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Abstract

We propose a new mechanism for radial electric fields and edge flows in tokamaks that will also serve as an intrinsic
momentum source in systems without an up—down symmetry. An essential feature of toroidal plasmas is that
charge-dependent V B and curvature drifts would lead to a vertical polarization of the discharge if it were not for
the Pfirsch—Schliter currents that neutralize the resulting charge separation. However, in the presence of collisions,
there is a residual vertical electric field that drives an E x B flow in the direction of increasing major radius, regardless
of the orientation of the fields and currents. This flow is excluded from the hot core and is localized to the more
collisional edge plasma. It has many features in common with the edge flows observed in tokamaks such as C-Mod.
In an up—down symmetric geometry it carries no net toroidal angular momentum; however, its viscous interaction
with asymmetric boundaries leads to a net momentum input to the plasma. Both this momentum input, and the
residual vertical electric field, the source of these flows, may play an important role in the V B direction-dependence

of the power threshold for the L—H transition.

PACS numbers: 52.30.Cv, 52.55.Fa, 52.65.K]

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The tokamak edge, loosely defined in this work to be the region
extending from the foot of the pedestal inside the separatrix to
the inner scrape-off layer (SOL), exhibits flows documented
on nearly all tokamaks [1-3]. While there are undoubtably a
number of different sources for these flows, here we present
a fundamental mechanism that does not seem to have drawn
much attention to date.

An unavoidable feature of toroidal confinement is that
charge-dependent V B and curvature drifts, in the absence of
neutralizing flows, would set up a vertical electric field, and
the resulting E x B drift would lead to an immediate loss
of confinement. Of course with finite rotational transform,
this vertical polarization and the associated electric field
tend to be short-circuited by parallel currents. In a fluid
model, the V B-dependent drifts do not appear explicitly
but are subsumed by the diamagnetic current, J, = B X
Vp/ B?, while the Pfirsch—-Schliiter currents, Jps, ensure
charge continuity by playing the role of a neutralizing charge
flow, V- (J. + JpsB/B) = 0.

With collisions, this idealized picture is altered somewhat.
Although the charge continuity condition above is still satisfied
in steady state, both the diamagnetic and parallel components
of the current are modified, leaving behind a residual electric
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field that still drives an outward (in the direction of increasing
major radius, ﬁ) E x B-flow. However, since the hot core
is essentially collisionless in modern tokamaks, this flow is
confined to the more collisional edge plasma. In fact, as we will
see below, higher collisionality and the presence of a pressure
pedestal both play a role in this localization.

The residual electric field that results from finite
collisionality points upward for a ‘normal’ configuration of the
toroidal field and current (they are both clockwise as seen from
above) and reverses direction with the toroidal field, as seen
in figure 1. In the usual toroidal coordinate system (r, 0, ¢),
where 6 is measured from the outboard mid-plane, and
ignoring any other contributions for the moment, components
of the electric field are E, = E,sin6, Ey = E, cos 6, which
leads to the following poloidal flow:

u, = E,B; cos6/B?, )

ug = —E, B sinf/B>. )

For the up—down symmetric system shown in figure 1,
the flow pattern is an exact dipole with two counter-rotating
vortices localized to the edge. As is obvious from the physics
behind them, these poloidal flows are always in the direction
shown. The electric field E, reverses with the toroidal field
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Figure 1. A schematic description of the flows discussed here. The
solid arrows represent the flows driven by the residual electric field
due to polarization charges. The dashed arrows outside the
separatrix (the inner solid circle) are the return flows in the SOL.
(a) With the toroidal field and current in the ‘normal’ configuration.
(b) With the magnetic fields and currents reversed. Note that the
electric field reverses with the V B-drifts, but the toroidal and
poloidal flows, both inside and outside, do not change direction.

B, but the poloidal flows retain their sign. We disagree with
Simakov et al [4] on this point; this issue is briefly re-examined
in appendix A. Reversal of the toroidal current has no effect on
(u,, up) either. The toroidal component of the flow is given by

u ~ E,By/B* = E, By sin6/B”. 3)

Note that u, is anti-symmetric with respect to the mid-plane
in the up—down symmetric geometry of figure 1; thus, there
is no net toroidal angular momentum contribution. Unlike
the poloidal flows, however, the toroidal flow changes sign
with the toroidal field (which reverses E,), and the toroidal
current (which reverses By), but not when both are reversed
simultaneously, as in figure 1. A more complete discussion of
the symmetries of these flows can be found in [5, 6].

The direction of the flows outside the separatrix are
determined by a global mass conservation requirement.
Without the return flows, whose poloidal projection is
indicated by dashed lines in figure 1, one would get an
accumulation of material at the outside mid-plane. Thus, these
are essentially parallel flows driven by a pressure gradient.
With u >~ uB/B, in the upper half plane uy > 0 requires a
positive i, which also leads to u, > 0. Note that although the
poloidal component of the flow is anti-symmetric with respect
to the separatrix, the toroidal component is symmetric, having
the same sign on both sides. At the bottom, the parallel flow
reverses, u < 0, leading to uy < 0, u, < 0.

In this introduction, we gave a physics overview of the
flows and their general properties. In the following sections,
we present a more quantitative picture and discuss numerical
calculations in various magnetic topologies while making
comparisons with experiments where appropriate.

2. A more quantitative model of the flows

Assuming axisymmetry and working in a flux coordinate
system (v, 6, {), we can write the general equilibrium current
in the form

pol = poR*p'Vi¢ + F'B, )

where we let B = Vy x V¢ + FV¢, ¥ = R*A - V)
and F = R*(B - V¢). Here we also assume that the flow

velocities are sub-sonic so that the Grad—Shafranov equation,
—A*Y = —R?>V - (1/R)VY) = uoR?p’ + FF’ still holds
(p' = dp/dy, F' = dF/dy). Note that we identify the
coordinate ¢ with the usual toroidal angle so that |[V¢|> =
1/R?. Recall also that consistency requirement leads to the
following relationship among p’, F’ and the parallel current:

(/1B) — Fp'

F =
Mo (B2)

) &)

where the brackets denote the flux-surface average

W= azas (ﬁjdg)‘ - farcas (fdee)i

(6)

and the Jacobian J = 1/Vy - V8 x V¢ = —1/B - V6 =
—q(¥)R?/F (i), where the safety factor ¢ () = (B - V¢)/
(B - V6). It is useful to also define the usual average of A on

a flux surface:
1 A/R?
— % Ado = (A/R) (7)
21

A (1/R%)"

With these preliminaries we are ready to have a more
quantitative look at the E x B flows at the edge. Since
the vertical electric field discussed in the previous section
arises from collisional effects acting on the parallel (mostly
Pfirsch—Schliiter) currents, we examine the parallel electric
field, starting with the simple Ohm’s law

E=-V¢+VVig) =—-uxB+nlJ, ®)
where V; is the loop voltage. Then E;B = nJ B leads to

op JF
Egy=——=—"V—nJJB. 9
0 0= 2" nJJj C))
Note that subscripts (superscripts) denote covariant (con-
travariant) components of vectors; thus Ey = E - (dr/90).
Using equations (4) and (5), and noting that for Ohmic current
we have (after using (B - V¢) = 0) in the equation above

ViF 2
(JiB) = —(1/R7), (10)
we get
2 2 B2 2 Bz
Ey = —qV (1 - R(1/R >@>+an P (1 - <32>>’
(11)

where we assumed n = n(y). Using equation (7), one can

easily show that
?( Eydf =0,

as expected. In fact, both terms on the right-hand side of
equation (11) vanish independently. The pressure-gradient
(Pfirsch—Schliiter) term dominates and determines the sign of
Ey. With our sign convention for ¥, we have p’ > 0 for
radially decreasing pressure profiles. Also (1 — B2/(B?))
is negative (positive) on the high (low) field side of the
tokamak. Thus Ey < 0 on the high-field side and positive
elsewhere, in agreement with the simple analysis of the
previous section, where we had Ey = E, cos 6. Note also ¢V}

(12)
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and gp’ are invariant under v — — (reversal of the plasma
current), but both flip sign with F — —F (reversal of the
toroidal field), as expected.

An alternative and more useful expression for the poloidal
electric field can be obtained by eliminating V; in favour of F’
to obtain

rp2  Ta F’ 2 e
Ey=nq|p(R" = R)+ — (VY| = [VY[) |,
HoF

13)
which leads to the same conclusions regarding symmetry and
sign of the poloidal electric field. We can use equation (13) to
find an approximate expression for the radial electric field near
the separatrix. Again concentrating on the pressure-gradient

term and integrating along a flux surface close t0 ¥ = Vg,
we have

%
(W, 0) =~ —ngp’ (/ R i 75 deé> .14
0 27

where we set the integration constant ¢ (¢, 0) to zero. The
largest radial variation in ¢ (i, 8) near the separatrix comes
from the (nq) term since both the resistivity and safety factor
increase rapidly as we approach the separatrix; thus,

d¢ __ 3(ng)

B T T

0 - 0 -
f,0) E/ R%d6 — —%dee.
27

0

W 0),
(15)

For an arbitrary flux surface parametrically defined by (R =
R\, 0),Z = Z(Y,0)), assume that IR /960 =0 ath =0, ,
and that R(¥, 0) = Rpax, R(¥, m) = Ruin. Then it is easy to
see that

f@,0) >0 for0<O <n
and

fW.0) <0 (16)
(Validity of these inequalities under general conditions is
shown in appendix B.) Again recalling our sign convention
for ¢ that makes Vi ~ —Vr, p’ > 0, and (ng) < 0
near the separatrix (fields are in the ‘normal’ configuration
of figure 1(a)), we have
Ey <0(E, >0)
and

E, >0 (E, <0)

form <6 < 2m.

in the upper half plane

in the lower half plane. a7

This result is also in agreement with the analysis of the
previous section where we had E, = E, sinf. Note that £y, =
E - (0r/0y) reverses sign with ¥ — —1, but only because
(ar/0yr) reverses direction, not because of a change in E itself.
It changes sign with I — —F also, but now this represents an
actual change in the vector E. In other words, E reverses sign
when the toroidal field is reversed, as expected from an electric
field due to non-neutralized polarization charges generated by
toroidal drifts, but not when the toroidal current is reversed.
Note also the sign of the potential in equation (14) (negative
in the upper half plane and positive below) implies an electric
field pointing up as in figure 1(a) for the plasma current and
field configuration shown there.

Above we demonstrated that collisional effects acting on
the Pfirsch—Schliiter currents lead to the same electric fields
at the edge that were explained with a simpler model in the
previous section. And it is clear that the resulting E x B
drift will generate the kind of edge flows discussed there
(figure 1). Here we take a more detailed look at the radial flow
and demonstrate that it is consistent with our simpler model.
Starting with the {-component of Ohm’s law in equation (8),

4

FF
u'/f:(u-vw):—n<1e2p’+ p >+V|, (18)
0

and using equations (5) and (10), we obtain

(19)

or alternatively, after eliminating V],

- F/
W = —np'(R2— R + Ly,
moF

(20)

which makes the Pfirsh—Schluter and classical diffusion
contributions to the radial flux clearer. It is helpful to isolate
the net radial flux:

Urag = —u? + (V) = np'(R* — (R?)), 1)

which shows that there is a net inflow at the inboard and a net
outflow at the outboard sides of the torus, in agreement with
figure 1 of the previous section.

Making use of the radial electric field in equation (15),
andu =u, = E x B/B> — nV p/B?, we can show that the
poloidal velocity is given by

o fW,0)F
Wb~ I
qR?B?

(Vy - Vo)

p'(ng) + (Vi = nR*p)=— s

)

(22)

where the function f (v, 8) defined in equation (15) was shown
to be positive (negative) in the upper (lower) half plane. For
up—down symmetric systems, the first term on the right-hand
side dominates and leads to the anti-symmetric poloidal flows
within the separatrix shown in figure 1. In non-symmetric
systems, the second term alters this perfect anti-symmetry
(V¢ — 0 near the X-point) and leads to a more complex flow
pattern, as we will see in the numerical calculations of the next
section. Note that ’ is invariant under the transformations
Y — —, and/or F — —F; in other words, reversal of the
toroidal current or toroidal field, individually or together, does
not affect this poloidal flow from the inboard side of the torus
to the outside.

The amplitude of the net radial flow is proportional to
resistivity (equation (21)) and at first glance might be expected
to be trivially small. Note, however, the model describes
physics around the separatrix (near the bottom of the pedestal),
not in the hot core. Secondly, the relevant quantity is the
poloidal velocity, which scales as u, ~ (a/8)urq, where a, &
are the minor radius and flow layer width, respectively, with
8 ~ (nq)/(nq), and a/8 > 1. A more comprehensive look
at scaling of these flows with resistivity at the edge can be
found in [6].

In the next section results of numerical calculations with
our CTD code are discussed.
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Figure 2. Quasi-steady-state flows generated by the CTD code for upper and lower single-null magnetic geometries. Magnetic fields and
current are in the ‘normal’ direction. (a) Poloidal projections of the flows, both inside and outside the separatrix. Note that the flows retain
their dipole nature (see figure 1), but in these asymmetric geometries, the half of the dipole flow away from the X-point expands at the
expense of the other half. In both geometries there are strong flows in the SOL from the low-field to the high-field side and eventually to the
X-point. (b) Toroidal projection of the flows along a vertical line passing approximately through the centre and connecting the top to the
bottom of the device. Here also, the portion near the X-point of the anti-symmetrix flow gets modified and damped through viscous

dissipation, resulting in a net momentum input to the plasma.

3. Numerical calculations

The flows discussed above were first observed in our attempts
to find quasi-equilibrium states in the presence of various
transport processes, such as viscous and resistive dissipation.
There were earlier discussions of these states, but not
with realistic tokamak profiles and geometries [7,8]. The
calculations use our toroidal magnetohydrodynamic (MHD)
code CTD. The exact model and some of the relevant details
of our calculations can be found in [5, 6] and the references
therein.

Quasi-steady state flows found with the CTD code for
lower-single-null (LSN) and upper-single-null (USN) field
geometries are shown in figure 2. Although the perfect
dipole pattern of figure 1 is retained for a symmetric double-
null configuration (not shown here; see figure 2(a) in [6]),
the flows are modified in an asymmetric field geometry.
However, their dipole character still survives, as seen in
figure 2(a). Note that, of the two counter-rotating vortices

mentioned in the Introduction, the one away from the X-point
expands in size at the expense of the other. Part of this
larger vortex located in the SOL is seen to connect the low-
field side of the torus to the high-field side, and eventually
down (or up) to the X-point. In this simple treatment of the
divertor region, that flow enters back into the plasma at the
X-point, forming the inner half of the vortex that connects
the X-point to the outer mid-plane. In figure 2(b), toroidal
projection of the flows is shown along a vertical line connecting
the top to the bottom of the torus approximately through
its centre. Although the toroidal velocity is anti-symmetric
for an up—down symmetric configuration like a double-null
geometry (see figure 1 and equation (3)), that anti-symmetry is
broken by an asymmetric field topology, as seen in the figures.
Again, the portion of the flow near the X-point gets damped
through its viscous interaction with the open field lines. Thus,
some of the momentum is transferred to the vessel through
the field lines, leaving behind a net momentum input to the
plasma. Toroidal momentum transferred to the plasma is
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positive for LSN and negative for USN topologies, as seen in
figure 2(b).

In order to get an estimate of the expected poloidal velocity
amplitudes based on these calculations, we use the following
parameters, assumed to be typical of C-Mod edge profiles in
L-Mode discharges: B = 54T, n = 102m~3, T, = 100eV,
L (length scale) = 5 x 1073 m, which leads to an Alfvén
velocity of vy = 1.18 x 107 ms™!, and Alfvén time of 74 =
L/vs = 4.25 x 107195, For the same parameters, the edge
resistivity is n = 1.55 x 107® Q m, where we conservatively
assumed Z = 1 and In A = 15. Thus, the resistive diffusion
time T = poL? /n = 2.03x 1077 s, and the Lundquist number
S = r/Ta = 4.78 x 10, Infigure 3(a) of [6], this corresponds
tony = 1/Sy = 2.09 x 107 x 1073 = 2.09 x 10~!°, which
is outside the range of the scaling study of that figure. But it is
clear that the expected poloidal velocity (normalized to va) is
of the order of 10~*, which leads to an approximate poloidal
velocity of Vo1 = 103 ms~!. However, as stated in the caption
for that figure, the average toroidal 8 = 5 x 107> in that work,
with an edge 8 = 2uop/B? ~ 107>, The C-Mod parameters
above give p = nkT = 1.6 x 103Paand B = 1.4 x 107*.
Although calculations were not done at this particular value
of B, both from the theoretical discussions in section 2 and
available numerical evidence, we expect V},o to scale linearly
with edge B. Thus, extrapolating to C-Mod conditions, we
get Vo1 ~ 10*ms~!, which is comparable to the velocities
observed in the experiment [2, 11].

Note that SOL flows similar to those shown in figure 2 have
also been observed in fluid simulations of NSTX equilibria
with flows [9], and two-dimensional particle simulations of
SOL flows in USN and LSN divertor configurations [10].

For all field/current directions and magnetic topologies,
our results are in qualitative agreement with the experimental
observations from C-Mod. For the cases with the field/current
in the ‘normal’ direction, this agreement is readily apparent
when the SOL flows in figure 2 are compared with figure 8
in [11], or figure 16 in [2]. For the two cases in [11] where the
field and currents are reversed, our results (not shown here) are
also in agreement, since the transformation B — —B,u — +u
is a symmetry of our computational model [5,6]. In other
words, with the magnetic topology fixed in USN or LSN
configuration, reversing all currents and fields do not alter the
flows in our calculations, in agreement with figure 8 of [11].

4. Radial electric field and its effect on the L-H
transition power threshold

The momentum input to the plasma from the SOL flows
and its effect on the L-H transition power threshold have
been discussed extensively by the C-Mod group (see, for
example, [2]). Here, we will simply recall the dynamical
origins of these effects in our model and examine its
contribution in various field configurations using symmetry
arguments.

As already discussed in previous sections, both the
E-driven flows within the separatrix and the parallel return
flows in the SOL have an anti-symmetric toroidal component
in up—down symmetric geometries (again, see equation (3)).
But in a LSN topology, the lower portion of this toroidal flow
is damped with respect to the upper, with the lost momentum

being absorbed by the vessel. Since the intact upper portion
is positive when the toroidal field is in the ‘normal’ direction,
there will be a net positive momentum input to the plasma.
Another important factor that determines the power threshold
is the direction of the residual electric field E,. Recall
that the resulting radial electric field within the separatrix is
E, = E,sin6, which is negative approximately below the
mid-plane (on the side with the X-point) and positive above
(see also equation (15) and the associated discussion there).
Assuming that this particular direction of E, makes the L-H
transition easier with a net addition to, for example, the ion-
orbit loss generated radial electric field [12], and using this
LSN with the fields in the ‘normal’ direction as the base case,
we can make the following predictions based on symmetry
arguments [5, 6].

e Reversal of the toroidal field alone will increase the power
threshold, since it reverses the toroidal flow, now resulting
in a negative toroidal angular momentum input, and also
reverses E, (and thus E,).

e Reversal of all fields, but still remaining in LSN, has no
effect on the flows but reverses E,, thus increasing the
threshold.

e Keeping the currents and fields in the ‘normal’ direction
but switching to an USN topology will increase the
threshold, since the momentum input reverses (upper,
positive part of the toroidal flow gets damped), and E,,
although still positive, reverses direction with respect to
the X-point.

e Note that these changes all lead to reversal of the V B-drift
direction with respect to the location of the X-point, which
is known to increase the power threshold by about a factor
of two [13].

A more quantitative look at the effects of the Pfirsch—Schliiter-
generated radial electric field in equation (15) on the L-H
transition power threshold is underway and will be presented
in a future work.

5. Summary

We demonstrated a dynamical mechanism for driving edge
flows in toroidal devices. A residual vertical electric field
that results from a balance between collisional effects and
V B-dependent drifts at the plasma edge drives a toroidally
outward flow within the separatrix, with an accompanying
return flow outside, mainly due to parallel pressure gradients.
The direction of the poloidal component of these flows is
independent of the field direction; however, there is an anti-
symmetric toroidal component that reverses with the toroidal
field. In a symmetric system, there is no net toroidal angular
momentum associated with these flows. Field and boundary
asymmetries, however, can lead to a net momentum input
by preferentially damping part of this anti-symmetric toroidal
flow, thus providing an intrinsic momentum source. This effect
and the expected reversal of the residual electric field E, with
the toroidal field have the right symmetry properties to account
for the increased power threshold for the L—H transition when
the V B-drift points away from the active X-point.
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Appendix A. Symmetry under reversal of the
toroidal field

In an axisymmetric system, ‘simultaneous reversal of toroidal
magnetic field and poloidal plasma flow’ [14], interpreted
as By — —By,vg — —Vg,Vz — —vz (in an (R, ¢, Z)
cylindrical coordinate system), was shown to be not a
symmetry of either the fluid or kinetic time-dependent plasma
models [15]. In the same reference [15], the time-independent
MHD and Vlasov models were shown to be invariant under
this set of transformations, but the relevance of this partial
symmetry in predicting the behaviour of flows in a tokamak
was questioned at some length.

There is a symmetry transformation By — —By,
Z — —Z,vz —> —vgz, i.e. with an additional coordinate
reflection Z — —Z, that leaves the time-dependent kinetic
models invariant, if one makes the additional assumption
of up—down symmetry [16]. However, as shown in [15],
this transformation first flips the tokamak up-side down
(Z — —Z), thus reversing the toroidal field By, toroidal
current /4, toroidal and poloidal flows, then reverses back the
toroidal field and poloidal flow, leaving the toroidal current and
toroidal flow in areversed state. Therefore, this transformation
does not represent ‘simultaneous reversal of toroidal magnetic
field and poloidal plasma flow’ but is equivalent to the well-
known symmetry I, — —Ig, vy — —vy [16], specialized to
up—down symmetric tokamaks.

Finally, for the flows discussed in this work, symmetry
under the transformation By — —Bg, vy — —vg4 follows
simply from the physics behind them, as shown in sections 1
and 2. That it is a proper symmetry of the time-dependent
MHD equations was shown in [5, 6], and reiterated in [15]. In
addition, since the flows within the separatrix discussed in this
work are essentially E x B flows, a characteristic of MHD, their
discussion within an MHD framework seems appropriate.

Appendix B. Sign of the function f(¢, 8) in
equation (15)

In section 2, sign of the radial electric field was shown to
depend on the purely geometric factor f (v, 6) defined as

0 » _ 1 -
fy,0) E/ R?d6 —0OR?, R? = —?ngdQ.
0 27T

Here we show that f is positive (negative) in the upper (lower)
half planes under quite general conditions.

Assume that the plasma boundary is parametrized by
R=R({Y = wsep; 0), Z = (¥ = 1psep; 6), and for
convenience let f(0) = f(¥ = Vp; ). It is clear that
f(=0) = —f(@); thus f(0) = f(wr) = 0. Assume also
that Ryax = R(WSep; 0 = 0), and Ryjn = R(wsep; 0 = m).

Then 3f/36 = R? — R2 is positive at & = 0 and negative at
0 = m. Thus, df/0d6 has to vanish at least at one point in the
interval (0, r). Butif R(vy,p; 6) isamonotonically decreasing
function of € in this interval (a reasonable assumption), then
df /06 will vanish exactly at one point only. Thus, f(6) >
0in [0,7]. f(@) < O in [m,27] follows from the odd
symmetry of f(6).
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