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Plasma propulsion concepts that employ a guiding magnetic field raise the question of how the
magnetically controlled plasma can detach from the spacecraft. This paper presents a detachment
scenario relevant to high-power thrusters in which the plasma can stretch the magnetic field lines to
infinity, similar to the solar wind. In previous work, the corresponding ideal magnetohydrodynamics
equations have been solved analytically for a plasma flow in a slowly diverging nozzle. That
solution indicates that efficient detachment is feasible if the nozzle is sufficiently long. In order to
extend the previous model beyond the idealizations of analytical theory, a Lagrangian code is
developed in this work to simulate steady-state kinetic plasma flows and to evaluate nozzle
efficiency. The code is benchmarked against the analytical results and then used to examine
situations that are not analytically tractable, including plasma behavior in the recent Detachment
Demonstration Experiment at the National Aeronautics and Space Administration. © 2008
American Institute of Physics. #DOI: 10.1063/1.2903844$

I. INTRODUCTION

An important feature of some high-power plasma thrust-
ers is the presence of a strong guiding magnetic field. The
magnetic field directs the plasma flow axially and prevents it
from expanding radially towards the thruster walls. The use
of a strong magnetic field brings up the issue of plasma
detachment.1,2 The plasma flow may not be able to break free
from the thruster to produce thrust, because the field lines
generated by the thruster magnets are closed. As shown in
Refs. 3 and 4, this issue can be resolved in the framework of
ideal magnetohydrodynamics !MHD" by accelerating the
flow to super-Alfvénic velocities within a magnetic nozzle.
In a super-Alfvénic flow, the ion kinetic energy density ex-
ceeds the magnetic field energy density. As a result, the
super-Alfvénic flow can change the configuration of the ap-
plied magnetic field.

In the magnetohydrodynamic detachment scenario, the
outgoing super-Alfvénic flow detaches from the thruster to-
gether with the magnetic field. The magnetic field lines re-
main frozen into the plasma, as the flow stretches them to
infinity. The magnetic field in the plume is almost entirely
due to the plasma currents. It must be pointed out that this
scenario mimics what occurs in the solar wind as it moves
away from the Sun.5

In an initial attempt to describe the detachment quanti-
tatively, an analytical solution of the ideal MHD equations
was constructed in Ref. 4 for a plasma flow in a slowly
diverging nozzle. The solution exhibits a well-behaved tran-
sition from sub- to super-Alfvénic flow inside the nozzle.
Outside of the nozzle, the super-Alfvénic plume consists of
two distinct parts: an unperturbed main flow with straight
magnetic field lines and a rarefaction wave at the edge of the
main flow. It is also shown in Ref. 4 that efficient detachment
is feasible if the nozzle is sufficiently long.

The purpose of this paper is to generalize the detachment
model of Ref. 4 to the case of kinetic ions and to develop a
numerical procedure that could serve as a design tool to
evaluate and optimize nozzle efficiency. This procedure is
intended to be applicable to such plasma thrusters as variable
specific impulse magnetoplasma rocket !VASIMR".6 In par-
ticular, it enables modeling of plasma detachment together
with adiabatic transformation of ion gyromotion into directed
energy of the plasma jet.

In our generalized model, the incoming plasma ions are
assumed to have an anisotropic velocity distribution func-
tion, whereas plasma electrons are cold. These assumptions
reflect essential features of the VASIMR concept. In the case
of VASIMR, the incoming plasma flow is produced by an ion
cyclotron resonance heating !ICRH" module that deposits rf
power directly into the ion gyromotion. The ion cyclotron
heating makes the ion velocity distribution anisotropic, with
the ion gyroenergy significantly exceeding the energy of the
axial motion. The plasma flow entering the ICRH module
typically has a significant spread in the ion axial velocities.
This spread may translate into a spread in the ion gyroener-
gies depending on specific conditions of single-pass ICRH
scheme.7,8 The cold ion approximation used in Ref. 4 is only
applicable to the case of a sufficiently small ion velocity
spread. Other regimes require a fully kinetic treatment of the
ions. To make the extended model flexible, we allow for an
arbitrary ion distribution function in the incoming flow.

This work deals with a steady-state flow that establishes
in the nozzle over time if the incoming ion distribution is
kept constant. In a steady-state flow, the energy and the mag-
netic moment of a single ion are conserved. The incoming
ion distribution written in terms of these variables remains
constant along the magnetic field lines. Therefore, the prob-
lem reduces to finding the equilibrium magnetic field created
by external coils together with a self-consistent plasma cur-
rent that is a functional of the magnetic field itself.

We limit our analysis to paraxial !slowly diverging"
a"
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flows, since this feature is required to achieve reasonable
nozzle efficiencies.4 In Sec. II, we formulate a corresponding
set of simplified basic equations, which we later solve nu-
merically. The paraxial approximation enables us to precal-
culate the external magnetic field at the plasma-vacuum in-
terface and to use an iterative procedure, if necessary, for a
more accurate calculation of the vacuum field. Being de-
signed to simulate steady-state flows directly, our numerical
procedure appears to be more efficient than calculations
based on time-dependent algorithms,11 because the latter in-
volve an additional dimension !time" and have to deal with
transient phenomena.

Our simulations employ a Lagrangian radial grid associ-
ated with magnetic flux surfaces in the plasma. An important
advantage of this grid is that it makes it particularly easy to
trace the plasma-vacuum interface and to implement the cor-
responding boundary condition.12 This grid is also conve-
nient because the plasma radius increases considerably
downstream from the nozzle exit.

We benchmark our code against the analytical results of
Ref. 4 for the rarefaction wave at the edge of the plasma
plume. We then present more examples of plasma flows, in-
cluding an initial attempt to model the plasma plume in a
recent detachment demonstration experiment at the National
Aeronautics and Space Administration’s Marshall Space
Flight Center.9,10

It is appropriate to point out that plasma flow in mag-
netic nozzles has received considerable attention in the past
modeling efforts. This includes significant work associated
with theta pinches and magnetoplasmadynamic !MPD"
thrusters.12,13 A commonly accepted approach to such mod-
eling is based on the MHD equations with either collision
dominated or phenomenological transport coefficients. This
approach implies a short mean free path for the plasma par-
ticles, which is typically not the case in the detachment prob-
lem because the plasma density decreases rapidly in the di-
verging nozzle. The detachment problem then requires a
systematic kinetic treatment, especially when the ions in the
incoming flow are strongly anisotropic. The kinetic descrip-
tion of ions is one of the distinctive aspects of the present
paper. In general, electrons would also need to be treated
kinetically to account for the electron pressure effects. This
raises the question of calculating the electron distribution
function together with a self-consistent ambipolar electric
field, a problem that will be addressed independently in a
separate paper. The electron physics is an intrinsic part of the
incoming flow formation. In particular, it determines the
transition from subsonic to supersonic flow due to ambipolar
acceleration. However, when the flow is strongly supersonic,
the electron pressure is naturally less important than the dy-
namical pressure of ions, and the same argument applies to
the ambipolar electric field. The role of the electric field is
also insignificant when the ions are energized via ICRH
rather than via electron heating and subsequent ambipolar
acceleration. It is therefore relevant to neglect the electron
pressure and the electric field effects in solving the detach-
ment problem for a given incoming supersonic flow, which
simplifies the problem a great deal while capturing the im-
portant role of sub- to super-Alfvénic transition.

II. BASIC EQUATIONS

We start with Vlasov–Maxwell equations for an axisym-
metric steady-state flow of collisionless plasma. We consider
a preformed supersonic plasma flow that consists of ener-
getic ions and cold electrons and assume the absence of
plasma rotation; i.e., the absence of E!B drift. Under the
above assumptions the electric field in plasma can be ne-
glected !the absence of the parallel electric field results from
high electron conductivity along the magnetic field lines,
whereas the absence of the transverse electric field reflects
the absence of plasma rotation". The resulting steady-state
Vlasov equation for the ion distribution function f i has the
form

mivi · #f i +
qi

c
#vi ! B$ · #vf i = 0. !1"

The Vlasov equation for cold electrons with zero inertia is

qe

c
#ve ! B$ · #vfe = 0. !2"

The Maxwell equations require that the magnetic field B is
divergence free,

# · B = 0, !3"

and that the field is related to the plasma current by Ampère’s
law:

j =
c

4"
# ! B . !4"

In what follows, we assume that the magnetic field has only
two components !axial and radial" in our axisymmetric prob-
lem. The corresponding plasma current has only one !azi-
muthal" component.

We find from Eq. !2" that the cold electrons have no
macroscopic velocity !carry no current" across the magnetic
field. The cross-field current is then carried only by ions, so
that

j! = qi% f iv!d3v . !5"

Equations !1"–!5" apparently conserve momentum, as ex-
pressed by the following momentum balance relation:

$

$x#
&$%# +

B2

8"
&%# −

B%B#

4"
' = 0, !6"

where

$%# ( mi% v%v#f id
3v !7"

is the ion momentum flux tensor that includes both the flux
associated with the directed flow and the flux associated with
the ion velocity spread !ion pressure". Assuming that the ions
are magnetized, so that their Larmor radii remain much
smaller than the plasma radius, we evaluate the ion momen-
tum flux tensor by using a gyroaveraged distribution function
defined as
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)f i* (
1

2"
%

0

2"

f id' , !8"

where ' is the gyroangle in the velocity space. In this limit,
we have

$%# = $!&%# + !$+ − $!"b%b#, !9"

where b(B / ,B, is the unit vector in the direction of the
local magnetic field and

$! (
mi

2
% v!

2 )f i*d3v , !10"

$+ ( mi% v+
2)f i*d3v . !11"

The structure of the momentum flux tensor suggests splitting
Eq. !6" into two components #parallel and perpendicular to
the magnetic field line in the !r ;z" plane of the cylindrical
coordinate system$. The third !azimuthal" component of the
equation vanishes automatically due to the axial symmetry of
the problem. We thus obtain

!b · #"$+ + !$+ − $!"!# · b" = 0, !12"

#!&$! +
B2

8"
' + &$+ − $! −

B2

4"
'!b · #"b = 0. !13"

The function )f i* in the expressions !10" and !11" for $!

and $+ satisfies a gyroaveraged Vlasov equation known from
the lowest order guiding center theory14

miv+b%
$)f i*
$x%

= 0, !14"

which simply means that, for any fixed values of the ion
energy ((mi!v!

2 +v+
2" /2 and magnetic moment )

(miv!
2 /2B, this function is constant along the magnetic field

lines. Therefore, in the axisymmetric magnetic field, )f i* is
an arbitrary function of (, ) and a, where a is the flux
surface label. This function specifies properties of the incom-
ing plasma flow and it serves as an input function in our
problem. This lowest order solution is apparently indepen-
dent of gyrophase. As a result, it does not contribute to the
ion current defined by Eq. !5". The ion current is determined
by the small gyrophase-dependent corrections to the distri-
bution function, associated with the curvature drift and the
diamagnetic drift. These small current-carrying corrections
can be safely neglected in expressions !10" and !11" for the
momentum flux tensor.

Once the function )f i* is specified, the problem reduces
to finding the profiles of Br and Bz from Eqs. !3", !12", and
!13". It may seem that this set of equations is overdetermined
because we have three scalar equations for the two unknown
functions Br and Bz. However, only two of these three equa-
tions are, in fact, independent because Eq. !12" is satisfied
automatically due to Eq. !14". In order to demonstrate that,
we change integration variables in expressions !10" and !11"
from v! and v+ to ( and ); i.e.,

dv!
2 dv+ =

2B

mi
2&2!( − )B"

mi
'−1/2

d)d( . !15"

Substituting the expressions !10" and !11" for $! and $+ into
Eq. !12", we obtain

!b · #"$+ + !$+ − $!"!# · b"

= mi% !b · #")f i*!a,),("

!2"
2B

mi
2&2!( − )B"

mi
'1/2

d)d( . !16"

This expression apparently vanishes because the gyroaver-
aged distribution function is constant along the magnetic
field lines as required by Eq. !14". Given that Eq. !12" re-
solves the compatibility issue for Eqs. !3", !12", and !13",
one can drop Eq. !12", provided that $! and $+ are calcu-
lated from Eqs. !10" and !11" with a function )f i* that satis-
fies Eq. !14". However, it appears to be more attractive from
the numerical standpoint to calculate just one of the quanti-
ties $! or $+ and then solve the set of all three equations to
determine Br, Bz, and the remaining component of the pres-
sure tensor. An obvious benefit of the second approach is that
only one of the two velocity space integrations needs to be
performed by the code at every spatial location.

Our numerical procedure for solving Eqs. !3", !12", and
!13" is tailored to the case of most interest in terms of prac-
tical applications. It is designed to model a nozzle that pro-
duces a well-directed plasma flow. The latter implies that the
radial component of the magnetic field in the plasma is much
smaller than the axial component of the field. It also implies
that the plasma flow is highly super-Alfvénic at the nozzle
exit. Violation of any of these two conditions will clearly
degrade the nozzle efficiency. Our goal then is to ensure that
the model is sufficiently accurate in the regimes where both
conditions are satisfied. This will allow us to quantify the
nozzle efficiency in the most relevant parameter range. Our
model will be less accurate at low efficiencies, but these
regimes are of little interest anyway. Yet, even without being
quantitative with regard to inefficient nozzles, the model can
still serve as an indicator of what parameter range to avoid.

Guided by these thoughts, we simplify Eq. !13" by ne-
glecting the term !$!+B2 /4""!b ·#"b compared to
#!!$!+B2 /8"", as we assume that the radial spatial scale is
much shorter than the axial scale in a well-directed flow. We
still keep the term $+!b ·#"b in this equation because the
parallel component of the momentum flux tensor exceeds
B2 /8" in a highly super-Alfvénic flow. Moreover, the term
$+!b ·#"b eventually becomes the dominant one in Eq. !13"
as both the magnetic pressure and $! decrease downstream
faster than $+. The fast decrease of $! results from the
conservation of magnetic moment for magnetized ions. An
additional relevant approximation is to replace B2 by Bz

2 in
all expressions, because the radial component of the mag-
netic field gives only a second-order correction to B2 in our
problem of interest. As a result of the described approxima-
tions, we finally obtain the following simplified set of basic
equations in cylindrical coordinates:
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& $

$z
+

Br

Bz

$

$r
'Bz = − Bz

1
r

$

$r
&r

Br

Bz
' , !17"

& $

$z
+

Br

Bz

$

$r
'$+ = − !$+ − $!"

1
r

$

$r
&r

Br

Bz
' , !18"

& $

$z
+

Br

Bz

$

$r
'Br

Bz
= −

1
$+

$

$r
&$! +

Bz
2

8"
' , !19"

$! =
mi

2
% )f i*!a,),("

2)Bz

mi

!2"
2Bz

mi
2 &2!( − )Bz"

mi
'−1/2

d)d( . !20"

Here, )f i* is a given input function of its arguments and
a!r ;z" is the magnetic flux surface label that is constant
along the field lines,

& $

$z
+

Br

Bz

$

$r
'a = 0, !21"

and which will serve as the Lagrangian radial coordinate in
our code.

Equations !17"–!19" reduce to paraxial ideal MHD equa-
tions with anisotropic pressure if all ions on a given mag-
netic flux surface have the same energy (* and the same
magnetic moment )*, such that

)f i* = F&!) − )*"&!( − (*" , !22"

where the quantities F, (*, and )* are functions of the flux
surface label a. In this case, the flow velocity is just v+. We
use the approximation B-Bz to find from the ion energy
conservation such that

v+ =. 2
mi

!(* − )*Bz" . !23"

Integration of the distribution function !22" over the entire
velocity space and subsequent replacement of B by Bz yield
the ion density,

ni = F
4"Bz

mi
2v+

. !24"

We next use Eqs. !10" and !11" together with the approxima-
tion B-Bz to find that

$! = ni)*Bz, !25"

$+ = nimiv+
2. !26"

There is no need to use Eq. !18" any longer, because Eq. !26"
gives an explicit expression for $+. Taking into account ex-
pressions !25" and !26", we transform Eq. !19" into

& $

$z
+

Br

Bz

$

$r
'Br

Bz
= −

1

nimiv+
2

$

$r
&ni)*Bz +

Bz
2

8"
' . !27"

Equations !17" and !27", together with the expressions for ni
and v+ #Eqs. !24" and !23"$, determine the self-consistent
configuration of a paraxial magnetic field in the plasma flow.

In the absence of gyromotion, this set of equations is equiva-
lent to the paraxial MHD description presented in Ref. 4.

III. MAGNETIC FIELD OUTSIDE THE PLASMA

As already pointed out, our goal is to simulate a well
directed plasma flow, which implies that the field lines in the
plasma are paraxial !both inside the nozzle and in the outgo-
ing plasma plume". This regime requires the guiding mag-
netic field generated by the external coils to be paraxial in-
side the nozzle. However, the field lines are not necessarily
paraxial in the vacuum region outside the plasma plume.
This vacuum magnetic field is essential to our problem be-
cause it determines the boundary condition at the plasma-
vacuum interface.

In general, the location of the plasma boundary needs to
be found self-consistently, which couples the equations for
magnetic field in the plasma to the equations for the vacuum
field. However, the specific features of our problem suggest
an efficient iterative procedure to calculate the vacuum mag-
netic field.

The initial step is to calculate the vacuum magnetic field
for a given configuration of the external coils under the as-
sumption that the plasma is a perfectly conducting cylinder
with radius rp. The radial component of the vacuum mag-
netic field then vanishes at r=rp. This approach is justified
by the fact that the flow diverges slowly compared to the
vacuum magnetic field that comes out of the nozzle. We
describe the axisymmetric vacuum magnetic field B in terms
of a vector potential A=Ae*, with

Br = −
$A

$z
, !28"

Bz =
1
r

$

$r
!rA" . !29"

The corresponding equation for A is given by

#2A −
A

r2 = −
4"

c
jc, !30"

where jc is the azimuthal current density in the coils.
To solve Eq. !30", we choose a computational box with

zmin+z+zmax and rp+r+rmax and impose the following
boundary conditions:

A!r,zmin" = A!r,zmax" = A!rmax,z" = 0, !31"

A!rp,z" = 0. !32"

The values of rmax, zmax, and ,zmin, must be sufficiently large
to minimize the effect of the computational box. If the radius
of the magnetic coils is comparable to rp, then it is necessary
to have rmax,rp. The distances from the nozzle entrance and
the nozzle exit to the end walls of the computational box
must be also much greater than rp.

Solving Eq. !30" numerically with the boundary condi-
tions !31" and !32", we find A!rp ,z". We then use this func-
tion and Eq. !29" to find Bz!rp ,z", which is the lowest order
expression for the magnetic field at the plasma-vacuum in-
terface. The next step now is to solve the plasma equations
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using this magnetic field as a boundary condition. This solu-
tion gives us the magnetic field in the plasma together with a
corrected location of the plasma boundary rp!z".

The initial step presents a good approximation for the
vacuum magnetic field outside a slowly diverging flow. The
knowledge of the plasma boundary allows us to continue
iterations. The only modification to the previous procedure is
in the boundary location. We have to replace Eq. !32" with
A#rp!z" ,z$=0. We also need to continue the solution up-
stream from the nozzle entrance to z=zmin, because the
plasma equations are solved only downstream from the
nozzle entrance !z-0". The following condition can be used
to achieve this: A#rp!0" ,z$=0 for zmin+z+0.

The described iterative procedure can be continued to
achieve desired precision. In what follows, we limit our-
selves only to the first step. It turns out to be sufficient for
practical purposes.

IV. LAGRANGIAN FORMULATION
AND NUMERICAL SCHEME

It is convenient to switch from !r ,z" to new variables
!a ,z", where a is a coordinate labeling magnetic flux sur-
faces. We define a as the magnetic flux surface radius in the
incoming flow, such that a=r at z=0 and a! #0;rp$, where
rp is the plasma radius in the incoming flow. Equation !21"
indicates that the differential operator #$ /$z+ !Br /Bz"!$ /$r"$
in Eqs. !17"–!19" is the derivative along the magnetic flux
surfaces; i.e.,

/ $

$z
/

r
+

Br

Bz
/ $

$r
/

z
= / $

$z
/

a
. !33"

The conservation of magnetic flux, i.e., 2"rBzdr
=2"aBz0da, readily yields the following relation:

/ $

$r
/

z
=

rBz

aBz0
/ $

$a
/

z
, !34"

where Bz0 is the axial magnetic field in the incoming flow.
We now use expressions !33" and !34" to transform Eqs.
!17"–!19" into

& $Bz

$z
'

a
= −

Bz
2

aBz0
0 $

$a
&r

Br

Bz
'1

z
, !35"

& $$+

$z
'

a
= − !$+ − $!"

Bz

aBz0
0 $

$a
&r

Br

Bz
'1

z
, !36"

0 $

$z
&Br

Bz
'1

a
= −

1
$+

rBz

aBz0
0 $

$a
&$! +

Bz
2

8"
'1

z
. !37"

We must also add an equation for r, since r explicitly enters
Eqs. !35"–!37". The equation for r,

& $r

$z
'

a
=

Br

Bz
, !38"

results from comparing Eq. !33" with an expression for
!$ /$z"a that describes the transformation of variables,

/ $

$z
/

a
= / $

$z
/

r
+ & $r

$z
'

a
/ $

$r
/

z
. !39"

A closed system of equations consists of Eqs. !35"–!38"
and Eq. !20" for $!. Equations !35"–!38" have the structure
of one-dimensional evolution equations for the unknown
functions Bz, $+, Br /Bz, and r. We thereby reduce our steady-
state problem to an initial value problem for Eqs. !35"–!38",
with the coordinate z playing the role of time.

We use two staggered grids in the computational domain
a! #0,rp$ to discretize the quantities Bz, $+, $!, Br /Bz, and
r. The main grid consists of equally spaced points with co-
ordinates ak=.a!k−1", where k! #1;N$ is an integer and
.a=rp / !N−1 /2" is the distance between the grid points. The
secondary grid consists of “half-integer” points with coordi-
nates ak+1/2=.a!k−1 /2". By definition, we have a1=0 and
aN+1/2=rp. The quantities !Br /Bz" and r are defined on the
main grid, whereas the quantities Bz, $+, and $! are defined
on the secondary grid. This discretization, which is moti-
vated by the structure of Eqs. !35"–!38", follows the idea of
the Yee scheme.15 The finite difference equations corre-
sponding to Eqs. !35"–!38" have the following form:

$

$z
!Bz"k+1/2 = −

!Bz
2"k+1/2

ak+1/2!Bz0"k+1/2.a

!0rk+1&Br

Bz
'

k+1
− rk&Br

Bz
'

k
1 , !40"

$

$z
!$+"k+1/2 =

!Bz"k+1/2#!$!"k+1/2 − !$+"k+1/2$
ak+1/2!Bz0"k+1/2.a

!0rk+1&Br

Bz
'

k+1
− rk&Br

Bz
'

k
1 , !41"

$

$z
&Br

Bz
'

k
= −

rk

2ak.a
0 !Bz"k+1/2

!$+"k+1/2!Bz0"k+1/2

+
!Bz"k−1/2

!$+"k−1/2!Bz0"k−1/2
1

!0!$!"k+1/2 +
1

8"
!Bz

2"k+1/2 − !$!"k−1/2

−
1

8"
!Bz

2"k−1/21 , !42"

$rk

$z
= &Br

Bz
'

k
. !43"

The index k runs from 1 to !N−1" in Eqs. !40" and !41" and
from 2 to N in Eqs. !42" and !43".

An important feature of the staggered grids is that Eqs.
!40" and !41" only involve inner boundary conditions and
Eq. !42" only involves outer boundary conditions.

The inner boundary conditions that we use with Eqs.
!40" and !41" are

r1 = a1 = 0, !44"
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&Br

Bz
'

1
= 0. !45"

The outer boundary condition is the conservation of the
transverse momentum flux:

!$!"N+1/2 +
1

8"
!Bz

2"N+1/2 =
1

8"
#Bz

vac!z"$2, !46"

where Bz
vac!z" is the axial component of the vacuum magnetic

field at the plasma boundary. The function Bz
vac!z" is assumed

to be computed independently using the procedure described
in Sec. III. Since $! is a functional of Bz, Eq. !46" is essen-
tially an equation for Bz inside the plasma near the plasma-
vacuum interface. Equation !42" requires not only the quan-
tities determined by Eq. !46", but also !$+"N+1/2 and
!Bz0"N+1/2. The value of !Bz0"N+1/2 is known from the “initial”
flow configuration. The value of !$+"N+1/2 must be calculated
from Eq. !11" using the value of !Bz"N+1/2 found by solving
Eq. !46".

The system of equations !40"–!43" is solved using the
explicit Runge–Kutta!2,3" solver !Bogacki–Shampine pair"16

that is more effective than the standard fourth-order Runge–
Kutta solver, given the presence of mild stiffness in Eqs.
!40"–!43".

V. CODE BENCHMARKING
AND SIMULATION RESULTS

A. Benchmarking

To benchmark the code, we consider a highly super-
Alvénic flow of a cold plasma that comes out of a conical
magnetic nozzle. The analytical solution for the case without
a vacuum gap between the plasma and the nozzle wall is
presented in Ref. 4. We use our code to simulate a similar
regime and compare the numerical results with the analytical
solution.

We start by reviewing the analytical solution. In an infi-
nitely long conical nozzle with a perfectly conducting wall
located at r!z"=z tan /0, the magnetic field lines are straight.
The corresponding paraxial solution for /001 is given by

Bz =
210

z2/0
2 , !47"

Br

Bz
=

r

z
, !48"

where 2"10 is the total magnetic flux and /0 is the nozzle
divergence angle !see Fig. 1". This solution satisfies Eqs.
!17" and !27" for )*=0. The plasma motion is force free in
the nozzle.

In the case of a finite-length conical nozzle, the solution
inside the nozzle is still given by Eqs. !47" and !48", pro-
vided that the outgoing flow is highly super-Alfvénic and
that there is no vacuum gap between the plasma and the
nozzle wall. The plume consists of an unperturbed main flow
#Eqs. !47" and !48"$ and a rarefaction wave at the flow edge.
The expression for the field in the rarefaction wave can be
derived directly from Eqs. !17" and !27".

The rarefaction wave is localized in a thin layer near the
plasma boundary. In the unperturbed main flow, we have
Br /Bz=r /z, as follows from Eq. !48". To find the solution in
the rarefaction wave, we present Br /Bz in the form

Br

Bz
=

r

z
+ &/ , !49"

where r /z is essentially the slope of the magnetic field line
without the rarefaction wave and &/ is a small correction
associated with the wave. We use the definition !49" to re-
write Eqs. !17" and !27",

0 $

$z
+ & r

z
+ &/' $

$r
1Bz = −

2Bz

z
− Bz

$

$r
!&/" − Bz

&/

r
, !50"

0 $

$z
+ & r

z
+ &/' $

$r
1&/ = −

&/

z
−

Bz

4"nimiv+
2

$Bz

$r
. !51"

The last term in Eq. !50" is much smaller than Bz$!&/" /$r,
because &/ varies in a thin layer. We can therefore simplify
Eq. !50" by neglecting this term. We also note that ni /Bz and
v+ remain constant along the magnetic field lines #see Eqs.
!23" and !24"$, so that

Bz

4"nimiv+
2 =

1

B*MA
2 !52"

is a constant quantity as well, where B*(210 /z*
2/0

2 and

MA(#v+ /.Bz
2 /4"mini$z=z

*
are the magnetic field and the

Alfvénic Mach number at the end of the nozzle located at
z=z*. Based on the above remarks, we transform Eqs. !50"
and !51" into

0 $

$z
+ & r

z
+ &/' $

$r
1Bz = −

2Bz

z
− Bz

$

$r
!&/" , !53"

0 $

$z
+ & r

z
+ &/' $

$r
1&/ = −

&/

z
−

1

B*MA
2

$Bz

$r
. !54"

The exact solution of these equations is

!0

z* z

r
Nozzle

wall

FIG. 1. Layout of a conical magnetic nozzle with a divergence angle /0.
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Bz = B*

z*
2

z221, r + rc

1
9

#MA!/0z − r" + 2!z − z*"$2!z − z*"−2, rc 2 r + rpv

0, rpv + r ,
3 !55"

&/ =
2

MA
& z*

z
−.Bz

B*
' , !56"

where

rpv ( z/001 +
2

/0MA
&1 −

z*

z
'1 !57"

is the location of the plasma-vacuum interface and

rc ( z/001 −
1

/0MA
&1 −

z*

z
'1 !58"

is the location of the inner wave front. #The expression for rc
given here by Eq. !58" is slightly different from that given by
Eq. !77" in Ref. 4. Equation !58" is a linear expansion of Eq.
!77" with respect to the small parameter 1 //0MA01.$ A plot
of the solution given by Eq. !55" is shown in Fig. 2.

To simulate the conical nozzle shown in Fig. 1, with a
divergence angle /0 and magnetic flux 10, we choose the
magnetic field at the nozzle entrance !z=zin" in accordance
with Eqs. !47" and !48". Inside the nozzle, we impose the
following magnetic field at the plasma boundary: B
=B!rp ,zin"rp

2 /z2/0
2, where rp is the radius of the incoming

plasma flow and B!rp ,zin"(210 /z2/0
2. Note that the axial

coordinate z is defined such that the nozzle’s wall is located

at r=/0z. To simulate the rarefaction wave, we impose a
sharply decreasing magnetic field at the plasma boundary
downstream from the nozzle exit !z-z*". The pattern of the
rarefaction wave is insensitive to details of the decrease, as
long as the field decreases with z much faster than
B!rp ,zin"rp

2 /z2/0
2. Figure 3 shows a well pronounced rarefac-

tion wave at the plasma boundary. As expected, the central
part of the flow remains unperturbed. The good agreement
between Figs. 3 and 2 ensures that the code is reasonably
accurate.

B. Numerical examples of plasma detachment

Simulations presented in this subsection involve transi-
tion from sub- to super-Alfvénic flow. The first example re-
fers to cold ions with an initial velocity directed along the
guiding magnetic field. We consider a cylindrical nozzle with
a vacuum gap between the plasma and the nozzle wall. The
magnetic coils represent a long !semi-infinite" solenoid with
an inner radius of R=0.25 m and with a uniform current
distribution in the coils. The incoming plasma radius is rp
=0.15 m. The ion energy in the incoming plasma flow is (+

=10 eV, the incoming density is ni0=5.0!1020 m−3. These
parameters correspond to the power level of 395 kW for ar-
gon plasma. The magnetic field deep inside the nozzle is
600 G. Figure 4 shows the behavior of the Alfvénic Mach
number MA in the plasma jet. The thick solid line separates
the sub- and super-Alfvénic regions in the plasma flow. The

z (m)

r
(m

)

1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

1.2

10

20

50

100

200

400
600

0 0.5
0

500

0 0.5
0

50

100

B
z

(G)

r (m) r (m)

B
z

(G)
B

z
(G)

z
*

nozzle wall

FIG. 2. Analytical solution for a highly super-Alfvénic cold plasma flow
coming out of a conical magnetic nozzle with a divergence angle /0=10°
#Eqs. !55", !57", and !58"$. The end of the nozzle is located at z

*
=1.87 m.

The contours show the levels of constant Bz, with the scale indicated on the
sidebar. The insets give radial profiles of Bz in the incoming flow !z
=0.87 m" and in the plume !z=2.37 m". The thick dashed line marks the
inner front of the rarefaction wave rc!z" #see Eq. !58"$. The incoming flow
parameters !z=0.87 m" are ni=5.0!1020 m−3, (+ =250 eV, and rp=0.15 m.
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sub- to super-Alfvénic transition occurs somewhat outside
the solenoid close to its end. The shape of the shaded area in
the plot shows that the plasma plume does not follow the
vacuum magnetic field lines from the solenoid, which is a
clear evidence of detachment. This conclusion also follows
from calculations of detachment efficiency !see Sec. V C".

The second example demonstrates detachment together
with conversion of ion gyroenergy into directed energy of the
plasma jet. The nozzle is again a semi-infinite solenoid with
the inner radius R=0.25 m. The incoming plasma radius is
rp=0.1 m and the incoming ion gyroenergy is (!=100 eV,
which is the same for all ions. The longitudinal energy is
(+ =10 eV without any spread in parallel velocities. The ion
density is ni0=5.0!1020 m−3. The corresponding power is
193 kW for argon plasma. A contour plot of the transverse-
to-longitudinal energy ratio presented in Fig. 5 shows that
the conversion of the ion gyroenergy into the energy of di-
rected flow facilitates detachment. Note that the plasma
plume has a very small divergence angle far away from the
nozzle, where the ions are strongly super-Alfvénic and have
almost no gyroenergy left.

C. Nozzle efficiency

The term “nozzle efficiency” requires some clarification
when it is used as a quantitative characteristic. One can de-
fine efficiency in terms of power or in terms of thrust. A
common definition of the power efficiency !3P" is the ratio
of the “directed” power in the plasma plume to the power in
the incoming plasma flow, i.e.,

3P = 0% f4vzvz
2d3vd!"r2"10% f0vzv2d3vd!"r2"1−1

, !59"

where f0 and f4, respectively, are the ion distribution func-
tions at the nozzle entrance and in the plume, vz is the axial

component of the velocity, and the integration is performed
over the velocity space and over the plasma cross section.
The thrust efficiency 3T can be defined as a ratio of the
momentum flux in the plume to the maximum axial momen-
tum that a given initial particle flux could potentially carry at
given absolute values of the ion velocities. More specifically,

3T = 0% f4vz
2d3vd!"r2"10% f0vzvd3vd!"r2"1−1

. !60"

Both 3P and 3T can be calculated in a straightforward way
based on a numerical solution of Eqs. !17"–!19". In addition
to the asymptotic expressions !59" and !60", it is also useful
to calculate similar quantities for intermediate axial loca-
tions; i.e., to replace f4 by the local distribution function f .
This modification transforms 3P and 3T into functions of z.
Figure 6 presents the plots of 3P!z" and 3T!z" for the nozzle
with the parameters of Fig. 4. For comparison, Fig. 6 shows
the result from the simulation with a different ion energy of
(i=100 eV. The actual efficiencies are the asymptotic values
of 3P!z" and 3T!z", whereas the transient behavior of 3P and
3T can be viewed as an indicator of whether the flow is
already detached at a given axial location.

VI. DDEX SIMULATION

In this section, we present simulation results for the con-
ditions of the Detachment Demonstration Experiment
!DDEX".9 The DDEX facility was specifically designed to
examine plasma behavior in a magnetic nozzle and directiv-
ity of the plasma plume. The incoming plasma is created by
a source in a strong guiding magnetic field. The plasma ex-
pands into a vacuum chamber with a diverging magnetic
field formed by external coils. One of the plasma sources in
DDEX is a washer-stack gun operating at 300 kW in a
pulsed regime. It produces an argon plasma with a maximum

FIG. 4. Sub- to super-Alfvénic transition in the plume of a cylindrical
nozzle. The contours show the levels of constant Alfvénic Mach number
MA, with the scale indicated on the sidebar. The thick solid line separates the
sub- and super-Alfvénic regions in the cold plasma flow. The light gray bar
marks the location of the solenoid coils and the thin solid lines are the
magnetic field lines of the solenoid in the absence of plasma. The insets give
radial profiles of ni in the incoming flow !z=−0.5 m" and in the plume !z
=0.25 m".
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density of about 1020 m−3 and with (i-2 eV, where (i is the
characteristic ion energy in the flow. The magnetic field in
the source is of the order of 0.1 T, so that the flow produced
by the source is sub-Alfvènic. The length of the pulse !3 ms"
exceeds the ion travel time through the vacuum chamber by
an order of magnitude. This allows the flow to reach a
steady-state regime during the pulse. The interferometer
measurements9,10 reveal that the plasma density is indeed
roughly constant for about 3 ms.

The plasma density profile measured at 1.87 m down-
stream from the plasma source is shown in Fig. 7.17 The
dash-dotted line shows the density value that would corre-
spond to a flow with measured incoming density moving
strictly along the magnetic field lines produced by the exter-

nal coils without any distortion by the plasma. Clearly, the
measured value !circular markers with the corresponding er-
ror bars in Fig. 7" is significantly higher. One possible expla-
nation of the large difference between the two density pro-
files is that the flow stretches the magnetic field lines. This
would make the flow cross section smaller and thus the
plasma density higher compared to the case where the mag-
netic configuration remains unaffected by the flow. However,
for this explanation to be conclusive, the background gas
pressure has to be sufficiently low, so that the ion mean-free-
path with respect to charge-exchange collisions is longer
than the distance between the plasma source and the location
where the plasma density profile is measured. In reality, this
requirement is only marginally satisfied in the DDEX facil-
ity, which introduces an uncertainty in the interpretation.
Nevertheless, it is still appropriate to pose the question of
whether the field stretching mechanism alone can account for
the observed high density in the plume. In order to answer
this question, we carried out a simulation using the proce-
dure described in Sec. IV.

We use the experimentally measured density at 0.47 m
downstream from the source as an incoming flow in our
calculations. The radial density profile is approximated by a
Gaussian profile with n=n0 exp!−r2 ln 2 /52"H!rp−r", where
n0=1019 m−3 is the peak density at 0.47 m, 5=0.0465 m is
the profile half-width, rp=0.093 m is the plasma radius, and
H is the Heaviside step-function. The vacuum field at the
plasma boundary is precalculated using the actual coil con-
figuration of DDEX.

Figure 8 shows the Alfvénic Mach number for the 2 eV
ions. The ions were assumed to have no gyroenergy. We
observe that the initially sub-Alfvénic incoming flow be-
comes super-Alfvénic downstream. The divergence of the
plasma flow is significantly less then the divergence of the
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FIG. 8. Simulation results of the plasma plume in DDEX. The contours
show the levels of constant Alfvénic Mach number MA, with the scale
indicated on the sidebar. The thick solid line separates the sub- and super-
Alfvénic regions. The thin solid lines are the magnetic field lines of the
solenoid in the absence of plasma. The insets give radial profiles of ni in the
incoming flow !z=0.47 m" and in the plume !z=1.17 m".
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magnetic field lines calculated in the absence of plasma !thin
solid lines in Fig. 8".

The calculated radial density profile at 1.87 m down-
stream from the source is shown in Fig. 7 with a solid line.
The density increase due to the magnetic field stretching is
comparable to the increase observed in the experiment. For
comparison, Fig. 7 also shows a density profile that would
correspond to 5 eV ions. We can see that, despite some dif-
ference between the 2 and 5 eV profiles, both of them fall in
the range of the experimental data.

VII. CONCLUSIONS

We have presented a physics-based numerical model to
evaluate efficiency of plasma detachment from a magnetic
nozzle for a given supersonic !but sub-Alfvénic" incoming
flow. Motivated by the needs of the VASIMR project, this
model involves two important approximations relevant to
high-power plasma thrusters. First, the choice of supersonic
incoming flow enables us to safely neglect any effects asso-
ciated with electron pressure and the ambipolar electric field.
The problem thus reduces to dealing with a charge-
neutralized ion flow in a self-consistently determined mag-
netic field. Second, the practical need for the nozzle to be
efficient gives strong preference to slowly diverging flows
with paraxial magnetic field inside the plasma, which brings
significant technical simplifications into our description of a
steady-state flow.

Direct solution of a steady-state problem, as opposed to
an initial value problem, eliminates the need to deal with
transient phenomena that are of secondary importance for
continuously operating plasma thrusters. The steady-state
formulation of the problem is also advantageous in terms of
computational requirements, which makes the presented
model suitable for exploring a range of plasma parameters
and magnetic coil configurations needed to design an opti-
mum nozzle. We envision that this detachment-oriented code
can serve as a module in an integrated model of a thruster,
which would include modeling of plasma production and its
acceleration to supersonic velocities.

By considering a given supersonic input, we separate the
detachment issue from the problem of creating such an input

flow. The latter typically requires a magnetic mirror that
plays the role of the nozzle throat in the conventional gas-
dynamic de Laval nozzle. The transition from sub- to super-
sonic flow occurs due to electron pressure and ambipolar
acceleration of the ions. It is noteworthy that electron kinet-
ics is a quite nontrivial part of the problem because the com-
monly used Boltzmann distribution does not properly de-
scribe the collisionless electrons downstream from the
magnetic mirror. This aspect will be discussed in detail in a
recently completed separate paper.
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