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Bifurcated states of the error-field-induced magnetic islands
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Abstract

We find that the formation of the magnetic islands due to error fields shows bifurcation when neoclassical effects are included. The bifurcation,
which follows from including bootstrap current terms in a description of island growth in the presence of error fields, provides a path to avoid
the island-width pole in the classical description. The theory offers possible theoretical explanations for the recent DIII-D and JT-60 experimental
observations concerning confinement deterioration with increasing error field.
Published by Elsevier B.V.

PACS: 52.35.Py; 52.55.Fa; 52.55.Hc

Neoclassical tearing modes (NTMs) [1–4], resistive wall modes (RWMs) [5,6], and error-field-induced magnetic islands [7,8]
are important issues for magnetic confinement of the fusion plasmas. Extensive experimental and theoretical studies have been
performed to investigate them. Notably, the recent DIII-D and JT-60 tokamak experiments show that, when rotation braking is
supplied by the counter neutral-beam injection rather than by error fields, the critical rotation frequency is reduced by one order of
magnitude (from about 0.05 to 0.003, normalized by Alfvén frequency) [9,10]. The importance of this development lies in the fact
that the new critical rotation frequency is at a level achievable in the ITER design. In addition, JT-60 experiments show that the
introduction of ferritic steel tiles (FSTs) for reducing the error field raises significantly the achievable beta limit [10]. One of the
theoretical explanations for this sharp change in the critical rotation frequency bifurcation is based on classical island bifurcation
theory in Refs. [8] and [7]. The friction between static magnetic islands and exterior rotating plasma causes bifurcated states: the
“unreconnected” state with the magnetic islands completely torn away by the rotation, and the “fully reconnected” state in which
the islands survive [9]. The other explanation attributes the bifurcation to the distinct RWM stability properties, corresponding to
the different rotation profiles generated by counter neutral-beam injection and error-field braking respectively [9,10].

In this Letter, we show that the formation of error-field-induced islands in the neoclassical description is intrinsically bifurcated,
even in the absence of rotation. It resolves the theoretical difficulty in the conventional description, which yields an universal pole
at Δ′∞ = 0 [for definition see Eq. (13)] for island width. Our theory offers a possible theoretical explanation for the confinement
deterioration with error field braking in the recent DIII-D and JT-60 experiments and also may explain why JT-60 without FSTs
faces a hard beta limit, not apparent in the presence of FSTs.

For simplicity a cylinder equilibrium model is employed. We use the coordinate system (r, θ, z), where r denotes the minor
radius, θ represents the azimuthal angle, and z is the longitudinal coordinate. Here, the longitudinal coordinate z is related to the
tokamak axisymmetric toroidal angle φ by z = Rφ, where R is the major radius. The equilibrium magnetic field is represented as
B = Bz + Bθ (r), where the longitudinal magnetic field Bz is constant and the poloidal magnetic field Bθ is a function of r . (We use
boldface to represent a vector.) The safety factor is defined as q = rBz/RBθ .

* Corresponding author.
E-mail address: lzheng@mail.utexas.edu (L.-J. Zheng).
0375-9601/$ – see front matter Published by Elsevier B.V.
doi:10.1016/j.physleta.2007.11.017

http://www.elsevier.com/locate/pla
mailto:lzheng@mail.utexas.edu
http://dx.doi.org/10.1016/j.physleta.2007.11.017


L.-J. Zheng et al. / Physics Letters A 372 (2008) 2056–2060 2057
We assume that the mode singular layer, wall, and error field current layer are thin. Then the model configuration can be described
as follows. The plasma is confined in the region r � a, with a being the (minor) plasma radius. This plasma column is surrounded
by an inner vacuum region, a < r < b−, which extends to the wall. The resistive wall occupies the annular region b− � r < b;
immediately outside the wall, in the region b � r � b+, is the error field current layer. Finally, outside the error field current layer
is the outer vacuum region, r > b+, which extends to infinity.

Because angular harmonics are uncoupled in cylindrical theory, it suffices to consider a single Fourier component of the per-
turbation: ψ ∝ exp{imθ − in(φ − φ0)}. Here, ψ is related to the radial perturbed magnetic field δBr by ψ = (ir/m)δBr and
φ0 specifies the “O” point of the reference magnetic island. It is assumed that there is only a single resonance surface in the plasma
region; the radius of this resonance is denoted by rs , where q(rs) = m/n. It is also assumed that the error-field perturbation has the
same helicity as the mode. (More generally, the error field could introduce coupling between modes of different helicity; we ignore
the coupled case for simplicity.)

We treat both vacuum regions as regions of vanishing plasma current and pressure. Then all regions can be described summarily
by a second-order differential equation of the form [11,12]:

(1)ψ ′′ + g1ψ
′ + g2ψ = 0,

where g1 and g2 depend in general on the plasma current and pressure, and the prime denotes a derivative with respect to r . Eq. (1)
has two independent solutions; its general solution can be expressed as the linear summation of the two independent solutions.

Consider first the outer vacuum region, where r > b+. Here the boundary condition requiring ψ to vanish at infinity eliminates
one independent solution. The remaining solution can be found to be ψ4 = ψ4(b

+)bm/rm, where ψ4(b
+) is a constant that will be

specified later. The general solution of Eq. (1) in the outer vacuum region is therefore

(2)ψ(r) = c4ψ4(r),

where c4 is a constant.
The region between the mode singular layer rs and the resistive wall includes a plasma region rs < r � a as well as the inner

vacuum region a < r < b−. Assuming that there is no surface current flowing on the plasma-vacuum interface, we conclude that
both ψ and ψ ′ are continuous across the plasma-vacuum interface r = a.

The two independent solutions in this combined region are denoted by ψ2(r) and ψ3(r). Without losing generality, we choose ψ2
to be the solution which is continuous to ψ4 in the outer vacuum region. Thus ψ2(r) satisfies the boundary condition

(3)ψ2
(
b−) = ψ4

(
b+)

, ψ ′
2

(
b−) = ψ ′

4

(
b+)

.

Since it is not affected by the wall or the error field, ψ2 can be physically interpreted as the “no-wall” solution. The other independent
solution ψ3(r) can be constructed by imposing the following boundary conditions:

(4)ψ3
(
b−) = 0, ψ ′

3

(
b−) = const.

Since the radial field perturbation corresponding to ψ3 vanishes at the wall radius, δBr(b
−) = 0, the solution ψ3(r) can be inter-

preted as the “perfectly conducting-wall” solution.
We determine the two constants ψ ′

3(b
−) and ψ4(b

+) (i.e., ψ2(b
−) according to Eq. (3)), by requiring

(5)ψ2
(
r+
s

) = ψ3
(
r+
s

) = Brs/m.

Here the factor B is introduced as a convenient normalization; the actual size of the field perturbation depends upon the constants ci ,
which remain to be determined. The independent solutions ψ2(r) and ψ3(r) can be obtained by solving Eq. (1) numerically with
boundary conditions in Eqs. (3), (4), and (5) imposed. The general solution of Eq. (1) in this combined region is therefore

(6)ψ(r) = c2ψ2(r) + c3ψ3(r),

where c2 and c3 are constants. In the inner plasma region, r < rs , requiring ψ to be finite at the magnetic axis excludes one
independent solution. The other independent solution ψ1(r) satisfies ψ → rm. It can be constructed by solving Eq. (1) numerically
with the boundary condition rψ ′/ψ = m at a numerical infinitesimal r . Without losing generality, one can further impose that

(7)ψ1
(
r−
s

) = Brs/m.

The general solution of Eq. (1) in the inner plasma region is therefore

(8)ψ(r) = c1ψ1(r),

where c1 is a constant.
To complete our solution we must impose the matching conditions across the three thin layers that in general carry electric

current: the wall, the error-field current layer, and the mode-singular layer.
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Consider the matching conditions across the mode-singular layer we assume that ψ is continuous across the singular layer—the
usual constant ψ assumption. This implies

(9)c1 = c2 + c3,

where Eqs. (5)–(8) have been used. The other matching condition at rs can be obtained from the usual NTM equation with the
bootstrap [1,2], polarization [13], and transport induced currents included [14]:

(10)
τR

r2
s

dw

dt
= Δ′ + ε1/2 Lq

Lp

βp

(
w

w2 + w2
d

− w2
pol

w3

)
,

where τR = μ0r
2
s σs denotes the resistive layer time, μ0 is the vacuum permeability, σs is the conductivity of the singular layer,

ε is the inversed aspect ratio, Lp and Lq represent the equilibrium scale lengths of pressure and safety factor, respectively, βp is
the poloidal plasma beta, wpol = (Lq/Lp)1/2ε1/2ρθi

, wd = (2qLq/kθ ε)
1/2(χ⊥/χ‖), ρθi

is the poloidal ion gyroradius, kθ is the
poloidal wave number, and χ⊥ and χ‖ are respectively the perpendicular and parallel thermal conductivities. The magnetic island
width w is related to the normal perturbed magnetic field (proportional to c1) by [15]

(11)w = 4
√

(LqrsB/mBθ)c1,

and

(12)Δ′ = c2ψ
′
2(r

+
s ) + c3ψ

′
3(r

+
s ) − c1ψ

′
1(r

−
s )

c1
.

It is interesting to consider two limiting cases for Δ′. In the no-wall case, one has c3 = 0 and therefore Eqs. (9) and (12) lead
to Δ′ → Δ′∞ ≡ ψ ′

2(r
+
s ) − ψ ′

1(r
−
s ). In the perfectly conducting-wall case, one has c2 = 0 and therefore Eqs. (9) and (12) lead to

Δ′ → Δ′
b ≡ ψ ′

3(r
+
s ) − ψ ′

1(r
−
s ). Using the definitions of no-wall Δ′∞ and conducting-wall Δ′

b and Eq. (9), the expression for Δ′ in
Eq. (12) can be reduced to

(13)Δ′ = Δ′
b + c2

c1

(
Δ′∞ − Δ′

b

)
.

Next we consider matching across the wall and the error-field current layers. The thin wall and thin current layer assumptions
imply that ψ is continuous, yielding c2ψ2(b

−)+ c3ψ3(b
−) = c4ψ4(b

+). Taking into account Eqs. (3) and (4), one has c2 = c4. The
other condition can be derived from the so-called resistive wall equation [5]:

(14)
τw

b

∂ψ

∂t
= ψ ′(b) − ψ ′(b−)

,

where τw = μ0σw db is the resistive wall time, with d representing wall thickness and σw being the wall conductivity. According
to Ampere’s law, the error field current leads to a jump of ψ ′ as well

(15)Je

ma2Bθ

16LqrsB
ψ ′

3

(
b−) = ψ ′(b+) − ψ ′(b),

where Je is introduced to specify the error field strength at the given helicity. Because the relative phase of the error field and the
field perturbation ψ is not fixed, the quantity Je can have either sign. Inserting Eqs. (2)–(6) into Eqs. (14) and (15), one obtains the
another matching condition across the wall and error field current layer

(16)
τw

b

ψ2(b
−)

ψ ′
3(b

−)

∂c2

∂t
= c2 − c1 − ma2Bθ

16LqrsB
Je,

where Eq. (9) has been used.
In the static case one has of course d/dt = 0. Using Eqs. (11) and (13), Eqs. (10) and (16) in this case are reduced to

(17)Δ′∞w2 + ε1/2 Lq

Lp

βpw + (
Δ′∞ − Δ′

b

)
a2Je = 0.

Here, we have neglected wpol and wd effects, because, for typical tokamak parameters, wpol ∼ 2 cm and wd ∼ 1 cm [4]. Eq. (17)
has two solutions

(18)w± = −ε1/2(Lq/Lp)βp ± [ε(Lq/Lp)2β2
p − 4a2Δ′∞(Δ′∞ − Δ′

b)Je]1/2

2Δ′∞
.

Here it is clear that bifurcation of the island width w results from the bootstrap current term; without bootstrap current, there is only
single, positive definite solution. Furthermore, without bootstrap current, the island width w has a pole at Δ′ = 0. This pole would
∞
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Fig. 1. Island width ŵ versus −Δ̂′∞ , with Ĵe as parameter. The solid curves correspond to |Ĵe| = 0.2 and the dashed curves to |Ĵe| = 0.6. The critical point −Δ̂′∞,c ,

which separates the (ŵ+ , Ĵe < 0) solution and the (ŵ− , Ĵe < 0) solution, is marked by “×” respectively for solid and dashed curves.

imply a current or beta limit for tokamak discharges. However, as will be more apparent in the following analyses, the bootstrap
current provides a path to avoid this pole, yielding island bifurcation rather than singularity.

The solutions ŵ(≡ w/a) in (18) are plotted in Fig. 1 versus Δ̂′∞(≡ aΔ′∞/[ε1/2(Lq/Lp)βp]), using Ĵe(≡ 4Jea(Δ′∞ −
Δ′

b)/[ε1/2(Lq/Lp)βp]) as parameter. The Je sign freedom has been tapped to get all acceptable solutions. Note also that Δ′∞ −Δ′
b

specifies the difference of the vacuum energies with and without wall; this difference is positive in general. For 2/1 islands with
ε ∼ 1/5, Δ̂′∞ − Δ̂′

b ∼ 0.5/ŵ, Lq ∼ Lp , and ŵ ≈ 0.08, one can estimate that the lower solid curve (ŵ+, Ĵe = −0.2) corresponds
roughly to a field perturbation measured by δBr/B ∼ 10−4.

Fig. 1 displays several characteristic features of the error field induced islands. First, as one can expect, a large error field gives
rise to a large island: the dashed curves (|Ĵe| = 0.6) lie always above the solid ones (|Ĵe| = 0.2). Second, for a given error field
strength |Ĵe|, the island width is bifurcated, possessing both a large solution w− and a small solution w+. Third, there is a critical
value of −Δ̂′∞: −Δ̂′∞,c ≡ −1/Ĵe. Beyond the critical value, i.e., −Δ̂′∞ > −Δ̂′∞,c , only the large island solution w− exists. In

Fig. 1, the critical value is denoted by “×” for two different values of Ĵe. Note also that, as the error field |Ĵe| increases (making
−Δ̂′∞,c smaller), the island-width jump from ŵ+ to ŵ− also increases, especially in the region where −Δ̂′∞ approaches its critical
value.

Next we consider the DIII-D and JT-60 (with FSTs) tokamaks. The significant mode in DIII-D and JT-60 experiments is the
2/1 mode [9,10]. As computed in Ref. [12], for the 2/1 mode and typical tokamak parameters, Δ′ is positive for low beta and
becomes negative as beta increases. Therefore, the horizontal axis in Fig. 1 gives the direction of increasing beta for 2/1 mode. In
the procedure of rotation braking by the counter neutral-beam injection, plasma rotation is braked without raising the strength of
the error field. In this case error field is small. One can envisage the system evolving along the low error-field curve (lower solid
line, ŵ+) in Fig. 1, as beta (−Δ̂′∞) increases due to the heating. Since the lower solid curve features a small island width, relatively
small rotation suffices to suppress island growth [7] and avoid confinement deterioration. Even when the system is heated over the
critical point, −Δ̂′∞ > −Δ̂′∞,c , the jump from the lower solid curve (ŵ+) to the upper solid curve (ŵ−, Ĵe > 0) is still tolerable for
small error field.

On the other hand, when rotation braking is accomplished by artificially increasing the error field, beta and the error field
simultaneously increase. Let us also explain the confinement deterioration with large error field using Fig. 1. Initially, the plasma
evolves along the low error field curve (lower solid line, ŵ+), as beta (−Δ̂′∞) increases due to the heating. When the error field
braking is applied, the system has to jump from that curve to high error field curves (dashed, ŵ−). If the error field is applied
earlier—that is, at lower values of −Δ̂′∞—than −Δ̂′∞,c of high error field (i.e., of the dashed curve), the jump is from the lower

solid curve (ŵ+, small |Ĵe|) to lower dashed curve (ŵ+, large |Ĵe|). Continuing heating along the lower dashed curve afterward,
system would face a hard beta limit at −Δ̂′∞,c of high error field (i.e., of the dashed curve), since the w jump immediately ahead

of −Δ̂′∞,c is very big for high error field. This situation resembles to the JT-60 experiments without FSTs to be discussed later. If

the error field is applied later than −Δ̂′ of high error field, the system would jump from the lower solid curve to the upper dashed
∞,c
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curve (w−, Ĵe > 0). Note that the high error field solutions (represented by the dashed curves) correspond to much larger island
widths than the corresponding low error field solutions (represented by the solid curves).

We now turn to another interesting phenomenon: the JT-60 experiments without FSTs have been found to be difficult to drive
beyond the magnetohydrodynamic limit. The present explanation attributes this limit to the insufficient neutral beam power transfer
due to the ripple loss [10]. Our theory indicates that there is another fundamental reason for this hard limit. From Fig. 1, one can
see that, when starting with high error field (the dashed curve labeled ŵ+), the system beta value is limited by −Δ̂′∞,c . The fact
that the island width jump for high error field is quite different from that for low error field may explain why the beta limit in JT-60
experiments without FSTs is much lower than that with FSTs.

In conclusion, we have shown that the formation of the error-field-induced magnetic islands is bifurcated due to the neoclassical
bootstrap current. Recall that the conventional description, without neoclassical effects, yields a single solution with a pole at
Δ′∞ = 0. Such an universal pole, which would impose a hard limit on beta or on plasma current regardless the strength of the
error field, is not supported by experimental observation. Instead, our theory indicates that a beta or current limit in the vicinity of
Δ′∞ = 0 occurs only for the large error field case. This is consistent with the finding on JT-60 that there is a hard beta limit without
FSTs, while not with FSTs. The present bifurcation theory is also consistent with the DIII-D or JT-60 experimental observations
that the error field braking results in a poor confinement as compared with the counter neutral-beam breaking. The rotation has not
been included in the present analysis. An unified theory that includes both rotation and neoclassical effects is proposed for future
studies.

References

[1] R. Carrera, R.D. Hazeltine, M. Koschenreuther, Phys. Fluids 29 (1986) 899.
[2] J.D. Callen, et al., in: Plasma Physics and Controlled Nuclear Fusion Research, vol. 2, International Atomic Energy Agency, Vienna, 1987, p. 157.
[3] Z. Chang, et al., Phys. Rev. Lett. 74 (1995) 4663.
[4] R.J. La Haye, Phys. Plasmas 13 (2006) 055501.
[5] J.P. Freidberg, Ideal Magnetohydrodynamics, Clarendon, Oxford, 1987.
[6] A.M. Garofalo, et al., Phys. Rev. Lett. 82 (1999) 3811.
[7] T.H. Jensen, et al., Phys. Fluids B 3 (1991) 1650.
[8] R. Fitzpatrick, Phys. Plasmas 5 (1998) 3325.
[9] H. Reimerdes, et al., Phys. Rev. Lett. 98 (2007) 055001.

[10] M. Takechi, et al., Phys. Rev. Lett. 98 (2007) 055002.
[11] H.P. Furth, P.H. Rutherford, H. Selberg, Phys. Fluids 16 (1973) 1054.
[12] Y. Nishimura, J.D. Callen, C.C. Hegna, Phys. Plasmas 5 (1998) 4292.
[13] F.L. Waelbroeck, et al., Phys. Rev. Lett. 87 (2001) 215003.
[14] R. Fitzpatrick, Phys. Plasmas 2 (1995) 825.
[15] P.H. Rutherford, Phys. Fluids 16 (1973) 1903.


	Bifurcated states of the error-field-induced magnetic islands
	References


