HAMiltonian Structure Of The BBGKY Hierarchy

Jerrold E. Marsden and Alan Weinstein
Department of Mathematics
University of California
Berkeley, California 94720

Philip J. Morrison
Department of Physics and
Institute for Fusion Studies
University of Texas
Austin, Texas 78712

January 1984
HAMILTONIAN STRUCTURE OF THE BBGKY HIERARCHY

Jerrold E. Marsden, 1 Philip J. Morrison, 1,2 and Alan Weinstein 1

ABSTRACT. The BBGKY hierarchy equations for the evolution of the i-point functions of a plasma with electrostatic interactions are shown to be Hamiltonian. The Poisson brackets are Lie-Poisson Brackets on the dual of a Lie algebra. This algebra is constructed from the algebra of n-point functions under Poisson bracket and the filtration obtained by considering subspaces of i-point functions, 1 \leq i \leq n.

§1. Introduction

The purpose of this paper is to show that the BBGKY (Bogoliubov-Born-Green-Kirkwood-Yvon) hierarchy equations are Hamiltonian with a Poisson bracket associated to a certain Lie algebra. For background and the original references on the hierarchy, the reader may consult one of the standard texts, such as Clemmow and Dougherty [1969], Ichimaru [1973] or Van Kampen and Fellerhof [1967]. For background on Lie-Poisson structures on duals of Lie algebras, see Marsden and Weinstein [1982], Marsden et. al. [1983] and the lectures of Morrison, Ratiu and Weinstein in these proceedings.

In the present paper, we simply exhibit the Hamiltonian structure of the hierarchy equations making use of the theory of momentum mappings. Eventually, we hope to show how this structure is inherited by truncated systems, providing a statistical basis for recently discovered bracket structures for plasma systems (Morrison and Greene [1980], Morrison [1980], Marsden and Weinstein [1982], Morrison [1982] and Marsden, et al. [1983]).

2. The Hierarchy Equations

Let \(P \) be a finite dimensional symplectic manifold; for example, the position-momentum space \(\mathbb{R}^6 \) for a single particle. Let \(P^n = P \times P \times \ldots \times P \) (n times) be thought of as the phase space for n particles. Points in \(P^n \) will be denoted \((z_1, \ldots, z_n)\). Consider a Hamiltonian on \(P^n \) of the form

1Research partially supported by DOE Contract DE-AT03-82ER-12097.
2Research partially supported by DOE Contract DE-FG05-80ET-53088.
\[H_n(z_1, \ldots, z_n) = \sum_{i=1}^{n} H_1(z_i) + \sum_{i<j} H_2(z_i, z_j) \]

where \(H_1 : \mathbb{R} \to \mathbb{R} \) and \(H_2 : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \) (minus the diagonal) \(\to \mathbb{R} \) are given and \(H_2 \) is symmetric in its arguments. For example, on \(\mathbb{R}^6 \) with \(z = (q, p) \) and \(z' = (q', p') \), the functions

\[H_1(z) = \frac{|p|^2}{2m} \quad \text{and} \quad H_2(z, z') = \frac{e^2}{|q - q'|} \]

describe the dynamics of identical particles of mass \(m \) and charge \(e \) under electrostatic interaction. (The simple generalization to an arbitrary number of different species is omitted here.)

Hamilton's equations on \(\mathbb{R}^n \) give the Liouville equation for the evolution of a smooth symmetric function,

\[f_n : \mathbb{R}^n \to \mathbb{R}, \]

namely

\[\frac{\partial f_n}{\partial t} + \{ f_n, H_n \}_n = 0, \quad (L) \]

where \(\{ \cdot, \cdot \}_n \) denotes the Poisson bracket on \(\mathbb{R}^n \), i.e. the \(n \)-particle Poisson bracket. The moments of \(f_n \) are defined by the following equations

one-point function: \(f_1(z; t) = \int f_n(z, z_2, \ldots, z_n; t) dz_2 \ldots dz_n \)

two-point function: \(f_2(z, z'; t) = n(n-1) \int f_n(z, z', z_3, \ldots, z_n; t) dz_3 \ldots dz_n \)

\[\vdots \]

where \(dz \) denotes Liouville measure. The hierarchy equations can be obtained by differentiating these equations in \(t \) using the evolution equation for \(f_n \). For example, the first equation is

\[\frac{\partial f_1}{\partial t}(z; t) + \{ f_1, H_1(f_1) \}(z; t) = \{ f_1(z; t), f_1(z'; t) - f_2(z, z'; t), H_2(z, z') \} dz' \quad (H1) \]

where \(H_1(f_1)(z) = H_1(z) + \int f(z') H_2(z, z') dz' \) and the braces denote the Poisson bracket on \(\mathbb{R} \) (see the appendix).
§3. Lie-Poisson Equations

A Lie-Poisson Bracket is the natural bracket on functions defined on the dual of a Lie algebra. These brackets play a fundamental role in the Hamiltonian description of rigid bodies, fluids and plasmas, (see the references cited earlier). If \(G \) is a Lie group with Lie algebra \(\mathfrak{g} \) and dual \(\mathfrak{g}^* \), then for \(F, G : \mathfrak{g}^* \to \mathbb{R} \), their Lie-Poisson bracket at \(\mu \in \mathfrak{g}^* \) is defined by

\[
\{F, G\}(\mu) = \langle \mu, \left[\frac{\delta F}{\delta \mu}, \frac{\delta G}{\delta \mu} \right] \rangle, \tag{LP}
\]

where \(\frac{\delta F}{\delta \mu} \in \mathfrak{g}^* \) is defined by

\[
DF(\mu) \cdot \mu' = \langle \mu', \frac{\delta F}{\delta \mu} \rangle.
\]

DF(\mu) is the Frechet derivative, \(\langle \ , \ \rangle \) is the pairing between \(\mathfrak{g}^* \) and \(\mathfrak{g} \), and \(\left[\ , \ \right] \) is the Lie bracket on \(\mathfrak{g} \).

The Lie-Poisson bracket for the group \(\text{Sym}(P) \) of canonical transformations of a symplectic manifold \(P \) may now be described as follows. Except for constants, the Lie algebra \(\text{sym}(P) \) may be identified with (generating) functions \(K : P \to \mathbb{R} \) and its dual \(\text{sym}(P)^* \) with densities \(f d\mu \), where \(f : P \to \mathbb{R} \) and \(d\mu \) is Liouville measure on \(P \). Then we set

\[
\{F, G\}(f) = \int_P f \left\langle \frac{\delta F}{\delta f}, \frac{\delta G}{\delta f} \right\rangle d\mu. \tag{PV}
\]

This is the bracket for the Poisson-Vlasov equation; it is also a fundamental ingredient in the Maxwell-Vlasov bracket (Morrison [1980], Marsden and Weinstein [1982]). With \(P \) replaced by \(P^n \), it also describes the Liouville equation (L). In fact one can check either by a direct calculation or from considerations of reduction of dynamics on \(\text{Sym}(P^n) \) that (L) is equivalent to

\[
\dot{F} = \{F, \mathcal{K}_n(f_n)\}
\]

where \(F \) is a functional of \(f_n^* \), \(\{ \ , \ \} \) is given by the bracket (PV) with \(f_n^* \) in place of \(f \), \(P^n \) in place of \(P \) and

\[
\mathcal{K}_n(f_n) = \int_{P^n} H_n(z_1, \ldots, z_n) f_n(z_1, \ldots, z_n) dz_1 \ldots dz_n.
\]

Here \(\text{Sym}(P^n) \) may be replaced by \(\text{Sym}_s(P^n) \), those elements of \(\text{Sym}(P^n) \) that commute with permutations and \(\text{sym}(P^n) \) by \(\text{sym}_s(P^n) \), the symmetric functions on \(P^n \).
4. The Hierarchy Algebra

Suppose that A_n is a real Lie algebra and $A_1 \subset A_2 \subset \ldots \subset A_n$ are linear subspaces. Below we shall choose A_n to be the algebra $\text{sym}_s(p^n)$ of symmetric functions under Poisson bracket and A_i to be the space $\text{sym}_s(p^i)$ embedded as a subspace by the map

$$c_i : K_1(z_1, \ldots, z_i) \mapsto \sum K_1(z_{j_1}, \ldots, z_{j_i})$$

where the sum is over distinct subsets of $\{1, \ldots, n\}$; i.e. $j_1 \neq j_2 \neq \ldots \neq j_i$. For example,

$$K_1(z_1) \mapsto \sum K_1(z_i) \quad \text{and} \quad K_2(z_1, z_2) \mapsto \sum_{i \neq j} K_2(z_i, z_j).$$

One checks that in this example we have a filtration; i.e.

$$[A_i, A_j] \subset A_{i+j-1} \quad (F)$$

(Note that only A_1 is a Lie subalgebra.) In general given such a filtration there is a Lie algebra structure on

$$A_n = A_1 \oplus A_2 \oplus \ldots \oplus A_n$$

such that the map

$$\alpha_n : A_n \rightarrow A_n$$

defined by

$$\alpha_n(K_1, \ldots, K_n) = K_1 + \ldots + K_n$$

is a Lie algebra homomorphism. Indeed, set

$$[(K_1, \ldots, K_n), (L_1, \ldots, L_n)] = ([K_1, L_1], [K_1, L_2] + [K_2, L_1],$$

$$[K_2, L_2] + [K_1, L_3] + [K_3, L_1], \ldots) \quad (HLA)$$

where $[K_i, L_j]$ is to be put in the k^{th} slot if $k = i + j - 1$ and if $i + j - 1 \leq n$. If $i + j - 1 > n$, the term is to be put in the last (n^{th}) slot; one has some options here that will be the subject of our work on truncations.

One can check directly that (HLA) defines a Lie algebra structure and that α_n is a Lie algebra homomorphism.
§5. The Moments Comprise a Momentum Map

The dual α^*_n of α_n in our example is determined as follows. We have

$$\alpha_n : A_1 \oplus \ldots \oplus A_n \rightarrow A_n$$

and so $\alpha^*_n : A^*_n \rightarrow A^*_1 \oplus \ldots \oplus A^*_n$

is given by

$$\int (\alpha^*_n f_n)(K_1, \ldots, K_n) dz_1 \ldots dz_n = \int f_n \alpha_n (K_1, \ldots, K_n) dz_1 \ldots dz_n = \sum_{i=1}^n \int f_n e_i (K_i) dz_1 \ldots dz_n.$$

From the definitions it follows that

$$\alpha^*_n f_n = (f_1, \ldots, f_n)$$

where f_1, \ldots, f_n are the moments of f_n and the embeddings e_i are suppressed.

Thus, the process of taking moments is given by the dual of a Lie algebra homomorphism and is therefore a momentum map (this is a standard fact; cf. Guillemin and Sternberg [1980] or Marsden et. al. [1983]).

§6. The Hierarchy Equations are Lie-Poisson

Since α^*_n is a momentum map, it is a Poisson map; i.e. it preserves brackets. We have the following maps

$$\text{sym}^*_s (p^n) \xrightarrow{\mathcal{H}_n} \mathbb{R}$$

taking moments $\xrightarrow{\alpha^*_n}$

$$A_n = \sum_{i=1}^n \text{sym}^*_s (p^i) \xrightarrow{\mathcal{H}} \mathbb{R}$$

Now $\mathcal{H}_n(f_n) = \int p^n \frac{H}{z_1, \ldots, z_n} f_n(z_1, \ldots, z_n) dz_1 \ldots dz_n$

$$= \int p^n \sum_{i=1}^n H_i(z_i) f_n(z_1, \ldots, z_n) dz_1, \ldots, dz_n$$

$$+ \int p^n \sum_{i < j} H_2(z_i, z_j) f_n(z_1, \ldots, z_n) dz_1 \ldots dz_n$$
\[
\mathcal{H} = \int p H_1(z) f_1(z) dz + \frac{1}{2} \int p^2 H_2(z, z') f_2(z, z') dz dz'
\]

so that \(\mathcal{H}\) "collectivizes" in the sense of Guillemin and Sternberg [1980] to a map \(\mathcal{H}\) on \(A_1^* \oplus \ldots \oplus A_n^*\) that depends only on the first two arguments. From general properties of momentum maps and reduction, it follows that the equations of motion for \(\mathcal{H}\) are Lie-Poisson. But these equations are just the equations for \(f_n\) written out in terms of the moments; they are thus the hierarchy equations. We summarize:

Theorem. The BBGKY hierarchy equations for the moments \(f_1, \ldots, f_n\) of an \(n\) particle distribution function \(f_n(z_1, \ldots, z_n)\) are equivalent to the Hamiltonian equations

\[
\dot{F} = \{F, \mathcal{H}\}_{A_n^*} \quad \text{ (LP)}
\]

where \(F\) is a functional of \((f_1, \ldots, f_n)\) (regarded as independent variables), \(\mathcal{H}\) is given by

\[
\mathcal{H}(f_1, \ldots, f_n) = \int p H_1(z) f_1(z) dz + \frac{1}{2} \int p^2 H_2(z, z') f_2(z, z') dz dz'
\]

and \(\{ \quad \}_{A_n^*}\) is the Lie-Poisson bracket on the dual of the hierarchy Lie algebra with Lie bracket given by \((HLA)\).

Remark. The present formalism is appropriate for electrostatic interactions and has brackets compatible with those for the Poisson-Vlasov equation. Electromagnetic interactions require a Poisson structure compatible with that for the Maxwell-Vlasov equations, with fully incorporated electromagnetic field variables.

Appendix. Direct Verification of the Main Theorem for the First Two Hierarchy Equations

From (L) we have

\[
\frac{\partial}{\partial t} f_n(z_1, \ldots, z_n; t) + \{f_n(z_1, \ldots, z_n; t), \sum_i H_i(z_i) \}
\]

\[
+ \sum_{i<j} H_2(z_i, z_j) \}_{z_1, \ldots, z_n} = 0; \quad \text{(L)}
\]

where we have replaced the brace subscript \(n\) by the explicit variable dependence \(z_1, \ldots, z_n\). Thus
\[
\frac{\partial}{\partial t} f_1(z_1; t) = \frac{\partial}{\partial t} n \int f_n(z_1, z_2, \ldots, z_n; t) dz_2 \ldots dz_n \quad \text{(definition of } f_1) \\
= n \int \left\{ f_n(z_1, \ldots, z_n; t), \sum_i H_1(z_i) + \sum_{i < j} H_2(z_i, z_j) \right\} z_1, \ldots, z_n dz_2 \ldots dz_n
\]

Using the identity \(\int f \cdot g \varphi \, dz = 0 \), we obtain

\[
\frac{\partial}{\partial t} f_1(z_1; t) = -n \int \left\{ f_n(z_1, \ldots, z_n; t), \sum_i H_1(z_i) + \sum_{i < j} H_2(z_i, z_j) \right\} z_1 dz_2 \ldots dz_n
\]

\[
= -n \int \left\{ f_n(z_1, \ldots, z_n; t), H_1(z_1) \right\} z_1 dz_2 \ldots dz_n
\]

\[
- n \int \left\{ f_n(z_1, \ldots, z_n; t), \sum_{1 < j} H_2(z_1, z_j) \right\} z_1 dz_2 \ldots dz_n
\]

\[
= -(f_1(z_1; t), H_1(z_1)) z_1 - \int (f_2(z_1, z_2), H_2(z_1, z_2)) z_1 dz_2. \quad (H1)
\]

This is equivalent to the first hierarchy equation \((H1)\).

For \(f_2 \) we similarly compute (assuming \(n \geq 3 \))

\[
\frac{\partial}{\partial t} f_2(z_1, z_2; t) = n(n-1) \frac{\partial}{\partial t} \int f_n(z_1, \ldots, z_n; t) dz_3 \ldots dz_n
\]

\[
= -n(n-1) \int \left\{ f_n(z_1, \ldots, z_n; t), \sum_i H_1(z_i) \right\} z_1, \ldots, z_n dz_3 \ldots dz_n
\]

\[
+ \sum_{i < j} H_2(z_i, z_j) z_1, \ldots, z_n dz_3 \ldots dz_n
\]

\[
= -n(n-1) \int \left\{ f_n(z_1, \ldots, z_n; t), H_1(z_1) + H_2(z_2) \right\} z_1, z_2 dz_3 \ldots dz_n
\]

\[
- n(n-1) \int \left\{ f_n(z_1, \ldots, z_n; t), H_2(z_1, z_2) + \sum_{j>2} H_2(z_1, z_j) \right\} z_1, z_2 dz_3 \ldots dz_n
\]

\[
+ \sum_{k>2} H_2(z_2, z_k) z_1, z_2 dz_3 \ldots dz_n
\]

\[
= -(f_2(z_1, z_2; t), H_1(z_1) + H_2(z_2)) z_1, z_2
\]

\[
- \{f_2(z_1, z_2; t), H_2(z_1, z_2)\} z_1, z_2
\]
- \int \left(f_3(z_1, z_2, z_3; t), H_2(z_1, z_3) + H_2(z_2, z_3) \right) z_1 z_2 dz_3. \quad (H2)

Let us now verify that the Lie-Poisson structure also gives (H1) and (H2). Indeed, let $F(f_1, f_2)$ be a functional of f_1 and f_2. Then

$$
\dot{F} = D F(f_1, f_2) = \left(\frac{\partial F}{\partial f_1} \frac{\partial f_1}{\partial t}, \frac{\partial F}{\partial f_2} \frac{\partial f_2}{\partial t}, 0, 0, \ldots, 0, \frac{\partial F}{\partial f_1}, \frac{\partial F}{\partial f_2}, \ldots \right)
$$

Also,

$$
\{F, H\}_{A^*_n}(f_1, \ldots, f_n) = \left(\left(f_1, \ldots, f_1, \frac{\partial F}{\partial f_1}, \frac{\partial F}{\partial f_2}, 0, \ldots, 0 \right), \left[\frac{\partial H}{\partial f_1}, \frac{\partial H}{\partial f_2}, \cdots \right] \right).
$$

Now $\frac{\partial H}{\partial f_1} = H_1$ and $\frac{\partial H}{\partial f_2} = \frac{1}{2} H_2$, so

$$
\{F, H\}_{A^*_n}(f_1, \ldots, f_n) = \left(\left(f_1, \ldots, f_1, \frac{\partial F}{\partial f_1}, \frac{\partial F}{\partial f_2}, 0, 0, \ldots, 0 \right), \left[H_1, \frac{1}{2} H_2, 0, \ldots, 0 \right] \right).
$$

The bracket is obtained by embedding as functions of z_1, \ldots, z_n, taking the Poisson bracket there and then identifying the answer as an embedded function. The embedding introduces various combinatorial factors. For example, we find

$$
[(K_1(z_1), K_2(z_1, z_2), 0, 0, \ldots), (L_1(z_1), L_2(z_1, z_2), 0, \ldots)]
$$

$$
= \{K_1(z_1), L_1(z_1)\}_{z_1}, \frac{2}{n-2} \{K_2(z_1, z_2), L_2(z_1, z_2)\}_{z_1, z_2}
$$

$$
+ 4\{K_2(z_1, z_2), L_2(z_2, z_3)\}_{z_1, z_2}.
$$

Remark. The term $\{K_2(z_1, z_2), L_2(z_1, z_2)\}_{z_1, z_2}$ could have gone into the second slot to give another Lie algebra for which the theorem remains valid. Thus
\{F, J\}_{\Lambda}^{*}(f_1, \ldots, f_n) = \int f_1 \{\frac{\delta F}{\delta f_1}, H_1\}_{z_1} \, dz_1

+ 2 \int f_2 \{\frac{\delta F}{\delta f_1} (z_1), \frac{1}{2} H_2(z_1, z_2)\}_{z_1} \, dz_1 \, dz_2

+ \int f_3 \{\frac{\delta F}{\delta f_2} (z_1, z_2), H_1(z_1)\}_{z_1} \, dz_1 \, dz_2 \, dz_3

+ \frac{2}{n - 2} \int f_3 \{\frac{\delta F}{\delta f_2} (z_1, z_2), \frac{1}{2} H_2(z_1, z_2)\}_{z_1, z_2} \, dz_1 \, dz_2 \, dz_3

+ \int f_3 \{\frac{\delta F}{\delta f_2} (z_1, z_2), \frac{1}{2} H_2(z_1, z_3)\}_{z_1} \, dz_1 \, dz_2 \, dz_3

= -\int \{f_1(z_1), H_1(z_1)\} \frac{\delta F}{\delta f_1} \, dz_1

+ \int \{f_2(z_1, z_2), H_2(z_1, z_2)\}_{z_1, z_2} \frac{\delta F}{\delta f_1} \, dz_1 \, dz_2

+ 2 \int \{f_2(z_1, z_2), H_1(z_1)\} \frac{\delta F}{\delta f_2} (z_1, z_2) \, dz_1 \, dz_2

+ \int \{f_2(z_1, z_2), H_2(z_1, z_2)\} \frac{\delta F}{\delta f_2} \, dz_1 \, dz_2

+ 2 \int \{f_3(z_1, z_2, z_3), H_2(z_1, z_3)\}_{z_1} \frac{\delta F}{\delta f_2} \, dz_1 \, dz_2 \, dz_3

Comparing coefficients of \frac{\delta F}{\delta f_1} and \frac{\delta F}{\delta f_2} gives (H1) and (H2).

REFERENCES

6. J.E. Marsden, A. Weinstein, T. Ratiu, R. Schmid and R.G. Spencer, Hamiltonian systems with symmetry, coadjoint orbits and plasma physics,

