonstrated the
importance and feasibility of the core diagnostic of AEs in ITER [1]. With regard to ITER, this
technique of monitoring temporal evolution of the safety factor profile can serve as a back-up
to the MSE diagnostic. On C-MOD, the PCI measurements over a wide width in major radius
have led to an excellent technique of reconstructing the AE mode structure [49]. Figure 12
shows an example of such reconstruction and comparison with the NOVA code modelling. In
this case, the effect of cancellation of positive and negative density perturbations along the
line-of-sight was investigated in detail.
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Figure 12. (a) The two-dimensional density perturbation calculated by NOVA. The shaded area
indicates the PCI viewing region. (b) The synthetic PCI data are compared with the experimental
data, showing overall good agreement between the structures [49]. Reprinted with permission
from [49]. Copyright 2011 by the American Physical Society.

Finally, excellent internal diagnostics of AEs has been developed on DIII-D [50] based
on ECE measurements. The multiple-channel ECE technique expands the capability of mode
detection significantly due to its high spatial resolution. The ECE technique is one of the main
diagnostics for equilibrium temperature measurements, and multiple ECE channels are already
available for that. The use of ECE as a diagnostic for AEs requires only a modest amendment:
digitization of the measured signals up to the relevant frequency range.

3. Nonlinear evolution of energetic-particle-driven mode

The near-threshold regimes of wave excitation by energetic particles reveal a rich family
of nonlinear scenarios ranging from benign mode saturation to spontaneous formation of
nonlinear coherent structures (phase-space holes and clumps) with time-dependent frequencies
[22–25, 51, 52]. This variety results from an interplay between the wave field, which tends
to flatten the distribution of resonant particles, and the relaxation processes, which tend to
restore the unstable distribution function. The relaxation process was modelled in [22] via an
‘annihilation’ (Krook [53]) collision operator. Within this model, four regimes of the near-
threshold evolution of a single wave have been predicted depending on the ratio of the effective
relaxation rate νeff to the linear growth rate γ : (1) a steady-state regime; (2) a regime with
periodic amplitude modulation; (3) a chaotic regime and (4) an ‘explosive’ regime. The case
of velocity-space diffusion exhibits very similar nonlinear behaviour [51, 52].

The first three regimes have been identified in JET experiments on TAE excitation by
ICRH (ion cyclotron resonance heating) [23, 24]. The explosive regime leading to a strongly
nonlinear phase was identified in MAST experiments with TAEs driven by NBI [25]. Due to
the strong nonlinearity that develops in the explosive scenario, the instability on MAST was
observed in the form of TAE ‘bursts’, representing a near-threshold type of a general ‘bursting’
nonlinear scenario described in [54].

Figure 13 illustrates observations of different nonlinear scenarios. Experimentally, the
TAEs driven by ICRH-accelerated ions on JET exhibit a variety of regimes just above the
excitation threshold. Figure 13 shows how raw signals and magnetic spectrograms of TAE
change during gradual increase in ICRH power [24]. In this case, the distribution function of
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Figure 13. At gradually increasing ICRH power, TAEs exhibit steady state, periodically
modulated, and chaotic regimes. The left panel shows the magnetic probe signals. The right
panel shows magnetic spectrograms obtained via Fourier decomposition of the signals. Reprinted
with permission from [24]. Copyright 2011 by the American Physical Society.
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Figure 14. NBI-driven bursting TAEs on MAST [25].

the fast ions resonating with TAEs is formed via quasilinear RF diffusion. The effective rate
of replenishing the distribution function, νeff , is therefore an order of magnitude higher than
the rate associated with Coulomb collisions [23]. In agreement with the theory [23, 24], such
a diffusion-dominated distribution function gives a soft nonlinear regime of TAE with steady
or modulated amplitude. Although the diffusive case does not exclude a hard nonlinear regime
with the explosive TAE evolution, such regimes are rare in experiments.

On the other hand, the nonlinear TAE driven by NBI-produced energetic ions on MAST,
very rarely exhibit a steady-state nonlinear evolution. Most often, the explosive regime is
observed that gives a bursting evolution of the mode amplitude with a sweep in the mode
frequency. Figure 14 shows an example of such a TAE-bursting mode [25].

These findings suggest that the difference between the JET and MAST observations may be
due to specifics of the fast-particle relaxation mechanisms. Consequently, the earlier theoretical
model has been generalized by including dynamical friction (drag) as an additional relaxation
mechanism. The upgraded model has revealed that only the explosive behaviour is possible in
the near-threshold regime when drag dominates over other relaxation mechanisms [55]. As a
result, the instability follows a so-called ‘hard’ nonlinear scenario in which the saturation level
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is insensitive to the initial linear growth rate. This profound difference in behaviour arises due
to a qualitative change in the nonlinear response of the system from an exponential ‘loss of
memory’ to an oscillatory response with positive nonlinear feedback.

Technically, the near-threshold regimes are described by the following cubic nonlinear
equation for normalized mode amplitude A:

dA

dτ
= A(τ) − 1

2

∫ τ/2

0
dzz2A(τ − z)

×
∫ τ−2z

0
dx exp[−ν̂3z2(2z/3 + x) − β̂(2z + x) − iα̂2z(z + x)]

× A(τ − z − x)A∗(τ − 2z − x) (3.1)

where the time τ is measured in the units of the linear instability growth time. The quantities
ν̂, β̂ and α̂ represent the rates of velocity-space diffusion, annihilation and drag, respectively,
(normalized to the instability growth rate). The dimensionless amplitude A is proportional to
the perturbed field and its normalization depends on a specific mode of interest. Equation (3.1)
implies that the characteristic bounce frequency ωb of resonant particles trapped by the mode is

ωb = |A|1/2γ (γ /γd)
1/4 (3.2)

where γd is the mode damping rate in the absence of energetic particles, and the ratio γ /γd

is much smaller than unity, because the energetic-particle drive only slightly exceeds the
background damping γd in the near-threshold regime.

Equation (3.1) determines whether the initial linear instability evolves into a soft or hard
nonlinear regime. The amplitude A saturates at a finite level in the soft case, whereas the hard
case gives a solution that ‘explodes’ in a finite time. In the absence of drag (α̂ = 0), (3.1)
admits a saturated solution in which |A|2 = 2[

∫ ∞
0 (z2 dz/β̂ + ν̂3z2) exp(−2ν̂3z3/3 − 2β̂z)]−1

at τ → ∞, and the amplitude indeed converges to that solution, but only when the annihilation
rate (β̂) and/or diffusion rate (ν̂) are sufficiently large. At smaller values of β̂ and ν̂, the
steady saturated solution is unstable, which gives rise to a periodic limit-cycle behaviour
known as ‘pitchfork splitting’. Further decrease in the relaxation rates creates period doubling
bifurcations and then leads to a chaotic mode amplitude evolution and to explosive growth
of the mode. The details of these transitions can be found in [22, 23]. The same (3.1) also
shows that the mode evolution is always explosive in the case of pure drag (β̂ = ν̂ = 0). The
cubic nonlinear term in the equation is destabilizing in this case. Because of that (3.1) does
not have any saturated solution at (β̂ = ν̂ = 0), and the mode grows beyond the applicability
range of (3.1).

In the presence of both drag and diffusion, the existence of steady saturated solutions is
only prohibited when the integral in (3.1) has a negative real part at τ → ∞, which takes place
at ν̂/α̂ < 1.043 (as marked by the dashed line in figure 15). However, some of the steady
solutions that formally exist at ν̂/α̂ > 1.043 are in fact unstable [55]. The stability boundary
is shown in figure 15 by the solid line. The area above the solid line represents stable steady
solutions.

Equation (3.1) implies that the dominant nonlinear effect from the wave is modification of
the resonant particle drive whereas the background damping is herein assumed to be linear. In
particular, this model applies to the case in which the background damping is purely collisional
and does not involve any resonant phenomena. Yet, in reality, the damping mechanism
itself may also be of resonant nature, like Landau damping on plasma particles or continuum
damping. The wave can then modify both the drive and the damping. Moreover, a nonlinear
reduction of the damping rate may actually enhance the instability as it happens in fishbone
pulses (see section 4). Equation (3.1) allows a straightforward generalization to describe this
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Figure 15. Displays the boundaries in parameter space that give stable, unstable and no steady-
state solutions to (3.1). The unstable solution lies in between the solid and dashed lines. Reprinted
with permission from [55]. Copyright 2011 by the American Physical Society.

interplay of different resonances [61] in the near-threshold regime. Alternatively, the resonance
that is responsible for wave damping may still behave as a linear resonance if a sufficiently fast
classical relaxation rate prevents its nonlinear distortion (this can happen because the effective
collision frequencies are generally different for different resonances).

In order to apply the above scenarios to the TAE instability in toroidal geometry, one needs
to consider a group of particles that resonate with the wave. The corresponding resonance
condition is ω − n〈ωφ〉 − l〈ωθ 〉 = 0, where ω is the TAE frequency, 〈ωφ〉 ≡ 〈dφ/dt〉 and
〈ωθ 〉 ≡ 〈dθ/dt〉 are the orbit frequencies of energetic ions along the toroidal, φ, and poloidal,
θ , coordinates, 〈· · ·〉 represents the orbit averaging, n is the toroidal mode number of the TAE,
and l is an integer value. The particles detune from the resonance due to the drag and diffusion,
and the appropriate collision operator for the problem is a Fokker–Plank operator written in
action angle variables. Its explicit form, which can be found in [52], allows one to express the
quantities ν̂ and α̂ in terms of plasma parameters and thereby evaluate the relative importance
of pitch-angle scattering and slowing down for the resonant ions.

Observations of TAEs on different machines have shown that there is a tendency for
NBI-driven Alfvénic instabilities to exhibit a bursting behaviour (hard nonlinear regime) on
NSTX [11], TFTR [4], DIII-D [5] and JT-60U [56]. On the other hand, ICRH-driven modes,
similar to those observed in JET [23, 24], show predominantly soft regimes on TFTR [57],
JT-60U [58], DIII-D [59] and C-MOD [14]. Taking into account that the distribution function of
NBI-produced ions establishes itself due to electron dynamical friction, while the distribution
function of ICRH-accelerated ions is formed via a quasilinear diffusive process, we find that
the difference in observed nonlinear scenarios is consistent with the trend predicted by (3.1).

The explosive near-threshold regimes are known to give rise to phase-space holes and
clumps. The build-up of such structures was demonstrated in [60, 61], but their initial
quantitative description was limited to the case of small frequency deviations from the bulk
plasma eigenfrequency. However, there are multiple experimental observations of frequency-
sweeping events in which the change in frequency is comparable to the frequency itself
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Figure 16. NBI-driven chirping modes on MAST [10].
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Figure 17. Left: phase magnetic spectrogram showing modes with various toroidal mode numbers
excited by ICRH in JET discharge #54895. The n = 0 mode is seen at around 30 kHz and marked
in black. ACs are seen in the range 40–110 kHz. Right: the n = 0 mode in #54895 (zoom) [65].

[10, 62, 63]. Figure 16 shows an example of such ‘chirping’ frequency modes with downward
frequency sweeping observed in MAST discharges with NBI-heating [10].

Another example is modes with upward frequency sweeping observed in JET discharges
with high field side ICRH (i.e. the ICRH resonance layer is on the high field side from the
magnetic axis of the tokamak). Figure 17 shows persistent, high clarity, upward frequency
chirping modes with toroidal mode number n = 0 [64, 65]. These oscillations have frequency
just below the lowest AC frequency, and they obey the T

1/2
e scaling typical of geodesic acoustic

mode (GAM) [66]. Therefore, these modes were identified as energetic-particle-driven global
geodesic acoustic mode (GGAM) [64], which are electrostatic at the main localization region,
but become electromagnetic away from it. The free energy source driving these modes is found
to be associated with the bump-on-tail energy distribution function created by ICRH.

Interpretation of such dramatic phenomena as the ones in figures 16 and 17 requires a
non-perturbative theoretical formalism developed recently in [67]. The underlying idea is
that coherent structures with varying frequencies represent nonlinear travelling waves in fast-
particle phase space. Given that the energetic-particle density is usually much smaller than the
bulk plasma density, it seems difficult for these particles to change the eigenmode frequency
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significantly. The way to resolve this difficulty is to take into account that regardless of how
small is the energetic-particle density, a coherent group of these particles can still produce
an observable signal with a frequency different from the bulk plasma eigenfrequency. A
relevant example is a modulated beam in the plasma. The modulation occurs spontaneously
as a result of the initial instability and resonant particle trapping by the excited wave. The
initial modulation matches the frequency of a plasma eigenmode. However, as the coherent
structure evolves due to dissipation, the trapped particles slow down without losing coherency,
and the resulting frequency shifts considerably from the initial frequency. The corresponding
theoretical building block is then a nonlinear Bernstein–Greene–Kruskal (BGK) mode [68],
rather than a slowly evolving plasma eigenmode. In [67], a rigorous solution of this type has
been obtained for a simple one-dimensional bump-on-tail model with immobile ions and with
the following form of the perturbed electrostatic potential ϕ:

ϕ ≡ − 1

|e|U [x − s(t); t] (3.3)

where e is the electron charge, and the electron potential energy U is a periodic function of
its first argument [x − s(t)] and a slowly varying function of the second argument t . Also,
the wave phase velocity ṡ ≡ ds(t)/dt is a slowly varying function of time with a sweeping
rate s̈. The perturbed cold electron density is linear in ϕ whereas the density perturbation of
the fast electron tail is nonlinear, dominated by the adiabatic response of the trapped particles.
Evaluation of this nonlinear response involves the notion that the electron distribution function
is nearly uniform within the trapped particle phase-space area and that the ambient passing
particles are basically unperturbed.

The resulting Poisson equation for the BGK mode has the form

∂2U

∂z2
= −Uω2

p/ṡ
2 − {8πe2 [f0(ṡ0) − f0(ṡ)]

√
2/m}[

√
(Umax − U) − 〈

√
(Umax − U)〉],

(3.4)

where z ≡ x − s(t), ωp is the plasma frequency ṡ0 is the initial phase velocity of the wave,
f0 is the unperturbed velocity distribution of the fast electrons, and angular brackets denote
averaging over the spatial period λ. Equation (3.4) gives the following structure for the BGK
mode [67]:

U = mṡ2

2

{
32πe2ṡ[f0(ṡ0) − f0(ṡ)]

3mω2
p cos α

}2

×
{

1 + 2 cos2 α

2
− 3 sin 2α

4α
−

[
cos α − cos

2αz − αλ

λ

]2
}

α ≡ ωpλ/4ṡ. (3.5)

For small deviations of ṡ from ṡ0 (early phase of frequency sweeping), (3.5) simplifies to

U = mṡ2
0

4

{
32

3π2

γL

ωp

}2

cos

(
2πz

λ

)
, (3.6)

where

γL ≡ ωp
π

2n0
ṡ2

0
∂f0(ṡ0)

∂ṡ0
(3.7)

is the fast electron contribution to the mode growth rate. Equation (3.6) reproduces the
result of [60], i.e. a sinusoidal mode with constant amplitude at the beginning of frequency
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Figure 18. Evolution of the phase-space bucket during the sweeping event. The plot shows the
initial separatrix (upper shaded area) and the shrinked separatrix at half of the initial mode phase
velocity (lower shaded area).

sweeping. On the other hand, the more general expression (3.5) shows that the amplitude and
the mode structure change significantly for larger variations of ṡ. As a result, the boundary
(separatrix) between the passing and trapped particles changes its shape as shown in figure 18.
The separatrix shrinks and thereby releases some of the originally trapped particles, like a
leaking phase-space bucket. The remaining particles move to lower velocities together with
the separatrix, which allows the wave to extract power from the fast-particle population. The
extracted power is

P = −[f0(ṡ0) − f0(ṡ)]2mṡ2λ

∣∣∣∣∣32πe2ṡ[f0(ṡ0) − f0(ṡ)]

3mω2
p cos α

∣∣∣∣∣
[

sin α

α
− cos α

]
dṡ

dt
(3.8)

and the balance between this power and the power dissipated in the bulk plasma determines
the rate of sweeping needed to compensate for collisonal dissipation of the BGK mode.

Early in time, the power balance condition gives

d

dt

(ṡ − ṡ0)
2

ṡ2
0

= ν

3

∣∣∣∣ 16γL

3π2ωp

∣∣∣∣
2

, (3.9)

where ν is the cold electron collision frequency. This expression reproduces the square root
scaling of frequency sweeping found in [60]. Later in time, the mode moves further away
from the initial linear eigenmode, and its phase velocity ṡ deviates gradually from the simple
square root scaling.

This evolution can be viewed as spontaneous transformation of the initial plasma wave
into an energetic-particle mode. It also presents a plausible scenario for energetic-particle
modes generated by Alfvén wave instabilities [69–71], for which nonlinear modification of
the mode structure appears to be essential, especially when the instability is non-perturbative
even in the linear regime.

The presented consideration of the 1D electrostatic bump-on-tail problem suggests a
similar approach to the frequency-sweeping events in tokamaks. Experimentally, such events
can be attributed to the excitation of weakly unstable Alfvén waves. However, the measured
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Figure 19. Transport of resonant particles during frequency sweeping. The shaded areas are
snapshots of the moving resonant region in the momentum space. The shades of grey mark
different values of the particle distribution function. The trapped resonant particles form a locally
flat distribution across the resonance and preserve the value of their distribution function when the
resonance carries them along the dashed lines.

frequency quickly moves away from the original eigenmode frequency, and a plausible
underlying mechanism is spontaneous formation of coherent phase-space structures at the
wave–particle resonances.

For a linear mode, the resonance condition has the form

ω − nωϕ(Pϕ; Pθ ; Pψ) − lωθ (Pϕ; Pθ ; Pψ) = 0, (3.10)

where ω is the mode frequency, ωϕ(Pϕ; Pθ ; Pψ) and ωθ(Pϕ; Pθ ; Pψ) are the toroidal and
poloidal transit frequencies, and n and l are integers. The pairs (Pϕ; ϕ), (Pθ ; θ) and (Pψ ; ψ)

are the canonical action-angle variables for the integrable unperturbed motion. The third pair
(Pψ ; ψ) describes fast gyro-motion that does not resonate with shear Alfvénic perturbations.
For an isolated linear resonance, the perturbed particle Hamiltonian is a sinusoidal function
of ωt − nϕ − lθ . Similarly to the bump-on-tail problem, transition to the nonlinear case
generalizes the Hamiltonian to

H = H0 + U

(∫ t

0
ω(τ) dτ − nϕ − lθ; t

)
, (3.11)

where the function U (to be determined numerically) is still a periodic (but not necessarily
sinusoidal) function of its first argument. We now note that the quantitiesPψ andP = lPϕ−nPθ

are constants of motion for such a Hamiltonian and that slow evolution of the function U

should also preserve an adiabatic invariant for trapped particles. These three conservation laws
establish a simple relationship between the trapped particle distributions at any two locations
of the resonance (see figure 19).

The distribution of the ambient passing particles remains virtually unperturbed. Any
macroscopic quantity, such as perturbed energetic-particle pressure, now becomes a known
functional of the unperturbed distribution and the ‘potential energy profile’ U . What remains
to be solved (numerically) is a set of linear MHD equations for bulk plasma response with an
analytic nonlinear input from the energetic particles. These equations represent an analogue of
(3.4), and their solution determines the wave profile U . After that, the power balance condition
can be used to calculate the frequency-sweeping rate.
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Figure 20. Oscillations of the perturbed magnetic field time derivative during fishbone burst (JET
discharge #16341) [74].

4. The fishbones

A bursty ‘fishbone’ instability, with toroidal mode number n = 1 and dominant poloidal mode
number m = 1, was first observed in experiments with perpendicular NBI on the Poloidal
Divertor Experiment (PDX) tokamak [72] and then found in most tokamaks with a suprathermal
ion population: DIII-D [73], JET [74], JT-60U [75], ASDEX-U [76] and MAST [77]. Figure 20
shows a typical fishbone burst signal from a Mirnov coil. The repetitive bursts resemble
fish skeletons going one-by-one, hence the name ‘fishbones’ given to such oscillations. The
fishbone instability is known to cause enhanced losses of energetic ions. It may also thwart
confinement of the thermal plasma by initiating long-lasting kink and neoclassical tearing
modes [76–78].

The fishbone bursts are oscillatory. Their frequency typically decreases by about a factor
of two during each burst as can be seen, e.g. from figure 20. Experimentally, the radial plasma
displacement in the fishbone mode was found to have a ‘top-hat’ structure of the internal
n = 1 kink mode [79] associated with the q = 1 magnetic surface, where q is the safety
factor. The frequency of the fishbone oscillations in PDX was found to be close to the
magnetic precession frequency of the trapped energetic ions, 〈ωdh〉, as well as to the thermal
ion diamagnetic frequency, ω∗pi. The original theoretical interpretation [80] established the
resonant wave–particle interaction at ω = 〈ωdh〉, as the key drive for the fishbone instability.
Two different regimes have been identified for the linear instability. The first regime of so-
called ‘precessional’ fishbones [80] refers to the case when the mode frequency ω in the plasma
reference frame is much greater than the thermal ion diamagnetic frequency, ω∗pi,

ω 
 ω∗pi. (4.1)
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Figure 21. Spatial structure of the fishbone perturbation in the near-threshold regime. The real
and imaginary parts of the radial velocity profile show two well-separated resonant sub-layers near
the q = 1 surface. The width of each sub-layer is proportional to the mode growth rate. The
distance between the sub-layers is proportional to the mode frequency.

In this case, trapped energetic ions destabilize the n = 1, m = 1 mode that emerges from
the Alfvén continuum and is subject to continuum damping. At the onset of the fishbone
pulse, the linear drive from fast particles is almost balanced by continuum damping near the
q = 1 resonant surface. The mode structure shown in figure 21 has singularities at the radial
locations, rA, of Alfvén resonances,

ω = ±k‖(rA)VA(rA) (4.2)

where VA(r) is the Alfvén velocity and k‖ is the wave-vector parallel to the equilibrium
magnetic field B0. Due to the significant continuum damping, associated with magnetic
shear at the fluid resonances, the precessional fishbones are excited at relatively high values of
the energetic (hot) ion beta, βhot ≡ 4πPhot/B

2
0 > βcrit

hot . Here Phot is the pressure of energetic
ions and the threshold value βcrit

hot is determined by the balance between the kinetic drive due
to the energetic ions, γhot, and the Alfvén continuum damping, γMHD, which can be expressed
in the form

� ≡ γhot

γMHD
= 1. (4.3)

The precessional fishbones constitute an example of the hard nonlinear excitation scenario due
to the destabilizing dependence of the threshold parameter � on the wave amplitude.

The second linear regime refers to the fishbones with ω ≈ ω∗pi [81, 82]. In this case, the
mode lies within a low-frequency gap in the Alfvén continuum, which effectively eliminates
continuum damping. In this regime, the fishbones represent one of the two FLR-stabilized
oscillatory kink modes which would be unstable within ideal MHD [83].

Numerous fishbone experiments on various machines have triggered a further significant
development of the linear theory of fishbones. First, the theory of the energetic-particle drive
for fishbones was extended in order to account for the transit resonances of the energetic
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ions [84] and finite orbit width corrections [85]. Second, the impressive results obtained on
STs required a careful analysis of instabilities in STs, and fishbones were one of the prominent
avenues there.

In STs with tight aspect ratio and high volume averaged beta [86], the fishbone modes may
differ significantly from those in large-aspect-ratio tokamaks. In particular, the fishbone drive
from both trapped [87] and passing [88] energetic ions terminates if the equilibrium magnetic
field B has a minimum in major radius. This happens at very high values of β, which can be
achieved in STs due to improved MHD stability at tight aspect ratios. In the presence of radial
minimum in B, the power transfer from trapped energetic ions to the mode becomes negative
as its sign depends on the sign of ∂B/∂r . On the other hand, the toroidal drift frequency, ωdh,
of the energetic passing ions becomes so large at high β that the drift motion shifts the radial
location of the wave–particle resonance by several particle orbit widths [88]. This large orbit
effect suppresses the instability drive from the passing ions.

Furthermore, the fishbone modes in STs may have a different radial mode structure than
the conventional q = 1 fishbone. In particular, the very low magnetic shear, typical for ST
plasmas, may permit an infernal n = 1 fishbone mode even at q > 1, or the structure of
the fishbone mode may be similar to the interchange mode [89]. These specifics of STs still
require simultaneous treatment of the MHD and wave–particle nonlinearities with regard to
fishbones.

In addition to the ion-driven fishbones, there are also fishbone-like instabilities driven
by energetic electrons. They were discovered in DIII-D experiments with ECRH [90] and
more recently observed in other machines under ECRH and low hybrid heating. A nice
overview of these instabilities and the related theoretical formalism can be found in [91]. It is
noteworthy that, due to the smallness of electron drift orbits, the electron fishbones in present-
day devices may replicate essential features of the ion-driven fishbones in large burning plasma
experiments.

Losses of energetic ions resonating with the fishbones were examined in experiments on
many machines. In the worst case scenario of plasmas with high-βp ≡ 8πnT/B2

P (at small
plasma current), when the fishbone amplitude is high and particle orbits are wide, such losses
may affect the fast-ion population significantly. For example, losses of NBI-produced energetic
ions in low current low field JET tritium discharges could exceed 50% of the total beam energy
content [92]. The resonant redistribution/losses due to fishbones in burning plasmas of the
ITER-scale machine were assessed in [83]. It was shown that typical energy range for resonant
fusion born alpha particles is 300–400 keV, well below the birth energy 3.5 MeV. Losses of
such ions due to fishbones may, in fact, be beneficial for ash removal from the plasma core.

Non-resonant losses of alpha particles with high energies were predicted in [83] as well.
For very fast ions, the mode looks like a stationary n = 1 MHD perturbation of the plasma.
This perturbation destroys the toroidal symmetry of the magnetic field and distorts the fast-ion
trajectories (see, e.g., [93]). In particular, it broadens the regions of phase space corresponding
to the unconfined orbits (prompt loss region), giving rise to enhanced non-resonant losses due
to the n = 1 fishbone. Experimentally, the fishbone-induced non-resonant losses of highly
energetic fusion products were detected on DIII-D, TFTR and JET [94–96].

The advancements of plasma scenarios reveal some new phenomena associated with
fishbones, of which two cases of long-lasting MHD perturbations are of particular interest: (i) a
long-living n = 1 kink modes in low-shear STs, e.g. MAST [77], and (ii) fishbone initiated
NTMs in so-called ‘hybrid’ scenarios on JET [97] and ASDEX-U [76].

When fishbones initiate a long-living n = 1 kink mode in MAST (see figure 22), this mode
sometimes becomes locked and provokes degradation of plasma confinement. The bursting
fishbones seemingly evolve into steady-state long-living modes. This effect is likely to be
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Figure 22. Magnetic spectrogram showing fishbone oscillations that initiate a long-living n = 1
kink mode (at frequency 30 kHz) in MAST discharge # 16038. The long-living mode degrades the
plasma performance and causes internal reconnection event at t = 0.34 s.

associated with a gradual decrease in the safety factor q and radial expansion of the q = 1
surface. At small radii of the q = 1 surface, i.e. at early time in figure 22, the ion diamagnetic
frequency ω∗pi is relatively small (due to the smallness of the ion pressure gradient near
magnetic axis). In this case, the ion diamagnetic frequency is lower than the characteristic
precessional frequency of the beam ions. As a result, the Chen–White–Rosenbluth fishbones
[80] driven from the continuum are observed. As the q = 1 radius expands to the region with
higher pressure gradient, the ion diamagnetic frequency ω∗pi increases, which is beneficial for
the Coppi–Porcelli ω ≈ ω∗pi fishbones. It is therefore plausible that the observed initiation
of a long-living n = 1 kink mode represents a gradual transformation of the Chen–White–
Rosenbluth fishbones [80] into the Coppi–Porcelli mode [81], driven by the NBI-produced
fast ions.

An interesting feature of the data shown in figure 22 is the presence of very high harmonics
(up to seven) in the Mirnov coil signals. Such observations are very similar to so-called ‘snake’
MHD modes [98] which form a narrow helical current filament rotating toroidally. A possibility
of the fishbones to form a current filament at the nonlinear phase of the mode development
remains an intriguing open question.

In the development of a so-called ‘hybrid’ plasma scenario aimed at ITER [97], an
important NTM triggering effect was observed during fishbone activity. A distinctive feature
of this scenario is a broad region of flat q(r) just above unity. The most common example
of a reconnection in tokamak plasmas is the sawtooth reconnection driven by instability of
the internal kink mode. However, experiments on ASDEX-Upgrade [76, 99] and on JET [97]
have shown that fast-particle-driven fishbone instabilities, and frequency-sweeping modes in
the Alfvén frequency range, can also initiate NTM reconnections. Figures 23 and 24 display
a typical example of this kind on JET.

The interplay between the fishbones and long-living NTM on JET is somewhat more
subtle than the initiation of the long-lasting n = 1 mode on MAST (figure 22). First, the
n = 2, m = 3 NTM occurring at 28.8 s is localized near the q = 3/2 magnetic surface
whereas the n = 1 fishbones are associated with the q = 1 magnetic surface. Second, the
frequency coupling between the fishbone and the NTM appears to be due to differential toroidal
rotation of the plasma, which allows the Doppler shift nfrot(q = 3/2) for the n = 2 mode
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Figure 23. Magnetic spectrogram showing the typical JET hybrid scenario with n = 1 NBI-driven
fishbones. Long-living NTM at frequency around 12–15 kHz (lab reference frame) is initiated in
the absence of sawteeth or ELMs at t = 28.77 s and after some time it eventually degrades thermal
plasma confinement.
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Figure 24. Magnetic spectrogram showing toroidal mode numbers of the perturbations in figure 23.

to match the Doppler-shifted fishbone frequency. It is also noteworthy that the excitation of
NTM correlates with a change in the fishbones’ period followed by suppression of fishbones
after 29.05 s. However, the physics mechanism of the suppression is so far unclear.

A theoretical model for the observed NTM triggering by fishbones was recently proposed
in [78]. The fishbones can act on the NTM as an external magnetic perturbation that brings the
frequency of the micro-tearing islands into the unstable zone via toroidicity-induced coupling.
The nonlinear equations for the NTM amplitude and phase contain a corresponding fishbone
contribution. The role of fishbones is to kick off the NTM phase strongly enough to change
the sign of the polarization current term in the NTM amplitude equation. It was also found

26



Plasma Phys. Control. Fusion 53 (2011) 054001 B N Breizman and S E Sharapov

in [78] that multiplicity of the fishbone bursts may be essential, because a periodic sequence
of small-amplitude bursts can move the NTM frequency into the unstable window easier than
a single large burst.

The characteristic burst-like structure of the fishbone oscillations and the significant
decrease in the oscillation frequency of the mode within a single burst indicate that fishbones
have a strongly nonlinear character [100]. Significant progress was achieved in understanding
the nonlinear evolution of the fishbones with the use of the nonlinear wave description very
close to the instability threshold. Empirical nonlinear predator-prey models [100] as well as
a more accurate model [51] were developed to interpret the repetitive bursts of the ω ≈ ω∗pi

fishbones and the resulting re-distribution of energetic ions. The model [51] based on the kinetic
wave–particle trapping nonlinearity retains the essential physics of the ω ≈ ω∗pi fishbones,
since the kinetic nonlinearity appears to be the dominant one when the fishbones are in the
diamagnetic ω∗pi gap. This regime allows a perturbative description of the mode, which makes
the problem technically similar to the bump-on-tail problem, as well as to many other wave–
particle interaction problems (see [51] and references therein). For the ω ≈ ω∗pi fishbone
within the diamagnetic gap, the MHD damping effect is not important, γMHD = 0, and kinetic
damping due to thermal electrons and ions determines the excitation threshold instead. A
linear theory of the kinetic damping for the ω ≈ ω∗pi fishbones was developed by analogy
with TAEs in, e.g., [101]. In nonlinear theory [51] such kinetic damping was considered to be
of constant value not depending on the mode amplitude.

The description of precessional fishbones (ω 
 ω∗pi) presents a more challenging problem
as in this case γMHD becomes essential and the fluid resonances may behave strongly nonlinearly
during the fishbone evolution. The linear responses from the kinetic and fluid resonances
are almost equal near the instability threshold. However, their nonlinear responses are very
different and a special investigation is needed in order to assess the importance of the fluid
nonlinearity, in addition to the kinetic nonlinearity similar to the one analysed in [51].

The role of the fluid nonlinearity on the damping in the precessional fishbones was
investigated in [26]. In order to delineate the effects of the fluid nonlinearity, a fishbone
evolution was considered, during which the energetic ion response remained linear at all times
so the effects of kinetic nonlinearity could be neglected.

The nonlinear MHD model for the fishbones [26] takes into account that fishbone modes are
strongly extended along the equilibrium magnetic field, k‖ � k⊥, so that the fast magnetosonic
degrees of freedom, ω ∼= k⊥VA, are not excited during the instability and the fishbone
oscillations are of the shear Alfvénic type. It is important to note that the fluid nonlinearity,
which is known to be small for local Alfvén waves satisfying the dispersion relation ω = k‖VA,
is not small for the global fishbone mode that satisfies the condition ω = k‖VA at two radial
positions, r = rA, only. In order to exclude the magnetosonic oscillations, a nonlinear reduced
MHD model [102, 103] combined with a linear response for the energetic particles was used
in [26]. The analysis of the reduced MHD model for fishbones has shown that near the
instability threshold, γhot − |γMHD| � γhot, the radial structure of the fishbone mode of
frequency ω has two singular layers, one inside and one outside the q = 1 surface as shown in
figure 21. The radial locations, rA, of the resonance layers are determined in accordance with

ω2 = (1 − q(rA))2[VA(rA)/Rq(rA)]2. (4.4)

Near the instability threshold of the fishbone, the radial width of each singular layer is smaller
by a factor γ /ω than the distance between the layers, where γ � ω is the instability growth
rate, γ ≡ γhot − |γMHD|.

Under these conditions, the fluid nonlinearity becomes important when the plasma
displacement is comparable to the width of each singular layer near the q = 1 surface,
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Figure 25. The radial velocity profiles in the linear (left) and nonlinear (right) regimes.

whereas the particle nonlinearity can still be negligible at this level. It was found in [26]
that the dominant effects of the fluid nonlinearity in fishbones are caused by a generation of
a m = 0 poloidal plasma flow, and a m = 0 poloidal magnetic field. The generation of the
magnetic field, B̃

(0)
p , can be considered as a flattening of the ‘effective’ safety factor profile

q(r; t) = rBT/R(Bp + B̃
(0)
p ).

The early stage of near-threshold fishbone instability, during which the two resonant
layers are well separated, was found to be characterized by an explosive behaviour of the mode
amplitude, accompanied by a fast change in the mode frequency and in the mode structure as
shown in figure 25.

Fishbone events have long been recognized as a typical manifestation of so-called non-
perturbative modes, for which the mode structure undergoes significant changes at the nonlinear
stage. Although the overall top-hat structure of the fishbone is robust, a narrow resonant layer in
the vicinity of the q = 1 surface dominates the nonlinear evolution of the mode, and one of the
main challenges is to develop a credible description of that layer. The technical difficulties are
most pronounced in the case of ‘precessional’ fishbones [80] because the case of ‘diamagnetic’
fishbones [81] still leaves room for a perturbative treatment.

A systematic nonlinear description of fishbones requires self-consistent treatment of
kinetic and MHD nonlinearities, which is a challenging technical issue for numerical modelling.
One of the difficulties here comes from the need to incorporate an accurate description of
the narrow phase-space resonances into global MHD simulations. For linear problems, this
difficulty is only a moderate obstacle since the resonant response of the system is often
insensitive to the width of the resonance and can be treated in terms of Landau damping.
In contrast, nonlinear problems typically need much better resolution to calculate the resonant
response appropriately, which is prohibitively demanding for any of the existing global codes.

Several attempts have been made to address this issue. Two earlier efforts investigated the
fishbone mode either using a nonlinear fast-particle pusher with linear MHD [104] or using a
nonlinear MHD response with a linear description for energetic particles [26]. More recently,
the approach of [104] was applied to electron-driven fishbones [91].

The full-geometry M3D code has both nonlinear MHD and nonlinear energetic particles,
but encounters the resolution difficulty described above [105]. The challenge is to include
kinetic phase-space resonances on an equal footing with fluid nonlinearities, while overcoming
the resolution issue. This need is particularly evident for precessional fishbones.

Experimental data on precessional fishbones [72] exhibit a robust pattern with several
elements that call for theoretical interpretation. These elements are (1) explosive initial growth
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of the fishbone pulse, (2) saturation of the pulse, (3) downward frequency chirping during pulse
decay and (4) recovery between subsequent pulses.

As already mentioned, at the onset of the fishbone pulse, the linear drive from fast particles
is almost balanced by continuum damping near the q = 1 resonant surface. As the mode
amplitude grows, the nonlinearity of the system becomes increasingly important. As can be
seen from back-of-the-envelope estimates, the MHD nonlinearity initially dominates over the
fast-particle nonlinearity. This early stage can be adequately described analytically within a
weakly nonlinear approximation, which shows that the MHD nonlinearity plays a destabilizing
role, leading to an explosive growth of the pulse [26]. The accelerated growth effectively
broadens the two resonances shown in figure 25. The weakly nonlinear approximation holds as
long as the two neighbouring resonances remain well separated. At the limit of its applicability
the amplitude of the radial displacement ξ is on the order of ξ ∼ rq=1ωthR/VA � rq=1,
where ωth is the fishbone frequency at the excitation threshold. At this point the fast-particle
nonlinearity is still negligible, so the particles continue to drive the mode. One can then expect
that the mode will grow somewhat beyond the level of ξ ∼ rq=1ωthR/VA but the dynamics of
this growth will now be different due to the non-perturbative nature of the MHD nonlinearity.
It is conceivable that the structure of the MHD resonant layer will resemble a magnetic island
of the kind described in [106] and the fast particles will force this island to grow until there is
no free energy left in the fast-particle distribution. In other words, the growth of the fishbone
pulse can only stop when the fast-particle nonlinearity flattens the phase-space distribution
of particles near the kinetic resonance. Analytical theory has not yet been able to make
credible predictions for the mode saturation level. Numerical simulations demonstrate mode
saturation due to fast-particle nonlinearity, both with and without MHD nonlinearity in the
code. However, numerical viscosity in the global nonlinear MHD code is currently too high
to adequately describe the structure of the narrow resonant layer. We thus have an unresolved
issue of predicting the mode saturation level in terms of plasma parameters and those of the
fast particles.

The above description suggests that the mode saturates when the fast-particle drive
switches off, due to nonlinear modification of the fast-particle distribution. Assuming that
this modification is irreversible (due to fast-particle phase mixing), one can conjecture that
the subsequent dynamics of the pulse should be similar to that of a nonlinear pendulum in
the presence of dissipation. It is therefore natural that the mode frequency changes during the
decay of the pulse since the frequency should depend on the mode amplitude. The fact that
the frequency goes down can then be viewed as a reversal of the upward chirping predicted
by the weakly nonlinear description of the explosive initial growth of the pulse [26]. A
simple scaling argument suggests a quartic potential well for the fishbone-relevant pendulum.
The reason is that the local Alfvén frequency is proportional to the distance from the q = 1
surface. For nonlinear perturbations, the characteristic distance is on the order of radial plasma
displacement and it scales as the mode amplitude. We thus observe that the frequency of the
relevant nonlinear pendulum should be proportional to the oscillation amplitude, which is
indeed the case in a quartic potential well (figure 26).

In the light of the description above, it is interesting to note that the fishbone signals in
figure 22 grow in amplitude during downward frequency sweeping. This is in contrast to the
common case shown in figure 20 where the amplitude goes down together with the frequency.
A plausible reason for the ‘anomalous’ mode evolution in figure 22 is low magnetic shear
in the corresponding MAST discharges. Because of the low-shear, the continuum damping
becomes quite small and the role of MHD nonlinearity should be less important. The overall
fishbone dynamics could then be dominated by the wave–particle nonlinearity as opposed to
fluid nonlinearity.
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Figure 26. Damped oscillations in a quartic potential well illustrate nonlinear frequency downshift
during fishbone pulse decay.

An additional open issue for fishbones is quantitative modelling of recurrent pulses in
the presence of fast-particle sources and sinks. This problem is apparently more demanding
computationally than the description of a single pulse because of the multiple time-scales that
are involved.

We expect future theoretical studies of fishbones to provide a more complete picture of
the near-threshold regime with an interplay between the kinetic and fluid nonlinearities. This
research has an obvious linkage to MHD reconnection studies, which likewise deal with a
boundary layer at a rational surface

5. Global transport of energetic particles

One of the main concerns about Alfvénic instabilities in fusion devices is that these instabilities
may degrade confinement of the alpha particles and other fast ions and thereby forbid a self-
sustained fusion burn. Each individual Alfvénic mode tends to be relatively benign in that
regard. The reason is that the wave–particle resonances associated with a single low-amplitude
mode can cover only a small fraction of the particle phase space. Consequently, many modes
are needed to achieve resonance overlap in a sufficiently large area of phase space to give rise
to global diffusion.

Particle diffusion over a set of overlapped resonances falls into the framework of
quasilinear theory. In general, this diffusion breaks the constants of motion (E; Pϕ; µ) that
characterize unperturbed particle orbits. However, in the case of Alfvén modes, the particle
magnetic moment µ still remains a good constant of motion. In addition, the particle energy
remains nearly constant if the wave frequency is smaller than the multiples of the toroidal and
poloidal particle frequencies in the resonant condition

ω − nωϕ(E; Pϕ; µ) − lωθ (E; Pϕ; µ) = 0. (5.1)

As a result, the waves affect predominantly the toroidal angular momentum Pϕ or, equivalently,
the radial position of the particle orbit in the poloidal cross-section of the tokamak. The width
δPϕ of the resonance (5.1) can be roughly estimated as

δPϕ

∂

∂Pϕ

[ω − nωϕ(E; Pϕ; µ) − lωθ (E; Pϕ; µ)] = ωb, (5.2)

where ωb is the nonlinear bounce frequency for a resonant particle in the wave field.
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The one-dimensional quasilinear diffusion equation in Pϕ has the form

∂f

∂t
− ∂

∂Pϕ

D
∂f

∂Pϕ

= −ν(f − f0), (5.3)

where the right-hand side of the equation accounts for a Krook-type relaxation process and
particle source that tend to establish a classical equilibrium distribution function f0. The
gradient of this distribution in Pϕ provides an instability drive for the waves, with a linear
growth rate γ0 = a(∂f0/∂Pϕ); the factor a depends on specifics of the modes that resonate
with a given value of Pϕ .

The diffusion coefficient D in (5.3) is proportional to the wave intensity and governed by
the equation

∂D

∂t
= 2

(
a

∂f

∂P ϕ

− γd

)
D. (5.4)

The background damping rate γd in this equation sets an instability threshold and is assumed
to be smaller than γ0.

In the absence of waves, the distribution function f will build up to f ∼ f0 ∼ (γ0/a)Pϕ .
However, if the waves are present, the steady-state solution of (5.3) and (5.4) restricts f

to f ∼ (γd/a)Pϕ < f0 . The corresponding diffusion coefficient can be estimated as

D ∼ a

γd
νf0Pϕ ∼ ν

γ0

γd
P 2

ϕ . (5.5)

In order to formulate the resonance overlap constrain on the steady regime, we consider a set
of barely overlapped resonances for which the correlation time is 1/ωb and

D ≈ ωb(δPϕ)2 ∼ ω3
b

1

{(∂/∂Pϕ)[ω − nωϕ(E; Pϕ; µ) − lωθ (E; Pϕ; µ)]}2
. (5.6)

This estimate can be rewritten as

D ≈ (δPϕ)3 ∂

∂Pϕ

[ω − nωϕ(E; Pϕ; µ) − lωθ (E; Pϕ; µ)]. (5.7)

If the entire range of Pϕ contains N resonant modes, then the overlap condition takes the form

D >

(
Pϕ

N

)3
∂

∂Pϕ

[ω − nωϕ(E; Pϕ; µ) − lωθ (E; Pϕ; µ)]. (5.8)

We now observe from (5.5) and (5.8) that the resonance overlap condition requires a sufficiently
strong source

ν
γ0

γd
>

1

N3
Pϕ

∂

∂Pϕ

[ω − nωϕ(E; Pϕ; µ) − lωθ (E; Pϕ; µ)]. (5.9)

If the source is weaker than the value given by (5.9), then the global transport either terminates
or becomes intermittent, depending on whether the individual modes can reach the overlap
condition at some points in their nonlinear evolution. In the absence of overlap, the KAM
surfaces between the resonances serve as transport barriers for fast particles. This brings
an interesting question of whether such barriers can be created on purpose, especially at the
plasma edge. Doing so may ensure satisfactory global confinement of fast particles even if
there is a local instability in the core.

It is noteworthy that consideration of individually saturated modes gives a much more
restrictive overlap condition than (5.9), namely

γ0

(
1 +

ν

γd

)
>

1

N
Pϕ

∂

∂Pϕ

[ω − nωϕ(E; Pϕ; µ) − lωθ (E; Pϕ; µ)]. (5.10)
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Figure 27. Diagram illustrating intermittent quasilinear relaxation due to resonance overlap in
the multi-mode regime. The resonances broaden and eventually overlap as the modes grow above
the instability threshold. The energetic-particle population drops to subcritical values and then
is replenished by the source to a metastable level that exceeds the linear threshold level due to
separation of neighbouring linear resonances.

This condition follows immediately from (5.2) and the estimate for the nonlinear bounce
frequency obtained in [54],

ωb ∼ γ0

(
1 +

ν

γd

)
. (5.11)

The significant difference between (5.9) and (5.10) for large values of N reflects the fact
that the overlap of many resonances enhances the energy release per mode dramatically
compared with the case of isolated modes. It is therefore possible that an overlap of two closely
spaced resonances can trigger an avalanche-type relaxation event in which neighbouring modes
become involved even if they are linearly stable.

Rapid quasilinear diffusion during such an event can reduce the energetic-particle
population to a subcritical value that is below the linear instability threshold, as illustrated
schematically in figure 27. The waves will then decay within the linear damping time, and the
system will ‘wait’ until the particle sources restore the energetic-particle population to make
it unstable and produce the next avalanche.

An intrinsic feature of such intermittent diffusion is that the bursts of different modes are
synchronized because of the triggering effect. The bursts of many modes force the energetic-
particle population to hover around the marginally stable level. This aspect is common to the
steady and intermittent quasilinear regimes. The difference between the two is mainly in the
time behaviour of the turbulence level. It is important to point out that the profile stiffness due
to robust marginal stability condition actually means that the turbulence level adjusts itself to
keep the same profile for stronger particle sources. The time averaged transport coefficients
are then determined by the rate of injection and the gradients in the marginally stable profile
whereas the specifics of turbulence that provides this enhanced transport is governed by small
deviations from marginal stability. This situation makes it extremely difficult (but fortunately
superfluous) to predict the level of turbulence in terms of few macroscopic parameters of the
energetic-particle population (such as their pressure gradient or density gradient). Comparison
between theory and experiment should then be focused not so much on the details of turbulence
but rather on examining the marginal stability constrains and resonance overlap criteria, which
requires adequate numerical tools to perform a comprehensive linear stability assessment for
realistic magnetic configurations and plasma parameters.

The above mentioned trend for the level of turbulence to be less predictable than the
modification of the fast-particle distribution pertains to numerical simulations of TAE bursts
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and fast-ion losses in TFTR [107]. These simulations have reproduced such features as
synchronization of multiple TAEs, the duty cycle of the bursts and the saturation of the
stored beam energy. Yet, the mode saturation amplitude was significantly higher than that
inferred from the experimental data. In an attempt to resolve this discrepancy, the numerical
model has been generalized from the originally linearized description of the bulk plasma to the
fully nonlinear MHD simulation of the bulk [18]. The description of energetic particles was
nonlinear in both cases. Although the fully nonlinear simulations show some reduction in the
mode saturation level, the calculated amplitudes are still several times greater than the estimated
experimental values. The MHD nonlinearity introduces some interesting new elements into
the problem, one of which is the generation of zonal flows that provide enhanced dissipation
of Alfvénic modes. However, the saturated fast-particle population does not change in any
significant way in the fully nonlinear case, which indicates robustness of the marginal stability
regime.

The critical role of the resonance overlap condition for global transport has recently been
confirmed in the analysis of fast-ion confinement in DIII-D. A significant flattening of NBI-
produced energetic ions was observed in DIII-D experiments with reversed magnetic shear and
numerous AC eigenmodes excited [108]. NBI into DIII-D plasmas with negative central shear
produces a rich spectrum of AC modes and TAEs as NBI power increases above ∼1.4 MW. The
fast-ion spectroscopy (FIDA) shows that the central fast-ion profile flattens in the discharge
with Alfvénic activity, and neutron and equilibrium measurements corroborate the FIDA data.
Figure 28(d) shows agreement between the experimentally measured neutron yield in the
absence of Alfvénic activity and the yield predicted by the TRANSP code on the basis of the
Coulomb collision transport mechanism. However, in the presence of Alfvénic activity, the
experimentally measured neutron yield is lower than the expected one by ∼10–45%, as shown
in figure 28(c).

Although the measured spectrum of modes reveals tens of different mode numbers, the
effect of such modes on fast-ion transport is not always strong since many of these modes are
localized in the vicinity of the same magnetic surface that has zero magnetic shear. Under such
conditions, particularly careful measurements of the mode amplitudes and mode structure are
needed in order to assess the possible role of the modes in energetic ion transport. In [108], such
measurements were made and numerical modelling was performed for the beam ions’ transport
in the presence of multiple TAE and AC modes. However, the results of the initial modelling
effort were mysterious: the calculations based on the measured mode amplitudes could not
explain the observed significant transport of the fast ions. It was then realized that the initial
simulations omitted the electric potential associated with the magnetic perturbations [17].
Only after proper care was taken about including both electric and magnetic perturbed fields
in the analysis, did the wave–particle resonances meet the overlap condition. The resulting
profiles of NBI-produced energetic ions computed with the ORBIT code were then found to
be flattened in the presence of the modes, consistent with the measurements.

We conclude this section by discussing non-perturbative modes as a candidate for global
transport of energetic particles. This mechanism involves mode frequency sweeping, which
has attracted considerable attention in the energetic-particle studies. If the sweeping range
is sufficiently broad, then the mode can reach the phase-space areas that are far away from
the initial wave–particle resonance where the mode is excited. The effect of a single mode
sweep is shown schematically in figure 29 for an idealized bump-on-tail model [110]. As a
spontaneously created phase-space hole or clump propagates away from the original resonance,
it modifies not just the oscillating part of the fast-particle distribution but the equilibrium
distribution as well. The energy dissipation in the bulk plasma during the sweeping event
makes this modification irreversible. As a result, in the absence of fast-particle collisions,
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Figure 28. Spectra of interferometer signals and neutron emission data in two DIII-D discharges
with and without significant Alfvénic activity (see [109]).
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Figure 29. Diagram illustrating the motion of holes and clumps and the wake that acts to steepen to
distribution function, creating a favourable environment for instability. Reprinted with permission
from [110]. Copyright 2011, American Institute of Physics.

the equilibrium distribution will remain locally distorted when the sweep stops due to the
lack of the energetic-particle drive far away from the original resonance. In the meantime,
the original resonance generates new holes and clumps continuously. This can be understood
by following the evolution of the ‘wake’ that forms when a hole or clump detaches from the
original resonance. Referring to figure 29, since the particle number is conserved, a number
of particles must be displaced during the motion of a hole or clump, which leads to a slight
excess behind a hole and a depletion behind a clump. There is thus a tendency for the gradient
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Figure 30. Diagram illustrating how holes and clumps might form a global plateaux in a distribution
function with a finite extent in velocity space. The dashed lines mark the boundaries of the ‘stacked
up’ holes and clumps. Reprinted with permission from [110]. Copyright 2011, American Institute
of Physics.

in the distribution function to steepen, making the system susceptible to instability once again.
This effect should be strongest when the hole and clump are still relatively close to the original
resonance, which could explain why the holes and clumps are produced in rapid succession.
The lack of drive away from the resonance due to the finite extent of the distribution in velocity-
space limits the range of chirping for the initially formed holes and clumps. It is then reasonable
to expect that eventually the holes and clumps will ‘stack up’ next to one another as they move
away from the original resonance (see figure 30). In this way the distribution function should
eventually form an extended plateaux that determines the maximum amount of energy that can
be released from the fast particles to the wave. The waves should then decay due to dissipation,
leaving a significantly deformed fast-particle distribution.

In the presence of fast-particle source and collisional relaxation processes, the multiple
sweeping events can compete with classical collisions and reduce the fast-particle population
considerably compared with the classical distribution, as observed in numerical simulations
in [111]. To have significant macroscopic consequences, this mechanism requires energetic-
particle collisions to be sufficiently low, so that the holes and clumps can affect a large part of
the fast-particle distribution during their lifetime. The collisional lifetime of a hole or clump
can be roughly estimated as [60, 110]

τ ∼ ν−1
diff(γ0/ω)2 (5.12)

and the corresponding range of sweeping is

δω

ω
∼

(γ0

ω

)2
√

γ0

νdiff
, (5.13)

where νdiff is the energetic-particle collision frequency (for diffusive collisions) and γ0 is the
linear instability drive from the energetic particles.

It is interesting that the described strongly nonlinear relaxation process can reshape even
stable initial distributions of the fast particles if there are finite amplitude perturbations that
initiate the hole–clump production. The physics reason for that is that the formation of holes
and clumps is an explosive process that represents a hard nonlinear regime. The role of the
energetic-particle modes and multiple sweep relaxation scenario in real devices still needs to
be assessed in comparison with the quasilinear scenario. This is one of the key unresolved
issues in predicting the global transport of energetic particles.
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6. More topics in progress

As already pointed out in the introduction, our selection of material for this review is inevitably
subjective, which makes it appropriate to call attention to some of the interesting research topics
that we have not covered here in any depth.

Alpha channelling. This is an exciting idea of using waves to transfer the alpha particle
energy to the plasma ions to circumvent losses via the electron channel [112]. The waves
can either be created by external rf sources or be self-generated due to alpha-particle-driven
instabilities. In both cases, the challenge is to maintain a suitable spectrum of waves to provide
resonant extraction of energy from a large fraction of the alpha particle population in phase
space without anomalous spatial diffusion of the alpha particles. In the self-generated regime,
one has also to find the means to control the nonlinear behaviour of the expected instabilities.
One generally needs high-frequency instabilities (in the ion cyclotron frequency range) to
utilize the energy of alphas with tolerable anomalous diffusion. However, in STs, one might
also use the low-frequency modes with n = 0 to tap the free energy associated with poloidal
bounces of the alpha particles near the trapped-passing boundary. The attempts to explore the
idea of alpha channelling continue [113, 114], but the ongoing studies have not yet reached
level of conclusive positive predictions with regard to fusion.

Background turbulence. Accurate transport analysis and measurements performed in recent
years show that relaxation of fast ions may differ significantly from the classical predictions
based on Coulomb collisions alone. In particular, this is observed as an ‘anomaly’ in the
power deposition profile for NBI-produced energetic ions [115, 116]. On the other hand, it
was found experimentally [21, 40] in reversed-shear discharges that a fairly slow beam can
still excite numerous Alfvén modes with high toroidal mode numbers approaching those of
thermal plasma turbulence. The effect of thermal plasma turbulence on fast ions has then
attracted attention as a possible candidate for explaining the anomalous data [115, 116]. A
detailed theoretical study has been performed in [117] to refine the orbit averaging argument
for both electrostatic and magnetic perturbations. It was found that the electrostatic diffusivity
of the beam ions decays as 1/E with the beam ion energy, while a similar magnetic quantity
is independent of the beam energy. It remains to be seen yet whether a direct comparison
between this theory and experiment is feasible.

TAEs and ripples. The enhancement of energetic-particle transport due to synergy between
different types of perturbations is another important topic in view of burning plasma
experiments. It was found experimentally on TFTR and explained theoretically in [118] that
there is a violent loss mechanism due to the combined effect of magnetic ripples and TAEs
excited by the energetic ions. This effect is called TAE-induced ripple trapping. It is caused by
time-dependent TAE perturbations that increase the phase space of particles capable of entering
the ripple-trapped area. As a result, the flux of energetic particles can be strong enough to
damage the vacuum wall (as observed on TFTR [118]). Further investigation of such an effect
is highly desirable in view of the ripples on ITER. However, experimental investigation of
the TAE-ripple effect on existing machines, e.g. on JET, is hardly possible since this effect
changes the poloidal distribution of the lost ions from the well protected mid-plane region to
the less protected bottom of the machine.

Macroscopic equilibrium and stability. Significant advances in diagnostics of confined and
lost energetic ions have made it possible to observe various types of interplays between
energetic-particle-driven AEs and strong MHD perturbations such as sawteeth, ELMs and
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NTMs (see, e.g., [119] and references therein). Moreover, some diagnostics designed for
other purposes contribute a great deal to this effort. For example, the very fine time resolution
achieved in neutron spectrometry has revealed the effects of MHD modes on the energy
spectrum of DD neutrons [120]. In burning plasmas, the pressure of energetic particles
can easily affect both, the equilibrium and MHD stability. The contribution of the fusion
born alpha particles to the equilibrium current [121] was found to be essential in the ITER
scenario with a low value of the inductive current, especially for the safety factor values
close to integers (where transport and MHD stability are particularly sensitive to the current
profile). Fast ions can potentially be used to stabilize the sawteeth. This possibility has
recently been confirmed in cross-comparison experiments on JET, MAST, ASDEX-U and
TEXTOR [122]. A combination of the fast-particle effects with the current drive affecting the
magnetic shear at the q = 1 surface was found to be especially advantageous for the sawtooth
control. Finally, it is conceivable, that the resistive wall modes [123], which are undesirable in
high-β discharges, will be stable in the presence of fast particles, in a range of ITER-relevant
parameters. Experimental investigation of this attractive idea is now pending.

Energetic ion physics in helical devices and stellarators. Along with the progress made
in energetic-particle physics in tokamaks, the research of similar topics has also progressed
significantly in helical devices and stellarators. The most remarkable achievements were
reported from the LHD machine, in which hydrogen NBI of energy up to 180 keV drove
strong AE activity at magnetic fields in the range from 0.4 to 3.0 T [124]. Analysis of the
fast-ion confinement performed with NPA has shown a strong correlation between the fast
change in energetic neutral fluxes and the AE bursts. Moreover, the observed changes in the
NPA spectra seemingly indicated the formation of hole–clump pairs in the energetic-particle
spectra associated with AE bursts in real space [125]. A direct comparison between the
experimental observation and theory would be of considerable interest here.
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