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[1] Although space weather is modeled after tropospheric weather, both in its conception as a weather

system and in our efforts to forecast it, no capability exists today for assimilating magnetospheric data into

space weather simulations. In this paper a scheme is proposed for assimilating magnetospheric data into a

global MHD code. The scheme is similar to ensemble Kalman filters, but it is less reliant on dense data

coverage and allows numerical models easier adherence to conservation laws. Three different estimates of

the computational cost of the proposed scheme indicate that it is easily achievable with current

computational resources.
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1. Introduction
[2] Recent advances in the development of integrated

models of the Sun-Earth environment are placing increas-
ing emphasis on data assimilation schemes that can max-
imize the intelligence extracted from our sparse sampling
of upwind conditions. Standard Kalman filter techniques,
widely used in tropospheric weather modeling, require
significantly better coverage than is available upwind. To
maximize the input of sparse upwind and magnetospheric
data and to reduce the forecast lead time computational
penalty, we proposed to use branch prediction and spec-
ulative execution (BPSE) for data assimilation [Doxas and
Horton, 2002]. Branch prediction and speculative execution
consists of making probabilistic estimates of current up-
stream conditions and distributing among available
machines a large number of simulations that assume each
of the probabilistically estimated states as initial condi-
tions. As the near-Earth space evolves and near-Earth
satellite data are compared with the models, some of the
speculatively executed simulations will be seen to diverge
from the observations more than others. At that point the

machines that were executing them will be reassigned to
new lines of speculative simulation, resulting in a contin-
uous ensemble of runs that are in the neighborhood of the
measured values. The scheme is particularly suited to
space weather since our upwind early warning sentries
can provide only sparse sampling of the incoming solar
wind, while the bulk of our monitors, which can provide
significantly better coverage, are located close to Earth and
provide much shorter lead times. By the time the data
come in from the near-Earth monitors, the forecasts of the
speculative simulations are already in hand, reducing the
lead time computational penalty (the portion of the lead
time devoted to advancing the model) to almost zero. The
scheme is similar to ensemble Kalman filters but is less
reliant on dense data coverage, does not introduce any
violation of conservation laws that were not present in the
code, and can be used with empirical models without
modification.

2. Tropospheric Data Assimilation Schemes
[3] In this section we will review both the theoretical

underpinnings and some of the technical schemes used in
tropospheric weather data assimilation, and we will situ-
ate BPSE in that context.

2.1. Bayes’ Theorem
[4] At the heart of all probabilistic forecasting methods

lies Bayes’ theorem, which correlates the posterior and
anterior probabilities of two events. If P(A) is the proba-
bility of A occurring, P(A \ B) is the probability of both A
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and B occurring, and P(AjB) the conditional probability
of A occurring given that B has occurred, then we can
write

P A
\

B
� �

¼ P Bð ÞP AjBð Þ ð1Þ

¼ P Að ÞP BjAð Þ ð2Þ

which leads to Bayes’ Theorem:

P AjBð Þ ¼ P BjAð ÞP Að Þ
P Bð Þ ð3Þ

In other words, the posterior probability of A occurring
given that B has already occurred is given as a function of
the independent probabilities of A and B, and the
conditional probability of B occurring given A. If we think
of B as the ‘‘observed quantity’’ and replace events by
continuous variables (so that the probabilities are now
distributions), then Bayes’ theorem becomes

p xjxoð Þ ¼ p xojxð Þ p xð Þ
p xoð Þ ð4Þ

which forms the basis of the standard sequential data
assimilation methods.

2.2. Cost Function
[5] To develop a data assimilation scheme, Bayes’ the-

orem is combined with an (arbitrary) function of the
errors. The minimization of that function (called the cost,
or penalty function) will then determine how the pre-
dicted values of the observables, xp, and their error esti-
mate, Vp will combine with the observed values and error
estimates, xo and Vo, to give the new values and error
estimates, xa and Va.
[6] It can be shown, for instance, that for normal dis-

tributions, the prediction that x is near the predicted value
xp with variance Vp combines with the observed value xo

with variance Vo to give the new estimate that x is near xa

with variance Va by the usual Gaussian error propagation
formulas:

xa

Va
¼ xo

Vo
þ xp

Vp
ð5Þ

1

Va
¼ 1

Vo
þ 1

Vp
ð6Þ

so that for normal error distributions the standard data
assimilation methods are equivalent to a least squares fit
with errors propagating in the usual Gaussian manner
(equations (5)-- (6)).

[7] It is important to note that the initial error estimate,
Vp, determines not only the error estimate of the predicted
value, Va, but also the value of the new estimate itself, xa

(cf. equation (5)). So the choice of the cost function does in
general affect the forecast. Although distance squared is
by far the most common function chosen to be minimized
(leading to least squares fits), other functions can also be
used [e.g., Houtekamer, 1995].

2.3. Kalman Filters
[8] In the context of a numerical model that is used in

combination with observations for specification and fore-
casting (as in tropospheric weather, or in the geospace
environment) the observable x becomes the vector of all
the grid points in the simulation. The predicted value, xp,
is therefore the vector of all grid points in the simulation,
while the predicted variance, Vp, is the vector of the
variances at each grid point. This vector of predicted
variances is calculated from the results of the previous
time step by a matrix (called the covariance matrix) that
connects the error at each observation point in the vector
xi to every other point in the vector xj 6¼ i. This calculation is
usually done analytically, but for ensemble Kalman filters
the covariance matrix is calculated using the statistical
spread of an ensemble of runs.
[9] The standard method for data assimilation in tropo-

spheric weather is the Kalman filter [Kalman, 1960], which
is a fast algorithm for performing the least squares fit and
error propagation. For large simulations, xp, and large
observation vectors, xo, performing the least squares fit
and error propagation can become very expensive. For
tropospheric weather the vector of observation points, xo,
can be of the order of 105 (cf. Figure 1), while the simu-
lations can have 106--107 points, necessitating calculations
with very large matrices. In general, the errors cannot be
assumed to be distributed normally, which makes compu-
tations even more expensive. Kalman filters make a num-
ber of simplifying assumptions (e.g., locality, linearity) that
simplify the covariance matrix and make the computations
faster, but all Kalman filter techniques are essentially a
least squares fit with mostly Gaussian error propagation.

2.4. Relation of BPSE to Tropospheric Schemes
[10] A data assimilation method that relies on a least

squares fit has to have adequate observational coverage
over all relevant length scales, or risk loosing touch with
the ‘‘true’’ solution. Tropospheric weather models for
instance are well known to deviate significantly from the
truth over the South Pacific, where sampling is sparse.
Figure 1 shows a map of observation points for tropo-
spheric weather. In total, there are of the order of 105

observation points that are used for data assimilation
(cf. the Met Office Web site at http://www.met-office.gov.
uk/research/nwp/observations/data_coverage/). A cursory
examination of the map shows that a typical weather front
spanning half the north-south extent of the US, would be
sampled with hundreds of observations. In contrast, in the
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geospace environment we have only a very small number
of spacecraft that can warn us of incoming solar wind
structures. Global MHD simulations, for instance, will
typically assume that the entire sunward front of the
simulation (typically 60 � 60 RE) is uniform, and is given
by the measured values at the L1 point. Since typical
length scales in the direction perpendicular to the Sun-
Earth line are of the order of 20--40 RE [e.g., Collier et al.,

1998, 2000], the incoming front used as input to the global
MHD models would typically consist of four uncorrelated
regions. There are indications from global MHD simula-
tions that varying the values received from the L1 point
can result in better agreement with near-Earth observa-
tions (cf. section 3.2 below).
[11] Since it is unlikely in the foreseeable future that we

will be able to sample upstream conditions with a density

Figure 1. Some tropospheric weather data assimilation points. For more data categories see the
Met Web site at http://www.met-office.gov.uk/research/nwp/observations/data_coverage. In total,
there are of order 105 data assimilation points covering the globe. ATOVS is NOAA’s Advanced
TIROS Operational Vertical Sounder satellite.
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comparable to that of tropospheric weather, relying on a
least squares fit data assimilation scheme is not the best
option. We therefore propose that magnetospheric data
assimilation schemes use branch prediction and specula-
tive execution (BPSE) to overcome the need for densely
sampled upstream conditions. BPSE overcomes that diffi-
culty by augmenting the available data with ‘‘guessing’’ of
the upstream conditions (on the basis of climatology or
other criteria) and postponing the decision of which
guesses should form the forecast until more dense near
earth data is available.
[12] The method is illustrated schematically in Figure 2.

Let us consider the trajectory of the magnetosphere in
phase space and let the blue dots at time T0 represent the
initial guesses we make in the vicinity of the actual
magnetospheric state. These guesses are then advanced
all the way to some time T2, at which we wish to generate a
forecast. During the integration, the trajectories of the
initial guesses have spread to cover the volume denoted
by blue points at time T2. At some time T1 < T2 (typically
	1 h after T0) the ensemble of speculative runs (blue) is
compared to magnetospheric data, and only the runs that
are in good agreement with the observations are kept (red
points at time T1). The simulation results which corre-
spond to these points (red points at time T2) are then used
to assemble the forecast at time T2. By speculatively
executing the simulations ahead of the arrival of the
near-Earth data, the scheme does not pay a lead time
penalty; by the time the near-Earth data is available at
time T1, the simulation results at T2 are already in hand.
The scheme combines features of both variational meth-
ods [e.g., Lorenc, 1997] and ensemble methods [e.g.,
Evensen, 1994] and proposes to use cost functions that
are weighted for relevance to the forecast [e.g., Houtekamer,
1995].
[13] The proposed scheme also ensures that the simu-

lations which are finally used to assemble the forecast
have maintained conservation laws (like energy conserva-
tion) continuously from the point of the solar wind driver
to the forecast. Traditional data assimilation schemes that
use equations (5)-- (6), obviously create a discontinuity in
conservation laws at the time of data assimilation, since
equations (5)-- (6) introduce what, from the point of view
of the code, are random ‘‘corrections’’ to physical quanti-
ties (like plasma velocity and density) which should be
obeying conservation laws. This means that in general, the
part of the simulation that includes the solar wind driver
does not strictly constrain, for example, the energy or
momentum in the part of the simulation used in the
forecast. By using simulations that have run continuously
without arbitrary intervention from T0 to T2, BPSE ensures
that the results used to assemble the forecast are indeed
constrained by the driving conditions through the relevant
conservation laws.
[14] It should be emphasized here that the purpose of

following an ensemble of runs with different initial con-
ditions is not meant to correct for the variance between

any one simulation and the near earth data but rather to
account in a more or less systematic way for the errors
introduced in the forecast by our imperfect knowledge of
the driver. The following scenario might illustrate this
point more clearly. Suppose that as envisioned in our
search for coupled models, a heliospheric code is coupled
to a magnetospheric code by passing values of solar wind
parameters on the grid points (yj, zk) of an interface plane.
In order to institute a tropospheric type data assimilation
scheme to this system of coupled codes, the heliospheric
code will have to pass not only the values of the param-
eters, but also estimates of their error, so at position (yj, zk)
it should be passing (for example) Bjk and dBjk. These
values would be uniquely defined by the heliospheric
code over the entire front, except at the L1 point. At that
point the forecast of the heliospheric code, (B1, dB1), will
have to be combined with the (generally different) obser-
vation values (B2, dB2), to give (B0, dB0) where

B0

dB0
¼ B1

dB1
þ B2

dB2
ð7Þ

1

dB0
¼ 1

dB1
þ 1

dB2
ð8Þ

assuming the standard Gaussian error propagation
(equation (5)--(6)).
[15] After a few time steps of the magnetospheric code,

this uncertainty in the value of the magnetic field at L1 will
have contributed to the uncertainties at nearby grid
points, (xl, ym, zn) in ways determined by the differential
equations used to advance the system. After a long time,
this error at L1 will have contributed a small amount to the
error of (in principle) all other grid points in the simula-
tion. In most tropospheric data assimilation schemes the
contribution of dB0 on the errors of all the other grid points
in the simulation is calculated analytically and is codified
in the covariance matrix. The difference between Kalman
filters and BPSE, is that BPSE calculates this contribution
in a Monte Carlo way, by following an ensemble of runs
through the simulation.

3. Computational Cost Estimates
[16] In order to estimate the number of speculative runs

that will be needed for the scheme, we performed a series
of tests using WINDMI, a computationally inexpensive
dynamical model, and LFM, a computationally more de-
manding but more realistic MHD model. An estimate of
the nonlinear wraparound time (the time it takes the
magnetospheric attractor to explore the longest scales
[cf. Goode et al., 2001]) also gives similar results.

3.1. WINDMI Tests
[17] Since MHD simulations are computationally

intensive we have used WINDMI, a physics-based
low-dimensional model for the coupled solar wind--
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magnetosphere-ionosphere system [Horton and Doxas,
1996, 1998] for extensive testing to obtain an estimate of
the number of simultaneous speculative runs that would
be required in an implementation of the proposed
scheme. The parameters used in WINDMI can be calcu-
lated from inexpensive particle simulations, which allows
us to execute large random searches in parameter space.
The results can then guide us in our estimates of the
computational resources that are likely to be needed to
implement the proposed scheme with realistic global
MHD simulations.

[18] WINDMI couples the four basic energy components
of the nightside magnetosphere to the ionosphere via the
region-1 currents. The model is a six-dimensional 13-
parameter system, given by

L
dI

dt
¼ Vsw tð Þ 
 V þM

dI1
dt

ð9Þ

C
dV

dt
¼ I 
 I1 
 Ips 
 SV ð10Þ

Figure 2. A schematic representation of the divergence of an ensemble of runs. The blue points
represent all the runs that were initiated at T0, while the red points represent only this subset of the
runs that was in good agreement with observational data at the data assimilation time T1. At time
T0 a guess is made as to the variability of the current conditions (blue) owing to the uncertainty in
the specification of the sparsely sampled solar wind. All guesses are then advanced to the forecast
time (blue points at T2). At time T1 incoming magnetospheric data constrain the possible solutions
to pass close to the observed conditions (red). In assembling the forecast for T2 (red), only
trajectories that pass near the constraining conditions at T1 are kept; the others are discarded. The
number of speculative runs needed to implement the scheme is determined by the spread of the
initial guess between T0 and T1, since we need to have a sufficient number of runs covering
the constraining area (red points at T1) to produce a functional forecast (red points at T2). If the
interval T1 
 T0 (typically about an hour) is comparable to the time it takes for the initial ensemble
to spread over the entire attractor, then the initial guesses might have to cover the entire attractor
in order to assure coverage over the target area at T1. An integration time short compared to the
wrap-around time would mean that the initial conditions (blue points at T0) would only have to
cover a small volume to assure coverage of the target state (red points at T1). The nonlinear time
estimates in section 3.2 indicate that this is the case. The scheme insures that a data-validated
forecast is available as soon as the constraining magnetospheric data becomes available at T1,
reducing the computational advance time to zero.
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3

2

dP

dt
¼ S

V2

W

 u0K

1=2
k H I 
 Icð ÞP ð11Þ

dKk

dt
¼ IpsV 


Kk

t
ð12Þ

LI
dI1
dt

¼ V 
 VI þM
dI

dt
ð13Þ

CI
dV

dt
¼ I1 
 SIVI ð14Þ

The quantities L, C, S, LI, CI, and SI are the magneto-
spheric and ionospheric inductance, capacitance, and
conductance, respectively. M is the mutual inductance.
The pressure gradient driven current is givenby Ips =aP1/2(t)
as derived from force balance and Ampere’s law. The
parameter a is an average over the pressure profile in the
current sheet. The solar wind driving voltage Vsw in
equation (7) is the input time series for this nonlinear
driven dissipative system. The term u0 Kk

1/2H(I 
 Ic)P in
equation (9), where H is the Heavyside step function,
represents the rapid unloading of the stored energy when
the current exceeds a critical value, I > Ic, and comes from
the heat flux limit that is neglected in the MHD closure
[Horton and Doxas, 1996]. In the absence of driving (Vsw = 0)
and damping (SI = 0) and below the unloading limit (I <
Ic), the total energy is conserved. All parameters of the
model can be calculated explicitly from their integral
definitions given the plasma conditions in the tail.
[19] For WINDMI to be used as a forecasting tool, the

parameters of the model need to be calculated. This can be
done explicitly from the plasma parameters in the tail
(density, temperature, etc.) since all WINDMI parameters
are defined as integrals of physically identifiable quanti-
ties (the capacitance, C, for instance is the volume integral
of the E � B kinetic energy in the current sheet; the
unloading parameter, u0, is the surface integral of the heat
flux over the boundary, etc.). Absent in situ data, simu-
lations can also be used to make estimates of the values of
these parameters, and this is the avenue that has been
pursued so far. Particle simulations are used to provide
the moments of the distribution function, which in turn
can be used to calculate the parameters of the model using
their integral definitions. The code advances test particles
in model fields that consist of a constant northward field
and a time-dependent tearing mode perturbation super-
imposed on a standard Harris sheet [Horton and Doxas,
1996]. The particles are advanced for approximately 20 min
real time equivalent, and the moments of the particle
distribution function are used to calculate the model
parameters. The output of the model is then compared
to two widely used data sets of the AL activity index which

are complementary in nature, Blanchard and McPherron
[1993] (a data set of 121 events that are carefully selected
to include only well-isolated substorms) and Bargatze et al.
[1985] (a set of 34 intervals each of which includes multiple
substorm events). The AL magnetospheric activity index is
a measure of the strength of the westward electrojet and
has been extensively used in dynamical studies of the
magnetospheric system. We consistently find that when
using this procedure, WINDMI produces good agreement
with observations both for the isolated and for the multi-
ple events [Doxas et al., 1999, 2002].
[20] Figure 3 shows the results for two of the events in

the Blanchard and McPherron [1993] database of isolated
events that were calculated using parameters obtained
from particle simulations (the bottom frames show the
worst fits for the corresponding event, for comparison).
Similarly good agreement is obtained for all the events in
the Blanchard and McPherron [1993] data that we have
simulated [Doxas and Horton, 1999; Doxas et al., 2002] as
well as most of the intervals in the Bargatze et al. [1985] data
[Horton and Doxas, 1998; Doxas and Horton, 1999]. It is worth
noting that including the heat flux term gives good agree-
ment with the measured AL index, while the predictions of
the model without the heat flux limit (MHD closure) give
an unphysical large spike (top left frame of Figure 3). This
is due to the fact that without a heat loss term the system
(7)--(12) has no mechanism for cooling the plasma sheet
plasma nonadiabatically, resulting in an unphysical build-
up of energy.
[21] A typical simulation used to obtain the above

results has approximately 1,000,000 particles, which is
sufficient to provide reliable values of higher-order
moments like the heat flux. The event shown in the left
frames of Figure 3 required a total of 27 randomly initial-
ized simulations to arrive at good agreement, the event on
the right required a total of 38. Although the simulations
used in this case are less demanding computationally than
global MHD simulations, running an ensemble of 30--
40 MHD simulations at low resolution is within current
capabilities. This result is, of course, no guarantee that
good agreement can be achieved with a tractable number
of MHD simulations, but it is encouraging.

3.2. Global MHD Simulations
[22] In addition to the extensive testing that we per-

formed with the computationally inexpensive WINDMI
model, we have also performed a smaller number of test
runs with LFM in order to obtain a more realistic estimate
of the number of speculative LFM runs that would need to
be executed. We performed tests for three different sce-
narios; a steady solar wind, a pulse, and a slow rotation of
the magnetic field by 90�. In all three scenarios we exe-
cuted multiple runs by changing the magnitude of the
incoming solar wind velocity from 5% (of maximum
variability) below to 5% above the reference value in steps
of 1%. In all three cases we measure variability of any
parameter in terms of the maximum observed variability
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of that quantity, in order to have an absolute measure of
the fraction of physically relevant parameter volume that
we need to explore. For instance, we estimate the maxi-
mum variability of the solar wind speed to be of the order
of 1000 km/s so the incoming speed in our numerical
experiments was varied over a range of 100 km/s in steps
of 10 km/s. The value of 1000 km/s is obviously approx-
imate (solar wind speeds as high as 2000 km/s have been
observed) but gives a reasonable estimate of the range of
values usually encountered. Similarly, the other maximum
variabilities we use (40 nT for the maximum variability of
the solar wind Bz for example, and 20 nT for the maxi-
mum variability of the current sheet Bz) are also approx-
imate and are only meant to give a useful estimate of the
volume of physically relevant parameter space that we
are exploring.
[23] We then compared the output of the 10 perturbed

runs to the output of the reference run after 1 h of real
time. One hour is the typical lead time from our upwind
sentries, so the divergence of the code after 1 h would be
typical of the expected divergence in our speculative runs.
Figure 4 shows the value of dBz on the x--y plane for the
impulse scenario and for a 2% increase of the solar
wind speed of the reference run. The color scale gives
dBz/Bz
var, where Bz
var is the maximum variability of the
northward component in the current sheet, estimated at
	20 nT. We see that for the most part, in the critical

area around the center of the current sheet, a 2%
variance of the incoming solar wind results in approx-
imately a 10% variance in the result after 1 h real time.
This result is similar in nature to the results obtained
with the WINDMI model and indicates that we can
cover an extensive part of the expected variability at
T2 with only a modest number of speculative runs.
[24] The sort of effects that can be expected by using an

ensemble of solar wind inputs for the global MHD codes
can be seen in the global MHD simulations performed for
the GEM Substorm Challenge [Slinker et al., 2001]. The
LFM code was driven by solar wind data fromWind which
had a sequence of relatively constant IMF: first northward,
then southward, then northward again. During this peri-
od, Polar magnetometer data was available for compari-
son with the model results. The simulation results showed
a consistent deviation from the observations in Bx

(cf. Figure 7 of Slinker et al. [2001], reproduced in Figure 5).
Given Polar’s orbit high in the northern hemisphere, this
indicated that the reconnected magnetic field in the sim-
ulation was too strongly draped where Polar was located.
For unrelated reasons (to try to change the time of sub-
storm onset in the simulation), an experiment was per-
formed where the IMF Bz from Wind was reduced by
approximately 2 nT (about 5% of maximum solar wind Bz
variability) after the southward turning. The effect at Polar
was to bring the simulation Bx almost totally in agreement

Figure 3. Measured AL index and the output of the WINDMI model for two events in the
Blanchard and MacPherron [1993] data set. The top frames give the best fit and the bottom frames
give the worst fit for comparison. When the thermal flux term is neglected (top left frame; q = 0 )
u0 = 0) the model gives an unphysical short spike followed by large-amplitude ringing (the ringing
part has been removed from the figure for clarity). Using particle simulations to obtain the particle
distribution function, and then using the integral definitions of the model parameters [Horton and
Doxas, 1996, 1998] to calculate the parameters from the particle distribution, results in good
agreement between the WINDMI output and observations [Doxas and Horton, 1999; Horton et al.,
1999; Doxas et al., 2002]. The event shown on the left required 27 randomly initialized simulations to
obtain good agreement, the event on the right required 38.
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with observation for approximately an hour and a half
(although the Bz value is slightly worse than the original
run, cf. Figure 5). This result is, of course, no guarantee
that the proposed scheme can be implemented with
similar success in other cases, and it indicates that chang-
ing a single parameter (the solar wind velocity) will not
necessarily improve the results in every respect; however,
the experiment does show that changing the solar wind
inputs in ways that are within the uncertainty associated
with an L1 monitor can materially affect the modeled
results and bring model and observations closer together.
[25] The results described above imply that a relatively

small number or speculative runs can adequately cover a
meaningful volume of the relevant parameter space at the
data assimilation time, T1, and that mangnetospheric data
can make clear distinctions between runs that differ by a
few percent in one of the driving parameters. An initial
ensemble covering the solar wind velocity, density, and Bz
with three to four different values each, over a range of
	±5% of their respective maximum variability (in steps of
approximately 2.5%--3.5%) can therefore ensure that one
or more of the runs will be in the vicinity of the actual

magnetospheric state and allow the data to clearly distin-
guish between the different runs. Depending on the exact
resolution in parameter space (e.g., 3 � 3 � 4) this can
easily fit in the range of 30--40 speculative runs, which is
comfortably within current capabilities. Furthermore, it is
not unreasonable to believe that given an operational
system, we will be able, with experience, to make guesses
that are somewhat more educated than a systematic
coverage of the parameter space.

3.3. Nonlinear Time Estimates
[26] Once a number of speculative runs have been

initiated, they will diverge from each other at a rate
defined by the nonlinear dynamical properties of the
magnetotail (see Figure 2 for a schematic representation)
and they will eventually spread over a significant percent-
age of the entire attractor (e.g., blue points in Figure 2).
The number of speculative runs needed to implement the
scheme is therefore determined by the spread of the initial
guess between T0 and T1, since we need to have a suffi-
cient number of runs covering the constraining volume

Figure 4. The Bz variability as a fraction of maximum observed variability, in the output of LFM
for a 20 km/s (2% of maximum nominal variability of 1000 km/s) change in the solar wind input
velocity. The figure shows the z = 0 plane, and the nominal maximum variability of Bz on the plane
was taken to be 20 nT. We see that a 2% change in the driver results in a change of approximately
10% (yellow) in the critical region around the y = 0 line where an X-line might appear. The
concentric rings in the near-Earth region are for the most part a numerical effect caused by
the nonlinear switches used in the LFM to control high-frequency noise in the simulation. The
switches miss high-frequency (in space) noise that only causes ripples on the general decline of the
magnetic field outward. These ripples are different for different runs, giving the concentric pattern.
We should note that in this inner region the unperturbed magnetic field is generally much larger
than the estimated Bz-var, and so the actual relative errors are much smaller than the figure would
indicate at first glance.
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(red points at T1) to produce a functional forecast (red
points at T2).
[27] The volume over which an ensemble of orbits will

spread after a certain time depends on the average rate of
divergence of nearby orbits. This rate of divergence is
measured by the Lyapunov time. The Lyapunov time is
the inverse of the Lyapunov exponent which is given by
[Lyapunov, 1907; Benettin et al., 1976, 1980]

gL ¼ 1

tL
¼ lim

t!1
d 0ð Þ!0

1

t

� �
ln

d x0; tð Þ
d x0; 0ð Þ ð15Þ

so that orbits which were a distance d0 apart at time t0 will
be separated at later times, t, by a distance that goes as

e
gL(t
t0). A Lyapunov exponent is defined for each
orthogonal direction at the point x0, but the largest
exponent will, of course, quickly dominate. Lyapunov
times have recently been estimated for magnetospheric
time series by Athanasiou et al. [2003], but for the present
problem we are more interested in the fill-in time, the
time over which an ensemble of runs will spread to cover a
macroscopic part of the attractor, thus requiring the initial
guesses to cover a large part of the attractor and rendering
the proposed scheme prohibitively expensive. A measure
of this time is the wrap-around time, the time it takes the
magnetospheric attractor to explore the longest scales,
which is obviously a lower bound for the timescale of
interest (the distance between two nearby trajectories
cannot become comparable to the largest scale of the

Figure 5. (a)--(c) Comparison of the LFM code results with Polar Magnetic Field Experiment
(MFE) measurements. The MFE value is the solid line. The dotted and dashed lines are the
International Geomagnetic Reference Field (IGMF) and dipole field, shown for comparison. The
crosses show the simulation values, while the triangles show the values of the second simulation
with the incoming IMF Bz reduced by 2 nT from the L1 data. (d) Also shown is the value of the
incoming solar wind Bz, as well as the value used for the alternative run (dashed). This represents a
change of 5% of the nominal maximum variability of 40 nT for the solar wind Bz. The new run
shows better agreement with the MFE Bx. From Slinker et al. [2001]. The vertical line corresponds to
the time at which the alternative simulation was initiated (the time difference is due to the time lag
between the L1 point and the magnetospheric response). In a BPSE context the results to the right
of the line would be the forecast, which is in better agreement with observations than the reference
run for about an hour and a half.
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system faster than the time it takes a typical trajectory to
reach those scales).
[28] An estimate of the wraparound time was recently

obtained by Goode et al. [2001] on the basis of the variance
growth of AL time series. For a dynamical system, a time
series of an observable that is longer than the wraparound
time is stationary, that is, the variance of a subset of length
N of the time series

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

x2i

vuut ð16Þ

is constant as a function of N. For times shorter than the
wraparound time, the variance grows linearly with record
length N until the record length becomes comparable to
the wraparound time, at which point the variance
saturates to the long-time limit. Adding noise to the
dynamical system can change the growth rate of the
variance in the linear regime, but the variance will still
saturate to the long-time limit for record lengths compar-
able to the wraparound time. Figure 6 shows the variance
test for two intervals in the Bargatze et al. [1985] data set.
We see that the variance saturates for record lengths
longer than approximately ln(N) 	 5.5--6, which corre-
sponds to a wraparound time of 10--17 h (the cadence of
the data is 2.5 min).
[29] Nine of the 11 intervals in the Bargatze data set

exhibit that behavior [Goode et al., 2001], suggesting that
the time series represent a dynamical process (albeit with
significant noise) with a typical wraparound time of 10--
17 h. Since the lead time from the L1 point is of the order of
1 h, the integration time for the speculative runs is at least
an order of magnitude shorter than the wraparound time
for the magnetospheric dynamics as exhibited by the data
set, which suggests that the initial guesses need only cover a
small volume of phase space. This is consistent with the
estimates obtained with WINDMI and with LFM, which
suggests that the scheme needs only a modest number of
speculative runs to cover the target area in phase space.

4. Conclusions
[30] Branch prediction and speculative execution con-

sists of making probabilistic estimates of the true state of
the solar wind and following an ensemble of simulations
with the different solar wind states as input conditions. As
data come in from the much more densely sampled near-
Earth space, some simulations will be in better agreement
with the data than others, so that at each time a forecast
needs to be produced, it can be produced using the runs
that best agree with the data.
[31] The critical point for the usability of the scheme as a

forecasting tool is the number of speculative runs that will
need to be simultaneously followed for the ensemble to
have sufficient coverage in phase space to cover the ‘‘true’’
state as it is described by the near-Earth data. We have
presented three separate estimates of the number of such
speculative runs that an operational system would re-
quire, one theoretical and two empirical, and all three
estimates indicate that the target phase space can be
covered with a moderate (30--40) number of speculative
runs. This is a tractable number even for a modest
present-day Linux cluster, which argues that the scheme
would be eminently feasible even today. More detailed
studies will have to focus on the manner in which the
ensemble runs are weighted to produce the forecast and
on the algorithms that guess the initial conditions in an
optimal way as to minimize the numbers of speculative
runs required.

Figure 6. Variance growth test for auroral electrojet
(AL) index for two of the intervals (interval 17 and
interval 28) in the Bargatze et al. [1985] data set. Of the
11 intervals that are long enough for the test, nine
exhibit this behavior, saturating after approximately
10--17 h (the cadence of the Bargatze data set is 2.5 min,
so ln(N) 	 6 corresponds to approximately 17 h). See
Goode et al. [2001]. The AL index is a measure of the
westward electrojet and is often used in the study of
the dynamics of the magnetosphere.
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