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The linear gyrokinetics theory in the axisymmetric configuration is revisited. It is found that the
conventional gyrokinetic theory needs to be repaired in order to recover the linear
magnetohydrodynamics from the gyrokinetics and to obtain the finite Larmor radius effect on the
magnetohydrodynamic modes in an ordering-consistent manner. Two key inclusions are: �1� the
solution of the equilibrium gyrokinetic distribution function is carried out to a sufficiently high
order; �2� the gyrophase-dependent part of the perturbed distribution function is kept. The new
gyrokinetic theory developed in this paper can be used to extend directly the magnetohydrodynamic
stability analysis to the gyrokinetic one without invoking the hybrid kinetic-fluid hypothesis.
© 2007 American Institute of Physics. �DOI: 10.1063/1.2746811�

I. INTRODUCTION

The retention of the kinetic effects on the magnetohydro-
dynamic �MHD� modes, especially the resistive wall modes,
has become an important area in toroidal confinement stud-
ies. The gyrokinetic formalism provides the most efficient
way of obtaining the appropriate reduced kinetic equations
while still retaining the finite Larmor radius �FLR� effect.
The Vlasov equation is a six-dimensional differential equa-
tion. By introducing particle motion �adiabatic� invariants
and applying high gyrofrequency ordering, the gyrokinetic
formalism effectively reduces the seven-dimensional sub-
stantial time derivative in the linearized Vlasov equation into
a four-dimensional one �with velocity space derivatives
eliminated� and therefore greatly simplifies the calculation of
the kinetic effects.

The classic electrostatic gyrokinetic formalism was de-
veloped in 1960s.1,2 Later, electrostatic gyrokinetics was ex-
tended to the electromagnetic one.3,4 Most of the gyrokinetic
treatments employ the eikonal ansatz for studying high-n
modes �n is the toroidal mode number�. Recently, a gyroki-
netic formalism for long wavelength modes was developed
in Refs. 5–8, in which a great effort has been made to derive
the ideal MHD equations from gyrokinetic formalism. How-
ever, so far only partial MHD terms are shown to be recov-
ered. To derive MHD equation from the gyrokinetic equation
is not just of academic interest, but of practical importance.
The recovery of the MHD can justify the validity and suffi-
ciency of the perturbation expansion procedure in the gyro-
kinetic formalism. There is abundance evidence showing the
coincidence between the experimental observations and the
predictions of MHD theory. This is because in the presence
of the strong magnetic field the ions are localized spatially to
the magnetic field lines, so the ideal MHD formalism keeps
the key mode features in the perpendicular direction. We also
intend to use the gyrokinetic formalism derived in this paper

to extend the linear MHD code AEGIS
9 into fully gyrokinetic

one. It is therefore interesting to derive the MHD equations
from the gyrokinetic analyses.

In this paper we construct a gyrokinetic formalism ap-
plicable to both long and short wavelength MHD modes in
the axisymmetric configuration. Compared with the existing
gyrokinetic theory, this newly derived gyrokinetic formalism
can recover the linear MHD equations. To achieve it, it is
shown that the solutions of both the equilibrium and per-
turbed distribution functions need to be improved. Two key
modifications are made. First, the solution of the equilibrium
gyrokinetic distribution function is carried out to a suffi-
ciently high order; second, the gyrophase-dependent part of
the perturbed distribution function is kept. In the conven-
tional gyrokinetic theory, only the lowest-order equilibrium
distribution function �i.e., Fg0�X� ,� ,��, see Eq. �15� for
definition� is used. Reference 10 shows that, if only the
lowest-order equilibrium distribution function is used, even
the MHD equilibrium equation cannot be recovered. This
shows the necessity to include the higher-order equilibrium
distribution function. The solution of the gyrophase-
dependent part of the distribution function for electromag-
netic gyrokinetic equation has been carried out previously
for studying the cyclotron waves.11,12 The necessity of in-
cluding the gyrophase-dependent part of the distribution
function to the FLR viscous tensor is also addressed recently
in Ref. 13. In a recent effort to derive the MHD equations
from the gyrokinetics, the gyrophase-dependent part of the
perturbed distribution function is also calculated �see Sec. V
for detailed discussion�.5–8 However, it should be pointed out
that, only when both of the first-order equilibrium and the
gyrophase-dependent part of distribution functions are taken
into account simultaneously, the two perpendicular MHD
equations of motion can be fully recovered.

The paper is arranged as follows. In the next section, the
structure of the linear ideal MHD eigenmode equations is
described; In Sec. III, the gyrokinetic equations are derived;
in Sec. IV, the set of the eigenmode equations in the gyroki-a�Electronic mail: lzheng@mail.utexas.edu
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netic formalism is laid out and the recovery of the MHD
equations is shown. The conclusions are given in the last
section.

II. THE STRUCTURE OF THE LINEAR IDEAL MHD
EIGENMODE EQUATIONS

In order to compare with the gyrokinetic formalism, we
first describe the structure of the linear ideal MHD equations.
For simplicity, we consider the axisymmetric equilibria, in
which the equilibrium magnetic field can be represented as

B = �� � �� + g � � , �1�

where � is the poloidal magnetic flux, g is a function of �,
and � is the toroidal axisymmetric angle. We use the Prince-
ton equilibrium and stability �PEST� coordinates with � as
the poloidal angle.14 The Jacobian of the PEST coordinates is
expressed as J=1/����� ·��=qR2 /g, where q is the
safety factor and R is the major radius.

The MHD equilibrium is governed by the force balance
equation in the perpendicular direction and the free diver-
gence of the current density for determining the parallel cur-
rent �see, for instance, Ref. 10�:

J� =
B � �P

B2 , �2�

J� = −
gP�

B
− g�B , �3�

where J=��B is the equilibrium current density, P repre-
sents the equilibrium plasma pressure, the subscripts “�”
and “�” denote the perpendicular and parallel to the equilib-
rium magnetic field, respectively, the prime symbol denotes
the derivative with respect to �, and boldface is introduced to
indicate the vector.

The linearized MHD equation for perturbation reads

− �m�2� = 	J � B + J � 	B − �	P , �4�

where � represents the plasma displacement, 	B=����B
denotes the perturbed magnetic field, 	J=��	B is the per-
turbed current density vector, 	P=−� ·�P−
P� ·� repre-
sents the perturbed plasma pressure, � is the mode fre-
quency, �m is the mass density, and 
 represents the ratio of
the specific heats. The MHD equation �4� has three projec-
tions. We introduce three unit vectors, i.e., eb=B /B,
e1=�� / ����, and e2=eb�e1, to perform the projections.
The e2 projection of the MHD equation �4� gives

e1 · � � 	B = −
gP�

B2 e1 · 	B − g�e1 · 	B

+
1

B
e2 · ��P�����e1 · ��

+ 
P
1

B
e2 · ��� · �� +

�m�2

B
e2 · � . �5�

Similarly, the e1 projection of the MHD equation �4� yields

e2 · � � 	B = −
gP�

B2 e2 · 	B − g�e2 · 	B −
P�����

B2 eb · 	B

−
1

B
e1 · ��P�����e1 · ��

− 
P
1

B
e1 · ��� · �� −

�m�2

B
e1 · � . �6�

The eb projection of the MHD equation �4� can be reduced,
using � ·� as an independent unknown, to


PB · �� 1

B2B · �� · �� + �m�2 � · � = �m�2 � · ��.

�7�

Noting that 	J and 	B are determined completely by ��, one
can see that the set of equations �5�–�7� is complete for de-
termining two components of �� and one scalar � ·�.

Alternatively, one of the two perpendicular equations of
motion, i.e., Eq. �5� or �6�, can be replaced by the so-called
vorticity equation, which is obtained by applying the opera-
tor � · �B /B2�� �¯� on Eq. �4�,

− � ·
B

B2 � �m�2� = − B · �
B · 	J

B2 − 	B · ��

+ J · �
B · 	B

B2 − 2
B � �

B2 · �	P

+ 2
B � �P

B4 · �	P −
1

B2J · �	P ,

�8�

where �=J ·B /B2 and �=eb ·�eb is the magnetic field line
curvature.

Equations �8�, �5�, and �7� describe three fundamental
MHD waves: the shear Alfvén, the compressional Alfvén,
and the parallel acoustic waves, respectively. Due to the par-
ticle localization on the magnetic field lines, one can expect
the two perpendicular equations �5� and �6� can be recovered
from the gyrokinetic equation, expect the plasma compress-
ibility effect. Since the compressibility effect is related to the
parallel motion and particles are not localized along the mag-
netic field, one can expect the necessity of the kinetic de-
scription for the compressibility effect. Nevertheless, one can
expect that the coupling pattern of the perpendicular motion
�the right-hand side �r.h.s.� of Eq. �7�� to the parallel one �the
left-hand side �l.h.s.� of Eq. �7�� in the MHD description
should be seen in the kinetic description. Noting also that the
FLR effect specifies the difference between the fluid and
magnetic field line displacements, one can expect the FLR
modification of the inertia effect as well.

III. DERIVATION OF THE GYROKINETIC EQUATION

A. General formalism

In order to linearize the Vlasov equation, the distribution
function F is decomposed to the equilibrium �F� and per-
turbed �	F� parts. The subscripts “i” and “e” are introduced

072505-2 Zheng, Kotschenreuther, and Van Dam Phys. Plasmas 14, 072505 �2007�

Downloaded 24 Jul 2007 to 128.83.179.119. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



to represent the corresponding quantities for ion and electron
species, respectively. The linearized Vlasov equations for
equilibrium and perturbation become

L̄vF = 0, �9�

Lv	F = −
e

m�

	a · �vF , �10�

where L̄v=v ·�x+ �e /m��v�B ·�v, Lv=−i�+v ·�x

+ �e /m��v�B ·�v, 	a=	E+v�	B, and 	E is the perturbed
electric field, e is the charge, m� represents the mass, and �x

and �v denote, respectively, the Laplace operators in the par-
ticle configuration x and velocity v spaces. Alternatively,
the scalar 	� and vector 	A can be used to represent the
perturbed electromagnetic fields: 	E=−�	�+ i�	A and
	B=��	A.

As in Ref. 4, we introduce the guiding center coordinates
�X ,V�= �X , ,� ,��, where X=x+ �1/��v�eb, =v2 /2, �
=�0+ �̃1+ �̄1, �0=v�

2 /2B, �̃1=−vd ·v� /B− �v� /4�B��v�

�eb ·�eb ·v�+v� ·�eb ·v��eb�, �̄1=−�v��0 /��eb ·��eb,
vd=eb� ��v�

2 /2��� ln B+ �v�
2 /����, � is the gyrophase, and

�=eB /m�. The particle velocity can be decomposed as v�

=e1v� cos �+e2v� sin �+ebv�. In the guiding center coordi-
nates, the equilibrium and perturbed Vlasov equations �9�
and �10� become4

L̄gFg = 0, �11�

Lg	Fg = −
e

m�
�	a · �V +

1

�
	a � eb · �X�Fg, �12�

where

L̄g = Ẋ · �X + �̇
�

��
,

�13�

Lg = − i� + Ẋ · �X + �̇
�

��
.

Here, the dot represents the derivative along the unperturbed

particle orbit, Ẋ=v�eb+vD, vD=v ·v��x�eb /��, �̇=−��X�
+ �̇1, �̇1=v ·�x�+ �1/��v�eb ·�x�, and �x�= ��xe2� ·e1

+ �v� /v�
2 ��xeb · �v��eb�. In �̇1, the last term results from the

guiding center transform of the gyrofrequency ��x�. This
correction is required, since v ·�x�	�1/��v�b ·�x�. We
have also noted that the term �̇�� /��� is one order smaller in

the small Larmor radius ordering as compared to Ẋ ·�X and

therefore is neglected in L̄g and Lg.

B. Equilibrium

We first solve the equilibrium gyrokinetic equation �11�.
Introducing Lp to represent the scale length of the equilib-
rium pressure and � to represent the Larmor radius, we adopt
the following ordering assumption: �i /Lp�1. We also intro-
duce LB to represent the scale length of the magnetic field
line curvature. We do not impose an ordering between Lp and
LB. However, Lp and LB are kept explicitly in the ordering

analyses, in order to make the specific physical ordering ex-
plicit, should the large aspect ratio configuration or the trans-
port barrier physics is dealt with.

Corrected to order O�� /LB�, the equilibrium Vlasov
equation �11� becomes

�v�eb · �X − �
�

��
�Fg0 = 0. �14�

This gives the lowest-order equilibrium distribution function

Fg0 = Fg0�X�,�,� . �15�

For simplicity, we use the isotropic Maxwellian distribution
function as the lowest-order solution:

Fg0��,� = n0���� m�

2�T����
3/2

exp
−
m�

T���� , �16�

where � is the guiding center correspondent of �, n0 is the
plasma density, and T denotes the temperature.

Most of existing linear gyrokinetic theories use only the
equilibrium solution of this order. As will be shown later, this
treatment results in the loss of part of MHD effects and is
also inconsistent for retaining the FLR effects. To derive the
perturbed gyrokinetic equation ordering consistently, the
next-order equilibrium distribution function Fg1 is required.
The solution of the equilibrium gyrokinetic equation of the
next order has been described in the neoclassical transport
theory.10 The next-order gyrokinetic equation after gyrophase
average reads

v�eb · �XFg1 + vd · �XFg0 = 0.

Noting that vd ·��=v�eb ·�X�v�m�g /eB�, one obtains

Fg1 = − v�

g

�

�Fg0

��
+ sign�v��F̄g1��,�,� , �17�

where F̄g1 is the integration constant.10 One can easily obtain
the ordering estimate for Fg1,

Fg1

Fg0
	

�LB

Lp
2 . �18�

In passing, let us discuss briefly the necessity of the
retention of the next-order equilibrium solution. We note first
that Ref. 10 shows that, with and only with the first-order
equilibrium distribution function in Eq. �17� included, the
MHD equilibrium equations �2� and �3� can be recovered. In
order to be self-contained, here we review the derivation of
�2� and �3� in Ref. 10. Noting that Fg1 does not contribute to
the perpendicular current density due to being odd in v�, one
has

J� = �
i,e

e d3vv�Fg0��,�

= �
i,e

e d3vv�

1

�
v � eb · �Fg0��,�

=
B � �P

B2 . �19�

This recovers MHD equilibrium Eq. �2�. Noting also that Fg0
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does not contribute to the parallel current density due to
being even in v�, one has

J� = �
i,e

e d3vv�Fg1��,�

= �
i,e

e d3vv��− v�

g

�

�Fg0

��
+ sign�v��F̄g1��,�,��

= −
gP�

B
− B�

i,e
e d�dF̄g1��,�,� . �20�

Complete determination of the parallel current needs to de-

rive F̄g1, which has been done in the neoclassical transport
theory.10 However, as justified in Ref. 10, one can generally

impose that the surface function �i,ee�d�dF̄g1�� ,� ,�
=g�. By comparing Eq. �20� with Eq. �3�, one can see that
this is simply the requirement � ·J=0. Equation �20� recov-
ers the other MHD equilibrium equation, Eq. �3�. Equation
�3� actually describes the so-called Pfirsch-Schlüter current.
From the derivations of Eqs. �19� and �20� one can see that
the lowest-order equilibrium distribution function in Eq. �15�
does not produce the parallel current, although it gives rise to
the diamagnetic current. The parallel equilibrium current can
only be retained by including the first-order solution in Eq.
�17�. It is interesting to note that in the particle coordinates
the total equilibrium distribution function �Fg0+Fg1� can be
expressed in a form of the quasi-shifted Maxwellian
Fg0�x� , �v−Vk�2 /2�. Here, Vk is a function of the space and
velocity, instead of the fluid velocity as in the Braginskii
two-fluid theory.15 Note that the Braginskii two-fluid equa-
tions, as well as the gyroviscous tensor, are obtained by as-
suming that the equilibrium distribution function is a shifted
Maxwellian. Without retaining the first-order equilibrium
distribution function Fg1, the parallel component of Vk

would vanish. These arguments show that, to recover the
MHD, one has to keep the first-order equilibrium distribution
function. Note also that in the another effort to derive MHD
equation from gyrokinetics in Ref. 5, the equilibrium distri-
bution function has been assumed to be a shifted Maxwellian
by the parallel fluid velocity, in order to reproduce the par-
allel fluid velocity. Noting that V�

k is not a fluid velocity, the
equilibrium distribution function in Ref. 5 is not the gyroki-
netic equilibrium solution to the next order. The other effort
to rederive the MHD equilibrium in Ref. 7 has assumed that
there is no macroscopic parallel velocity. It therefore does
not apply to tokamak physics.

C. Perturbed gyrokinetic equation

Now, we derive the perturbed linear gyrokinetic equa-
tion. Using the equilibrium distribution function in Eqs. �16�
and �17� one can reduce the linear gyrokinetic equation Eq.
�12�. After extracting the adiabatic part of the perturbed dis-
tribution function,

	F =
e

m�

�Fg0

�
	��x� + 	H�X,,�,�� , �21�

the gyrokinetic equation Eq. �12� is reduced to

Lg	H�X� = R , �22�

where

R = − i�
e

m�

�Fg0

�
v� · 	A�x� − i�

1

B
eb � �XFg0 · 	A�x�

+ i�� − �*
T�

e

m�

�Fg0

�
	��x� +

e

m�

v · �x� �Fg0

�
�	��x�

+ � g

B

�Fg0

��
+ �v��

e

m�B

�F̄g1

��
�eb � v� · 	B�x�

+
1

B
v� · �XFg0eb · 	B�x� −

g

B

�Fg0

��
eb · ��x	��x�

− i�	A�x�� + sgn�v��
e

m�B

�F̄g1

��
v� · �x�	��x�

− i�	A�x�� − i�
e

m�

�Fg0

�
v� · 	A�x�

− v�

1

B

�Fg0

��
� � · 	B�x� , �23�

with �*
T= �i / ���Fg0 /���eb��XFg0 ·�X. Here, the inclusion

of Fg1 on the r.h.s. of Eq. �12� has produced several new
terms. These new terms result from the term �e /m��v
�	B ·�VFg1 on the r.h.s. of Eq. �12�, while there is no con-
tribution from Fg0 in this term due to its isotropic feature.
Noting that the order of the first to the second terms on the
r.h.s. of Eq. �12� is formally Lp /�i and the order of Fg1 to Fg0

is given by Eq. �18�, one can conclude that the Fg1 contribu-
tion cannot be ignored for ordering consistency.

Next, we discuss the solution of the linearized gyroki-
netic equation. Equation �22� can be formally written as

L1	H − ��X�
�	H

��
= R , �24�

where L1=−i�+ Ẋ ·�X+ �̇1�� /���. To proceed further, the
following ordering assumption is adopted:

L1/� 	 � , �25�

as in the conventional gyrokinetic theory. Although the last
term in Eq. �24� −��� /��� is the dominant term in the gy-
rokinetic ordering in Eq. �25�, this does not imply �	H /��
=0 to the lowest order, since one cannot presume the order-
ing between the terms on l.h.s. and the source term on the
r.h.s. of Eq. �24�. As will become apparent in the analyses
described in the next section, the gyrophase-dependent part
of the distribution function should be solved, as well as the
gyrophase-independent part, for ordering consistency. As the
cyclotron frequency gyrokinetic formalism in Refs. 11 and
12, we use the Fourier decomposition method to solve Eq.
�24�,

�	H,R� = �
k

�	Hk,Rk�exp�ik�� .

With ordering assumption in Eq. �25�, Eq. �24� can be solved
order by order. Expanding the perturbed distribution function
as
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	Hk = 	Hk
�0� + �	Hk

�1� + ¯ ,

one has

	Hk
�0� = i

1

k�
Rk, for k � 0,

	H0
�0� = L00

1 −1�R0 − �
l

�L0l
1 	Hl

�0�� ,

	Hk
�1� = − i

1

k�
�

l

Lkl
1 	Hl

�0�, for k � 0, �26�

	H0
�1� = − L00

1 −1�
l

�L0l
1 	Hl

�1�,

¯ ,

where �l� represents a summation excluding l=0 and the
matrix elements

Llk
1 =

1

2�


0

2�

d� exp�− il��L1 exp�ik�� .

D. Complete set of the eigenmode equations

To proceed further, the gauge for representing the elec-
tromagnetic potentials needs to be chosen. The Coulomb
gauge has been used widely in the previous gyrokinetic theo-
ries. We avoid use of the Coulomb gauge, since it induces an
additional differential equation to determine the relationship
of three 	A components and makes especially the numerical
implementation complicated. For n=0 modes, the perturbed
magnetic field can be represented by two scalars as in the
equilibrium case in Eq. �1�. We show that for n�0 modes,
one can also generally represents the magnetic field with two
scalars. Note that the gauge invariance allows an arbitrary
gradient to be added to the vector potential: 	A+�	�̂
= �	A�+�	�̂ /�����+ �	A�+�	�̂ /�����+ �	A�− in	�̂���.
Since n�0, one can always find 	�̂ to make 	A�− in	�̂=0.
Therefore, for n�0 modes, one can generally adopt a gauge
	A�=0; i.e., one can represent

	A = � � B�, �27�

where B�=g��.
Besides the ion and electron distribution functions 	f i,e,

there are three independent field unknowns: two components
of � and a scalar 	�. Two components of the Ampere’s law
and the quasineutrality condition, together with the ion and
electron gyrokinetic equations, are used to construct the
complete set of equations. Using the quasineutrality condi-
tion is equivalent to using the generalized Ohm’s law. Am-
pere’s law reads

	J · e1,2 = �
i,e

e d3vv� · e1,2	f�x� . �28�

The quasineutrality condition is

�
i,e

e d3v	f�x� = 0. �29�

In Eqs. �28� and �29�, the velocity space integration is per-
formed in the particle coordinates, instead of in the guiding
center coordinates.

Here, we make some remark about various approaches
to construct the basic set of equations. In the conventional
approach �see, for example, Ref. 16�, one perpendicular com-
ponent of Ampere’s law and the vorticity equation are used
to construct the basic set of equations. Instead, we use di-
rectly the two perpendicular components of Ampere’s law
for two reasons. First, from the MHD vorticity equation �8�,
one can see that both pressure and velocity moments need to
be calculated to derive the kinetic vorticity equation. Note
that calculating the velocity moment alone is equivalent to
calculating the current density in Ampere’s law. To avoid
calculating two moments, a direct construction of the kinetic
vorticity equation from the gyrokinetic equations has been
used previously �see, for example, Refs. 5 and 16�, by apply-
ing the operator �i,ee�d3v on the gyrophase-averaged gyro-
kinetic equation and using the quasineutrality condition for
simplification. However, noting that the nabla operator in the
term v� ·�X in the gyrokinetic equation is in the guiding cen-
ter coordinates, one cannot simply move eb ·�X out of the
velocity space integration in a given particle coordinate with-
out subtle elaboration for FLR modification. Note further
that the term v� ·�X produces the field line bending term of
the shear Alfvén mode, which is generally much larger than
the inertia term, tied to the FLR effects. These show that, to
get a vorticity equation in the particle coordinates, a back-
ward transform for the term v� ·�X is needed in order to
retain FLR effects consistently. This makes the vorticity
equation approach nontrivial. This point has not been ad-
dressed in the previous derivation of the gyrokinetic vorticity
equation in Refs. 16 and 5. Second, we note that the vorticity
equation alone is not sufficient for the completeness of the
basic set of equations. At least one perpendicular component
of Ampere’s law is needed. Since calculation of the two per-
pendicular components of Ampere’s law are similar, our ap-
proach of using directly two perpendicular components of
Ampere’s law is therefore a straightforward approach for
constructing the basic set of equations.

IV. EIGENMODE EQUATIONS AND RECOVERY
OF LINEAR IDEAL MHD

In this section, we will investigate the solution of gyro-
kinetic equations and reduce Ampere’s law Eq. �28� and the
quasineutrality condition Eq. �29� to recover the linear ideal
MHD equations. Although the theory outlined in the previ-
ous section is applicable to arbitrary FLR ordering, we re-
strict ourselves here only to keep the effects that are larger
than or of the same order as the perpendicular inertia effect
with diamagnetic frequency shift �i.e., �2 replaced by ���
−�*1�1+�i���, with �*i=−i�Ti /eiB��� ln n0 /���eb��� ·�
and �i=� ln Ti /� ln n0. In the ordering analyses, we assume
that ���*i. We also retain explicitly two different perpen-
dicular wave lengths, using �� and �∧ to denote, respec-
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tively, the perpendicular wavelengths normal and tangential
to the magnetic surface. Noting that �*i	�i /�∧ as compared
to the shear Alfvén frequency, the assumption �	�*i im-
plies that effects of order ��i /�∧�2 are kept in the MHD equa-
tions. Specifically, we assume that �i /���1, �∧���, �∧
�Lp, and LB�Lp.

To recover MHD, we adopt the MHD gauge in this sec-
tion,

	A = � � B , �30�

in order to take advantage of displaying explicitly the term-
by-term correspondences between the MHD and kinetic de-
scriptions. As discussed in Ref. 17, the generality of the
MHD gauge relies on the invertibility of B ·�, and conse-
quently those modes involving the magnetic field reconnec-
tion are excluded from consideration. Nevertheless, noting

the similarity of the MHD gauge in Eq. �30� and the general
gauge in Eq. �27�, the generalization from the MHD gauge to
the general gauge for resistive MHD application is straight-
forward and will be discussed elsewhere. Note that the rep-
resentation in Eq. �30� is valid for arbitrary toroidal mode
number n.

A. Solution of the gyrokinetic equation

To calculate Ampere’s law and the quasineutrality con-
dition, both the first and zero �gyrophase averaged� harmon-
ics of the gyrokinetic distribution functions are required. To
solve the gyrokinetic equation �22�, we extract the convec-
tive part of the distribution function from 	H, by letting

	H�X� = − ��X� · �Fg0 + 	G�X� . �31�

Consequently, the gyrokinetic equation �22� is transformed to

Lg	G�X� = − i�
e

m�

�Fg0

�
v� · 	A�x� + vD · �X���X� · �Fg0� + i����x� − ��X�� · �Fg0 + i�� − �*

T�
e

m�

�Fg0

�
	��x�

+
e

m�

v · �x� �Fg0

�
�	��x� + � g

B

�Fg0

��
+ �v��

e

m�B

�F̄g1

��
�eb � v� · 	B�x� +

1

B
v� · �XFg0eb · 	B�x�

−
g

B

�Fg0

��
eb · �x	��x� + sign�v��

e

m�B

�F̄g1

��
v� · ��x	��x� − i�	A�x�� + v�eb · ��x��x� · �Fg0 − �X��X� · �Fg0� .

�32�

First, let us solve the first-harmonic solution of 	G̃, using the perturbation method outlined in the last section. The details

are given in Appendix A. The solution is obtained from collecting the contributions from 	G̃1a, 	G̃1c, 	G̃1e, 	G̃1f, 	G̃1g, and

	G̃1conv,

	G̃1�x� = − i�
1

B

�Fg0

�
eb � v� · 	A +

�2

�

m�

T
Fg0v��− sin �e1 + cos �e2� · ��x� − i�

m�

T
Fg0v� cos �e1 · �

− i�
m�

T
Fg0

3v�
3

8�2B−3/2 cos ��e1e1 + e2e2�:���B3/2e1 · �� − i�
m�

T
Fg0 cos ��e1 · �e1 · �
−

5v�

8�2e1 · �v�
2

2
� ln B

+ v�
2�� +

v�
3

8�2

� ln n0

��
�1 + ��m�

T
−

5

2
�� −

v�
3

16�2e1 · �� ln B�� + e2 · �e1 · ��−
5v�

8�2e2 · �v�
2

2
� ln B

+ v�
2�� −

9v�
3

16�2e2 · �� ln B�� +
7v�

3

8�2 ��e1 · �e1� · �e1 · � + �e2 · �e2� · �e1 · ��

+ e1 · �e2 · �� v�

8�2e2 · �v�
2

2
� ln B + v�

2�� +
7v�

3

16�2e2 · �� ln B�� + e2 · �e2 · ��−
v�

8�2e1 · �v�
2

2
� ln B

+ v�
2�� −

v�
3

8�2

� ln n0

��
�1 + ��m�

T
−

5

2
�� +

v�
3

16�2e1 · �� ln B�� +
v�

3

8�2 �− �e2 · �e1� · �e2 · �

+ �e1 · �e2� · �e2 · ��� − i�
m�

T
Fg0v� sin �e2 · � − i�

m�

T
Fg0

3v�
3

8�2B−3/2 sin ��e1e1 + e2e2�:���B3/2e2 · ��

− i�
m�

T
Fg0 sin ��e1 · �e1 · ��−

v�

8�2e2 · �v�
2

2
� ln B + v�

2�� +
v�

3

16�2e2 · �� ln B��
+ e2 · �e1 · �
 v�

8�2e1 · �v�
2

2
� ln B + v�

2�� −
3v�

3

8�2

� ln n0

��
�1 + ��m�

T
−

5

2
�� +

7v�
3

16�2e1 · �� ln B��
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+
v�

3

8�2 ��e2 · �e1� · �e1 · � − �e1 · �e2� · �e1 · �� + e1 · �e2 · �
−
5v�

8�2e1 · �v�
2

2
� ln B + v�

2��
+

5v�
3

8�2

� ln n0

��
�1 + ��m�

T
−

5

2
�� −

9v�
3

16�2e1 · �� ln B�� + e2 · �e2 · ��−
5v�

8�2e2 · �v�
2

2
� ln B + v�

2��
−

v�
3

16�2e2 · �� ln B�� +
7v�

3

8�2 ��e1 · �e1� · �e2 · � + �e2 · �e2� · �e2 · ��� − i�
����
�2

�Fg0

��
v� · ��e1 · ��

− i
1

B�
�� − �*

T�
�Fg0

�
v� · �	��x� −

1

B
v � eb · �� �Fg0

�
�	��x� −

3

8B�2v�
3 e1 · �� �Fg0

�
�sin ��e1e1

+ e2e2�:��	��x� − � g

�B

�Fg0

��
+

1

B2

�F̄g1

��
�v���v� · 	B�x� −

3

8�3� g

B

�Fg0

��
+

e

m�

�v��
�F̄g1

��
�v�

2 �e1e1

+ e2e2�:���eb · 	B�x�� −
����
B�

�Fg0

��
v� sin �eb · 	B�x� −

3����
8�3B

�Fg0

��
v�

3 sin ��e1e1 + e2e2�:���eb · 	B�x��

−
v�

�
�e1 sin � − e2 cos �� · �� · �Fg0 −

v�
3

8�3 ����
�Fg0

��
�e1e1e1 sin � + e1e2e2 sin � − e1e1e2 cos �

− e2e2e2 cos �� ] ����� · e1� −
v�

3

8�3

�Fg0

��
e1 · ��������3e1e1 sin � + e2e2 sin � − 2e1e2 cos ��:���� · e1�

−
v�

3

8�3

�Fg0

��
e2 · ��������2e1e2 sin � − e1e1 cos � − 3e2e2 cos ��:���� · e1� −

v�
3

8�3 ����e1 · �� �Fg0

��
�

��3e1e1 sin � + e2e2 sin � − 2e1e2 cos ��:���� · e1� . �33�

Next, we derive the gyrophase-averaged gyrokinetic equation. Summarizing the calculations in Appendix B, one can find

�v� · �− i� − i�d�	G0�X� = − i��0B
�Fg0

�
�� · � − i�

�Fg0

�
��0B − v�

2�� · � + i�d� · �Fg0 + i�� − �*
T�

e

m�

�Fg0

�
	�

− �0e1 · �� �Fg0

�
�e2 · �	� −

v�
2

�
e1 · �XFg0e2 · �� 1

B
eb · 	B� +

v�v�
2

�
�e1e1

+ e2e2�:���eb · �� · �Fg0� −
v�v�

2

�
��e1 · �eb� · ��e1 · �� · �Fg0�

+ �e2 · �eb� · ��e2 · �� · �Fg0�� , �34�

where �d= ivd ·�.

B. Ampere’s law

Using the first-harmonic solution 	G̃1�x� of the gyrokinetic equation in Eq. �33� and the gyrophase-averaged distribution
function G0�X�, governed by Eq. �34�, one can calculate two perpendicular components of the current density in Ampere’s law

in Eq. �28�. The 	G̃1�x� contribution has been given in Appendix A. The 	G0�x� contribution can be expressed as follows:

�
i,e

e�  d3vv� · e1,2	G0�X��
x

= �
i,e

e d3vv� · e1,2
1

�
v � eb · �	G0�x� = − �

i,e
m� d3v�0e2,1 · �	G0�x� . �35�

Combining the contributions from individual terms given in Appendix A and Eq. �35�, one obtains the two components of
the Ampere’s law in the kinetic description:
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e1 · � � 	B = −
gP�

B2 e1 · 	B − g�e1 · 	B +
1

B
e2 · ��P�����e1 · �� − �

i,e
m�  d3v�0e2 · �	G0�x� +

�2

B
�me2 · �

− i�
����
B�i

Pi�e1 · ��e1 · �� + in0m�i�� − �*i�1 + �i��
1

B2e1 · �	� − i�
2n0Tei

m�

3

4�i
2B−3/2�e1e1

+ e2e2�:���B3/2e1 · �� − i�
2n0Tei

m�

e1 · �e1 · ��−

1

8�i
2e1 · �6 � ln B +

5

2
�� +

1

4�i
2

� ln n0

��
�1 + �i��

+ e2 · �e1 · ��−
1

8�i
2e2 · �14 � ln B +

5

2
��� +

7

4�i
2 ��e1 · �e1� · �e1 · � + �e2 · �e2� · �e1 · ��

+ e1 · �e2 · �
1

8�i
2e2 · �8 � ln B +

1

2
�� + e2 · �e2 · ��−

1

16�i
2e1 · � −

1

4�i
2

� ln n0

��
�1 + �i�� +

1

4�i
2

�− �e2 · �e1� · �e2 · � + �e1 · �e2� · �e2 · ��� −
3

2�i
� gn0Ti

2

B2�im�i

� ln n0

��
�1 + 2�i�

− 4�m�i  dd�0�0F̄g1��e1e1 + e2e2�:���e1 · 	B� +
n0ei

2�i
3� T

m�i
�2

����
� ln n0

��
�1 + 2���e1e1e2

+ e2e2e2� ] ����� · e1� +
n0ei

�i
3 � T

m�i
�2� ln n0

��
�1 + 2��e1 · �������e1e2:���� · e1�

+
n0ei

2�i
3� T

m�i
�2� ln n0

��
�1 + 2��e2 · ��������e1e1 + 3e2e2�:���� · e1� +

n0ei

�i
3 � T

m�i
�2

����
� � ln n0

��
�2�1

+
15

2
�2 + 4�� +

�2 ln n0

��2 �1 + 2�� + 2
� ln n0

��
�2

��

��
− �

7

2

� ln T

��
��e1e2:���� · e1� , �36�

e2 · � � 	B = −
gP�

B2 e2 · 	B − g�e2 · 	B −
P�����

B2 eb · 	B −
1

B
e1 · ��P�����e1 · �� + �

i,e
m�  d3v�0e1 · �	G0�x�

−
�2

B
�me1 · � − i�

����
B�i

Pi�e2 · ��e1 · �� + in0m�i�� − �*i�1 + �i��
1

B2e2 · �	� − i�
2n0Tei

m�

3

4�i
2B−3/2�e1e1

+ e2e2�:���B3/2e2 · �� − i�
2n0Tiei

m�i

− e1 · �e1 · �

1

16�i
2e2 · � + e2 · �e1 · �� 1

8�i
2e1 · �8 � ln B +

1

2
��

−
3

4�i
2

� ln n0

��
�1 + �i�� +

1

4�i
2 ��e2 · �e1� · �e1 · � − �e1 · �e2� · �e1 · �� + e1 · �e2 · �

�−
1

8�i
2e1 · �14 � ln B +

5

2
�� +

5

4�i
2

� ln n0

��
�1 + �i�� − e2 · �e2 · �

1

8�i
2e2 · �6 � ln B +

5

2
��

+
7

4�i
2 ��e1 · �e1� · �e2 · � + �e2 · �e2� · �e2 · ��� +

3

2
n0m�i

����Ti

B3ei

� ln n0

��
�1 + �i��e1e1 + e2e2�:��	�

−
3

2�i
� gn0Ti

2

B2�im�i
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��
�1 + 2�i� − 4�m�i  dd�0�0F̄g1��e1e1 + e2e2�:���e2 · 	B�

−
3����ein0

2B�i
3 � Ti

m�i
�2� ln n0

��
�1 + 2�i��e1e1 + e2e2�:���eb · 	B� −

n0ei

2�i
3� T

m�i
�2� ln n0

��
�1 + 2���e1e1e1

+ e1e2e2� ] ����� · e1� −
n0ei

2�i
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m�i
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��
�1 + 2��e1 · ��������3e1e1 + e2e2�:���� · e1�

−
n0ei

�i
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��
�1 + 2��e2 · �������e1e2:���� · e1� −
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2�i
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2
�2

+ 4�� +
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��2 �1 + 2�� +
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− �

7

2
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��
���e1e1 + e2e2�:���� · e1� . �37�
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These two equations are the kinetic counterparts of two per-
pendicular components �Eqs. �5� and �6�� of the MHD veloc-
ity momentum equations.

C. The quasineutrality condition

To determine 	�, the quasineutrality condition Eq. �29�
is needed. Inserting Eqs. �21� and �31� into the quasineutral-
ity condition Eq. �29� yields

	��x� = −
1

�
i,e

n0e2/T
�
i,e

e d3v	G0. �38�

Here, we have noted that for our ordering requirement, no
FLR expansion is needed for 	G0, and we have considered
also the fact that the contribution from the gyrophase-
dependent part of the perturbed distribution function is neg-
ligible. The parallel-electric-field effect enters into both the
gyrophase-averaged gyrokinetic equation �34� and the two
perpendicular components of Ampere’s law: Eqs. �36� and
�37�.

First, we discuss the 	� effect in the gyrokinetic equa-
tion �34�. Inserting Eq. �38� into the terms containing 	� in
Eq. �34�, one can find that those terms become of the same
order as the term −i�	G0. This shows that the parallel-
electric-field effect should be kept as soon as the wave-
particle resonance effect is taken into account. This fact is
especially relevant to the study of the kinetic stabilization of
the resistive wall modes, in which the particle-wave reso-
nance effect is critical. Comparing Eqs. �36� and �37� with
the MHD counterparts �Eqs. �5� and �6��, one can see that
	G0 plays the role of � ·�. The sound-wave resonance in the
ideal MHD case in Eq. �7� is replaced by the wave-particle
resonance in the kinetic description in Eq. �34�. Note that the
sound wave resonance in the ideal MHD case is related to
the sideband resonance.18 Therefore, the parallel-electric-
field effect comes mainly from the side band.

Next, we discuss the 	� effect appearing explicitly in the
two perpendicular components of Ampere’s law �Eqs. �36�
and �37��. In this case, the leading parallel electric field effect
on the main harmonic of the Ampere’s law is directly
through the main harmonic of 	�. Note that � ·� on the
right-hand side of Eq. �34� equals −2� ·� to the leading order
for the modes with frequencies much lower than the com-
pressional Alfvén frequency. In the vicinity of the rational
surfaces v� ·���, the main harmonic of the perturbed dis-
tribution function 	G0 is of order Fg0�Lp /�LB

2��∧. Inserting
this estimate into the quasineutrality condition Eq. �38�, one
can find that the main harmonic of 	� is of order �T /e�
��Lp /LB

2��∧. With this ordering estimate, one can find that
the term containing explicitly 	� in Eq. �36� is of order
��*i /���Lp /LB�2��∧ /��� as compared to the MHD perpen-
dicular inertia term �fifth term on the r.h.s. of Eq. �36��. This
gives the condition for which the parallel-electric-field effect
of the main harmonic should be kept. The main harmonic of
kinetic-parallel-electric-field effect is relevant to study the
modes of the resistive MHD type; for example, the field line
reconnection phenomenon.

D. Discussion of the basic set of equations
in the gyrokinetic description

We first discuss the structure similarity of the basic set of
equations between the ideal MHD and the current gyroki-
netic descriptions. In the ideal MHD description, there are
three unknowns: two components of �� and scalar � ·�.
They are governed by the three projections of the MHD mo-
mentum equation: Eqs. �5�–�7�. In the gyrokinetic descrip-
tion, two perpendicular components of �� remain, but the
scalar � ·� is replaced by the ion and electron gyrophase-
averaged perturbed distribution functions 	G0. Note that in
the kinetic description, � represents the field line
displacement—a field variable; instead, in the ideal MHD
description � corresponds to the fluid velocity moment. The
proportionality between � ·� and −	G0 can be envisaged by
the fluid continuity equation, noting that the convective part
of the distribution function has been extracted in Eq. �31�.
Correspondingly, the two perpendicular projections of the
MHD momentum equation: Eqs. �5� and �6� are replaced by
two perpendicular projections of Ampere’s law �Eqs. �36�
and �37��; the parallel projection of the MHD momentum
equation �7� is replaced by gyrophase-averaged gyrokinetic
equations for ion and electron species �Eq. �34��. In the ki-
netic description, there is one more unknown 	�, describing
the parallel electric field effect. 	� is governed by the
quasineutrality condition in Eq. �38�.

Next, let us discuss term by term correspondences be-
tween the ideal MHD and the current gyrokinetic descrip-
tions. Comparing the two perpendicular components of the
ideal MHD momentum equations �5� and �6� with the two
projections of Ampere’s law in kinetic description �Eqs. �36�
and �37��, one can see that all MHD terms in Eqs. �5� and
�6�, except the plasma compressibility term �proportional to
� ·��, are recovered in the kinetic equations �36� and �37�.
Note that the MHD fluid description is based on the particle
spatial localization assumption. In the collisionless Vlasov
equation description, however, the spatial localization can
only be expected in the perpendicular direction due to the
strong magnetic field, while particles can move freely in the
parallel direction. Therefore, a fully kinetic description is
needed in the parallel direction. Consequently, the terms due
to the plasma compressibility effect in the ideal MHD de-
scription �the fourth term of Eq. �5� and the fifth term of Eq.
�6�� are replaced by the kinetic moments for plasma com-
pressibility �the fourth term of Eq. �36� and the fifth term of
Eq. �37�, respectively�. Interestingly, There is also structure
similarity between the MHD equation of the parallel motion
�Eq. �7�� and the ion gyrophase-averaged gyrokinetic equa-
tion �34�. Note that the kinetic plasma compressibility terms
in Eq. �36� and Eq. �37� depend only on the even part �with
respect to the parallel velocity� of the gyrophase-averaged
distribution function. The gyrophase-averaged gyrokinetic
equation governing the even part can be derived from Eq.
�34� as given in Eq. �B1� in Appendix B. To recover the
MHD, the limit ���d, �* should be taken. In this limit, �d

on the l.h.s. of Eq. �34� ��or Eq. �B1�� can be dropped and
only the first two terms on the r.h.s. of Eq. �34� need to be
kept. Noting m�i�m�e, only ion distribution function needs
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to be kept. With these simplifications, the term by term cor-
respondences between the MHD equation of parallel motion
�Eq. �7�� and the ion gyrokinetic equation �34� �with Eq.
�B1� used to construct the even part of the distribution func-
tion� are obvious, with the particle velocity replaced by the
proper thermal velocity, and the fact noted that the second
term on the r.h.s. of Eq. �34� vanishes with the thermal ve-
locity replacement. It should be pointed out that the recovery
of the similarity between the MHD and kinetic parallel
descriptions is realized until the order of the second term
on the r.h.s. of Eq. �34�. This is particularly relevant for
low frequency MHD modes, for which one usually has
� ·��	−2� ·�, and therefore the first and second terms on
the r.h.s. of Eq. �34� become of the same order.

In the collisionless kinetic description, the ions and elec-
trons move individually along the field lines, instead of col-
lectively as a fluid element. The different responses of the
ions and electrons to the electromagnetic perturbations
causes the charge separation and thus the excitation of the
parallel electric field. This has led the electrostatic scalar
potential 	� to appear in both the perpendicular �Eqs. �36�
and �37�� and parallel �Eq. �34�� equations of motion.

Besides, in the MHD description, the perpendicular mo-
tion of a fluid element is regarded to be the same as the field
line displacement. In the kinetic description, however, the
perpendicular motion of a fluid element is considered to be
different from the field line displacement due to the FLR
effect. The FLR effect leads to the changes: �2→���
−�*i�1+�i�� in the inertia terms �the fifth and sixth terms on
the r.h.s. of Eq. �36� and the sixth and seventh terms on the
r.h.s. of Eq. �37�� and contributes as well additional FLR
effect terms in Eqs. �36�, �37�, and �34�.

Comparing to the existing gyrokinetic theories, in which
the only FLR effect in this order is �2→���−�*i�1+�i�� in
the inertia terms.16 In our case, however, one can see that
several FLR effect-related terms appearing in Eqs. �36�, �37�,
and �34�. The first two MHD terms on the r.h.s. of both Eq.
�36� and Eq. �37� are also missing in the previous gyrokinetic
formulation. They are recovered here by taking into account
the first-order correction of the equilibrium distribution func-
tion and the gyrophase-dependent part of the perturbed dis-
tribution function. These two MHD terms result from
J0�	B term in the perpendicular force balance equations �5�
and �6�.

V. CONCLUSIONS

In this paper, we revisit the linear gyrokinetic theory, so
that the linear ideal MHD is recovered from our newly de-
rived gyrokinetic formalism and the FLR effects are retained
fully. We find that the J0�	B effect on the perpendicular
force balance �or the perpendicular Ampere’s law� is not re-
tained fully in the conventional gyrokinetic formalism. Be-
cause of this the MHD terms in the perpendicular momentum
equation cannot be recovered completely in the conventional
gyrokinetic formalism. We find also that in the conventional
gyrokinetic formalism the FLR effects are not retained fully.
In the conventional gyrokinetic formalism the lowest-order
FLR correction is given only by the so-called diamagnetic

frequency shift; i.e., replacing �2 with ���−�*i�1+�i�� in
the inertia term. We show that in this same ordering there are
actually several additional FLR terms. The conventional type
of the FLR modification is valid only in the cylinder limit. In
passing, we note that the Braginskii gyroviscous tensor ex-
hibits also the complexity nature of the FLR effect.15 In par-
ticular, it can also be proved that the conventional type of the
FLR modification is valid only in the cylinder limit in the
Braginskii two-fluid description.19

Two key modifications are made in our new gyrokinetic
theory: First, the solution of the equilibrium gyrokinetic dis-
tribution function is carried out to sufficiently high order;
Second, the gyrophase-dependent part �i.e., 	Hk with k�0�
of the perturbed distribution function is retained. To recover
the structure similarity between the MHD and kinetic paral-
lel descriptions, the coupling of the gyrophase-dependent
part of the distribution function to the unperturbed gyrophase
variation in the first order �i.e., �̇1� needs to be taken into
account as well in deriving the gyrophase-averaged gyroki-
netic equation �see Eq. �B3��.

It is also interesting to compare the current results with
the existing works in deriving MHD from gyrokinetics. Ref-
erences 5–8 have used the so-called gyrocenter method to
recover ideal MHD. Instead, we use the guiding center trans-
form for this purpose. References 5–8 recover only part of
MHD; instead, we recover MHD fully. We also recover the
missing FLR effects. For the compressional Alfvén mode, for
example, comparing the resulting Eq. �93� in Ref. 8 with the
corresponding equation �36� in our paper, one can see that
Ref. 8 derives only two MHD terms: the term on the left and
the fifth term on the right of our Eq. �36�. Reference 5 tried
to recover the MHD vorticity equation �8�. However, the
derivation is based upon the assumption that 	A�=0. Even if
the 	A��0 case were picked up in their formalism, as was
done in the earlier paper,16 the MHD vorticity equation could
not be recovered properly. This is related to the recovery of
the term J ·��B ·	B� /B2 in the MHD vorticity equation �8�.
This is because the equilibrium distribution function given in
Ref. 5 is not a proper solution of the gyrokinetic equation to
the next order, as discussed in Sec. III B. Besides, as dis-
cussed in Sec. III D, the commutation of b ·�X with the ve-
locity space integration at the particle coordinates has caused
the corresponding FLR effects lost in the Refs. 5 and 16.

The basic set of kinetic equations derived in this paper
includes kinetic effects: such as the particle-wave resonance,
the trapped particle effect, the parallel electric field, the FLR
effect, etc. Our concrete derivation is carried out only to the
order of the perpendicular inertia effect with the diamagnetic
frequency shift modification. Higher-order correction can be
obtained based on the general formalism laid out in Sec. III.
The gyrokinetics is of general importance for studying the
stability of the magnetically confined plasmas. Here, we
point out especially that, due to the recovery of the linear
ideal MHD in our kinetic description, our theory can be used
to extend MHD codes to kinetic ones with limited modifica-
tions. The kinetic formalism laid out in this paper is “hybrid”
in appearance, but fully kinetic in essence. This feature is
particularly useful for developing global code to study for
example the resistive wall mode. The kinetic equations de-
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rived in this paper are being used to extend the adaptive
MHD code AEGIS

9 to the kinetic one.
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APPENDIX A: THE SOLUTION OF THE FIRST
HARMONIC GYROKINETIC EQUATION AND
AMPERE’S LAW

In this appendix, we detail the solutions of the first har-
monic of the gyrokinetic equations and compute their contri-

butions to Ampere’s law. The formal solution of the gyroki-
netic equation has been given in Eq. �26�. Here, we describe
the explicit solutions. We denote the contributions of indi-
vidual terms on the r.h.s. of �32� to the first harmonic of the

perturbed distribution function as 	G̃1a ,	G̃1b , . . ., with sub-
scripts a ,b , . . . representing the sequence order of the terms.
The corresponding perturbed current moments are denoted

by 	j
¯;e1,e2

=�i,ee�d3v�v� ·e1,2�	G̃1¯.
The first-harmonic contribution of the first term on the

r.h.s. of Eq. �32� is determined by

Lg	G̃1a = − i�
e

m�

�Fg0

�
v� · 	A�x� .

As will be seen, the MHD inertia effect �the second term in
Eq. �A1�� is of order �� /�*i���i

2 /�∧Lp�. Therefore, the solu-

tion of 	G̃1a has to be carried out until this order,

	G̃1a�x� = − i�
1

B

�Fg0

�
eb � v� · 	A +

�2

�

m�

T
Fg0v��− sin �e1 + cos �e2� · ��x� − i�

m�

T
Fg0v� cos �e1 · �

− i�
m�

T
Fg0

3v�
3

8�2B−3/2 cos ��e1e1 + e2e2�:���B3/2e1 · �� − i�
m�

T
Fg0 cos ��e1 · �e1 · �
−

5v�

8�2e1 · �v�
2

2
� ln B

+ v�
2�� +

v�
3

8�2

� ln n0

��
�1 + ��m�

T
−

5

2
�� −

v�
3

16�2e1 · ��ln B�� + e2 · �e1 · ��−
5v�

8�2e2 · �v�
2

2
� ln B

+ v�
2�� −

9v�
3

16�2e2 · ��ln B�� +
7v�

3

8�2 ��e1 · �e1� · �e1 · � + �e2 · �e2� · �e1 · ��

+ e1 · �e2 · �� v�

8�2e2 · �v�
2

2
� ln B + v�

2�� +
7v�

3

16�2e2 · ��ln B�� + e2 · �e2 · �
−
v�

8�2e1 · �v�
2

2
� ln B

+ v�
2�� −

v�
3

8�2

� ln n0

��
�1 + ��m�

T
−

5

2
�� +

v�
3

16�2e1 · ��ln B�� +
v�

3

8�2 �− �e2 · �e1� · �e2 · �

+ �e1 · �e2� · �e2 · ��� − i�
m�

T
Fg0v� sin �e2 · � − i�

m�

T
Fg0

3v�
3

8�2B−3/2 sin ��e1e1 + e2e2�:���B3/2e2 · ��

− i�
m�

T
Fg0 sin ��e1 · �e1 · ��−

v�

8�2e2 · �v�
2

2
� ln B + v�

2�� +
v�

3

16�2e2 · ��ln B��
+ e2 · �e1 · �
 v�

8�2e1 · �v�
2

2
� ln B + v�

2�� −
3v�

3

8�2

� ln n0

��
�1 + ��m�

T
−

5

2
�� +

7v�
3

16�2e1 · ��ln B��
+

v�
3

8�2 ��e2 · �e1� · �e1 · � − �e1 · �e2� · �e1 · �� + e1 · �e2 · �
−
5v�

8�2e1 · �v�
2

2
� ln B + v�

2��
+

5v�
3

8�2

� ln n0

��
�1 + ��m�

T
−

5

2
�� −

9v�
3

16�2e1 · ��ln B�� + e2 · �e2 · ��−
5v�

8�2e2 · �v�
2

2
� ln B + v�

2��
−

v�
3

16�2e2 · ��ln B�� +
7v�

3

8�2 ��e1 · �e1� · �e2 · � + �e2 · �e2� · �e2 · ��� . �A1�

Here, the second term on the r.h.s. derives from the first-order correction −i�	G̃1a, which, as will be seen, gives rise to the

MHD inertia term. Here, 	G̃1a represents the first term on the r.h.s. of Eq. �A1�. In obtaining Eq. �A1�, the contribution from

the term �̇1��	G̃1a /��� is also retained, but the first-harmonic contribution of the term Ẋ ·�X	G̃1a is dropped, due to it being

odd in v�. Using quasineutrality condition, one can prove that the leading order contribution of 	G̃1a �i.e., the first term on the

r.h.s.� to the current moment vanishes. The current moments from 	G̃1a are given as follows:
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	j1a;e1
=

�2n0m�

B
e2 · ��x� − i�

2n0Tei

m�

3

4�i
2B−3/2�e1e1 + e2e2�:���B3/2e1 · �� − i�

2n0Tei

m�

e1 · �e1 · ��−

5

8�i
2e1 · ��ln B

+
1

2
�� +

1

4�i
2

� ln n0

��
�1 + �i� −

1

8�i
2e1 · ��ln B�� + e2 · �e1 · ��−

5

8�i
2e2 · ��ln B +

1

2
�� −

9

8�i
2e2 · ��ln B��

+
7

4�i
2 ��e1 · �e1� · �e1 · � + �e2 · �e2� · �e1 · �� + e1 · �e2 · �� 1

8�i
2e2 · ��ln B +

1

2
�� +

7

8�i
2e2 · ��ln B��

+ e2 · �e2 · ��−
1

8�i
2e1 · ��ln B +

1

2
�� −

1

4�i
2

� ln n0

��
�1 + �i� +

1

8�i
2e1 · ��ln B�� +

1

4�i
2 �− �e2 · �e1� · �e2 · �

+ �e1 · �e2� · �e2 · ��� , �A2�

	j1a;e1
= −

�2n0m�

B
e1 · � − i�

2n0Tei

m�

3

4�i
2B−3/2�e1e1 + e2e2�:���B3/2e2 · �� − i�

2n0Tiei

m�i

e1 · �e1 · ��−

1

8�i
2e2 · ��ln B

+
1

2
�� +

1

8�i
2e2 · ��ln B�� + e2 · �e1 · �� 1

8�i
2e1 · ��ln B +

1

2
�� −

3

4�i
2

� ln n0

��
�1 + �i� +

7

8�i
2e1 · ��ln B��

+
1

4�i
2 ��e2 · �e1� · �e1 · � − �e1 · �e2� · �e1 · �� + e1 · �e2 · ��−

5

8�i
2e1 · ��ln B +

1

2
�� +

5

4�i
2

� ln n0

��
�1 + �i�

−
9

8�i
2e1 · ��ln B�� + e2 · �e2 · ��−

5

8�i
2e2 · ��ln B +

1

2
�� −

1

8�i
2e2 · ��ln B�� +

7

4�i
2 ��e1 · �e1� · �e2 · �

+ �e2 · �e2� · �e2 · ��� . �A3�

Here, one can see that the first terms on the r.h.s. of Eqs.
�A2� and �A3� correspond to the ideal MHD inertia term.
The second term on the right is formally of order ��*i /��
��Lp /��� larger than the ideal MHD inertia term. However,
in the vorticity equation � ·	j=0, they become of the same
order for the case with mode frequency much lower than the
compressional Alfvén mode frequency. In the case with
mode frequency being of the same order as the compres-
sional Alfvén mode frequency, one has ���*i and the sec-
ond term is negligible. The rest terms are of the same order
as the inertia term.

The first-harmonic contribution of the second term on

the r.h.s. of Eq. �32�, 	G̃1b, is of order �Lp /LB���∧ /��
���*i /��2 as compared to the second term on the r.h.s. of
Eq. �A1�. However, its leading order is odd in v� and there-
fore has no contribution to the perturbed current moment.
The next nonvanishing correction of the first harmonic is
reduced by order �2 /��

2 . Therefore, the first-harmonic con-
tribution of the second term on the r.h.s. of Eq. �32� can be
ignored as compared to the inertia term.

The first-harmonic contribution of the third term on the
r.h.s. of Eq. �32� is determined by

− �
�	G̃1c

��
= − i�����

�Fg0

��

1

�
v � eb · ��e1 · �� .

One can find that 	G̃1c is of order �*i /� as compared to the
second term on the r.h.s. of Eq. �A1�. Therefore, only the
lowest order solution needs to be determined:

	G̃1c = − i�
����
�2

�Fg0

��
v� · ��e1 · �� .

The corresponding current moment is given by

	j1c;e1,e2
= − i�

����
B�i

Pi�e1,2 · ��e1 · �� .

This term gives the so-called �*i�1+�i� modification to
the ideal MHD inertia term, noting that e1 ·��e1 ·��
�−e2 ·��e2 ·�� for the modes with frequencies much lower
than the compressional Alfvén frequency.

The first-harmonic contribution of the fourth term on the
r.h.s. of Eq. �32� is determined by
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− �
�	G̃1d

��
= − i�� − �*

T�
e

m�

�Fg0

�

1

�
v � eb · �	��X� ,

where the guiding center expansion of 	��x� has been made
and only leading-order contribution is kept. The solution is

	G̃1d = − i
1

B�
�� − �*

T�
�Fg0

�
v� · �	��x� . �A4�

The leading-order contribution of 	G̃1d to two perpendicular
components of the perturbed current moment are as follows:

	j1d;e1,e2
= in0mi�� − �*i�1 + �i��

1

B2e1,2 · �	� .

This term represents the parallel-electric-field modification
to the MHD inertia term. As is analyzed in Sec. IV C, this
term can be of the same order as the inertia term near the
singular layers.

The first-harmonic contribution of the fifth term on the
r.h.s. of Eq. �32� is determined by

− �
�	G̃1e

��
=

e

m�

v · �x� �Fg0

�
�	��x� .

One can find that 	G̃1e is of order ����∧ /�i
2���*i /��, as

compared to 	G̃1d in Eq. �A4�. Therefore, the solution has to
be carried out until the second order, yielding

	G̃1e�x� = −
1

B
v � eb · �� �Fg0

�
�	��x�

−
3

8B�2v�
3 e1 · �� �Fg0

�
�

�sin ��e1e1 + e2e2�:��	� .

Using the quasineutrality condition, one can prove that the

leading-order contribution of 	G̃1e to the current moment
vanishes. The remaining contribution is

	j1e;e1
= 0,

	j1e;e2
=

3

2
n0m�

����Ti

B3ei

� ln n0

��
�1 + �i�

��e1e1 + e2e2�:��	� .

The first-harmonic contribution of the sixth term on the
r.h.s. of Eq. �32� is determined by

− �
�	G̃1f

��
= � g

B

�Fg0

��
+ �v��

e

m�B

�F̄g1

��
�eb � v� · 	B�x� .

�A5�

First, we note that, according to Eq. �18�, the two terms in

the parenthesis are of the same order. One can find that 	G̃1f

is of order ��∧
2 /�i

2���*i /��2 as compared to the second term
on the r.h.s. of Eq. �A1�. Here, an order estimate, i.e., 	B�

	�B /LB��∧, has been used. Therefore, the solution of Eq.
�A5� has to be carried out until the second order, yielding

	G̃1f�x� = −
1

�
� g

B

�Fg0

��
+ �v��

e

m�B

�F̄g1

��
�v� · 	B�x�

−
3

8�3� g

B

�Fg0

��
+ �v��

e

m�B

�F̄g1

��
�

�v�
2 �e1e1 + e2e2�:���v� · 	B�x�� .

The current moment is given by

	j1f;e1,e2
= −

gP�

B2 e1,2 · 	B − g�e1,2 · 	B

−
3

2�i
� 1

B2

gn0Ti
2

�im�i

� ln n0

��
�1 + 2�i�

− 4�m�i dd�0�0F̄g1�
��e1e1 + e2e2�:���e1,2 · 	B� .

The first-harmonic contribution of the seventh term on
the r.h.s. of Eq. �32� is determined by

− �
�	G̃1g

��
=

1

B
v� · �XFg0eb · 	B�x� . �A6�

One can find that 	G̃1g is of order �P /B2���∧�� /�i
2�

���*i /��2 as compared to the second term on the r.h.s. of
Eq. �A1�. Here, an order estimate, i.e., 	B� 	B� ·��

	�B /LB��∧, is employed, which corresponds to the case with
mode frequency much lower than the compressional Alfvén
mode frequency.18 In the case with mode frequency being of
the same order as the compressional Alfvén mode frequency,
one has ���*i, the seventh term becomes negligible. There-
fore, the solution of Eq. �A6� has to be carried out until the
second order, yielding

	G̃1g�x� = −
����
B�

�Fg0

��
v� sin �eb · 	B�x�

−
3����
8�3B

�Fg0

��
v�

3

�sin ��e1e1 + e2e2�:���eb · 	B� .

The current moment is given by

	j1g;e1
= 0,

	j1g;e2
= −

P�����
B2 	B · eb −

3����ein0

2B�i
3 � Ti

m�i
�2

�
� ln n0

��
�1 + 2�i��e1e1 + e2e2�:���eb · 	B� .

The eighth term on the r.h.s. of Eq. �32� is of order
��*i /����∧ /a� �a represents the minor radius� as compared

to the forth term on the r.h.s. of Eq. �32�. Therefore, 	G̃1h can
be dropped.

The ninth term on the r.h.s. of Eq. �32� is of the same
order as the term giving rise to the second term on the r.h.s.
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of Eq. �A1�. However, its leading order is odd in v� and
therefore has no contribution to the perturbed current mo-
ment.

Based on the same reason as analyzed for fifth term, the
first-harmonic contribution of the tenth term on the r.h.s. of
Eq. �32� can be dropped.

In addition, we need to consider the first-harmonic con-
tribution of the convective term −��X� ·�Fg0; i.e., the first
term on the r.h.s. of Eq. �31�. Note that ��X� in the convec-
tive term is given in the guiding center coordinates. Convert-
ing back to the particle coordinates, the first-harmonic con-
tribution of the convective term becomes

	G̃1conv = −
v�

�
�e1 sin � − e2 cos �� · �� · �Fg0 −

v�
3

8�3 ����
�Fg0

��
�e1e1e1 sin � + e1e2e2 sin � − e1e1e2 cos �

− e2e2e2 cos �� ] ����� · e1� −
v�

3

8�3

�Fg0

��
e1 · ��������3e1e1 sin � + e2e2 sin � − 2e1e2 cos ��:���� · e1�

−
v�

3

8�3

�Fg0

��
e2 · ��������2e1e2 sin � − e1e1 cos � − 3e2e2 cos ��:���� · e1� −

v�
3

8�3 ����e1 · �� �Fg0

��
��3e1e1 sin �

+ e2e2 sin � − 2e1e2 cos ��:���� · e1� .

Here, we note that the first term of this solution is of order �Lp�∧ /�i
2���*i /��2 as compared to the inertia term �second term on

the r.h.s. of Eq. �A1�� and the second term is a correction of order ��i /���2 to the first term. The 	G̃1conv-induced current
moment components are given as follows:

	j1conv;e1
=

1

B
e2 · �� · �P +

n0ei

2�i
3� T

m�i
�2

����
� ln n0

��
�1 + 2���e1e1e2 + e2e2e2� ] ����� · e1� +

n0ei

�i
3 � T

m�i
�2� ln n0

��
�1

+ 2��e1 · �������e1e2:���� · e1� +
n0ei

2�i
3� T

m�i
�2� ln n0

��
�1 + 2��e2 · ��������e1e1 + 3e2e2�:���� · e1�

+
n0ei

�i
3 � T

m�i
�2

����
� � ln n0

��
�2�1 +

15

2
�2 + 4�� +

�2 ln n0

��2 �1 + 2�� + 2
� ln n0

��
�2

��

��

− �
7

2

� ln T

��
��e1e2:���� · e1� , �A7�

	j1conv;e2
= −

1

B
e1 · �� · �P −

n0ei

2�i
3� T

m�i
�2� ln n0

��
�1 + 2���e1e1e1 + e1e2e2� ] ����� · e1� −

n0ei

2�i
3� T

m�i
�2� ln n0

��
�1

+ 2��e1 · ��������3e1e1 + e2e2�:���� · e1� −
n0ei

�i
3 � T

m�i
�2� ln n0

��
�1 + 2��e2 · �������e1e2:���� · e1�

−
n0ei

2�i
3� T

m�i
�2

����
� � ln n0

��
�2�1 +

15

2
�2 + 4�� +

�2 ln n0

��2 �1 + 2�� +
� ln n0

��
�2

��

��
− �

7

2

� ln T

��
���e1e1

+ e2e2�:���� · e1� . �A8�

Here, the second terms on the r.h.s. of Eqs. �A7� and �A8� are
formally of order ��*i /��2�Lp /�� larger than the ideal MHD
inertia term. However, in the vorticity equation � ·	j=0, it
becomes of the same order as the inertia term, noting that
�e1 ·�e2 ·�−e2 ·�e1 ·��e1 ·��x� cancel in the leading order.

APPENDIX B: REDUCTION OF THE
GYROPHASE-AVERAGED GYROKINETIC EQUATION

In this appendix, we show the reduction of the
gyrophase-averaged gyrokinetic equation for calculating the

pressure moment in Ampere’s law and the density moment in
the quasineutrality condition.

First, we note that only the even part �	G0
e = �	G0�v��

+	G0�−v��� /2� of the distribution function with respect to
the parallel velocity is needed for calculating the pressure
and density moments. Inspecting the r.h.s. �denoted by Rg�
of Eq. �32�, one can see that Rg contains both even �Rg

e� and
odd �Rg

o� parts with respect to v�. The gyrophase-averaged
gyrokinetic equation for the even part can be formally writ-
ten as20
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v�eb · �
v�

i�� − �d�
eb · �	G0

e − i�� − �d�	G0
e

= Rg
e + v�eb · �

1

i�� − �d�
Rg

o. �B1�

This expression shows that the contribution of the even part
�Rg

o� is of order �� /�t
2�Rg

e and the odd part �Rg
o� is enhanced

by order ��∧ /���Lp /LB���* /��, as compared to the even part
�Rg

e�. With these ordering estimates, we can analyze Eq. �32�
term by term.

The gyrophase-average �¯�� of the first term on the
r.h.s. of Eq. �32� yields

�− i�
e

m�

�Fg0

�
v� · 	A�x��

�

= − i��0B
�Fg0

�
�� · � − i��0

�Fg0

�
� · �B

− i�
�Fg0

�
��0B −

v�
2

2
�� · � . �B2�

Note that, in the case with compressional Alfvén mode sup-
pressed, one has �� ·�	�∧ /LB. Therefore, the calculation
has been carried out one order further in Eq. �B2�. As dis-
cussed in Sec. IV D, the first term on the r.h.s. corresponds to
the term on the r.h.s. of Eq. �7�, which gives rise to the
so-called apparent mass effect. Therefore, the first term �with
�� ·�	�∧ /LB assumed� can be used as a reference term.

There is one more contribution of the same type as Eq.

�B2�. Note that 	G̃1a in Eq. �A1� can couple to the last term
in Eq. �13�, yielding

−��v · �x� +
1

�
v � eb · �x�� �	G̃1a

��
�

�

= i��0
�Fg0

�
� · �B + i�

�Fg0

�

v�
2

2
� · � . �B3�

The gyrophase average of the second term on the r.h.s.
of Eq. �32� yields i�d� ·�Fg0. One can prove that this term is
of order �* /�, as compared to the first term in Eq. �B2� and
therefore should be kept.

The gyrophase average of the third term on the r.h.s. of
Eq. �32� is of order ��2 /���∧��LB /Lp� and therefore can be
neglected.

Inserting the quasineutrality condition Eq. �38� into the
fourth term on the r.h.s. of Eq. �32�, one can see that this
term becomes of the same order as �	G0 and therefore
should be kept.

The gyrophase average of the fifth term on the r.h.s. of
Eq. �32� yields

� e

m�

v · �x� �Fg0

�
�	��x��

�

= − �e1 · �� �Fg0

�
�e2 · �	��X� .

This term is of order �* /� as compared to the fourth term on
the r.h.s. of Eq. �32� and therefore should be kept.

The gyrophase average of the sixth term on the r.h.s. of
Eq. �32� is of order ��* /����∧ /Lp�, as compared with the
first term on the r.h.s. of Eq. �B2� and therefore can be ne-
glected.

The gyrophase average of the seventh term on r.h.s. of
Eq. �32� yields

� 1

B
v� · �XFg0eb · 	B�x��
= −

v�
2

�
e1 · �XFg0e2 · �� 1

B
eb · 	B�X�� .

This term is of order �* /�, as compared with the first term
in Eq. �B2� and therefore is kept. Here, an order estimate,
i.e., 	B� 	B� ·��	�B /LB��∧, is employed. This applies to
the modes with frequencies much lower than the compres-
sional Alfvén mode frequency. If the mode frequencies are of
the same order as the compressional Alfvén mode frequency,
one has ���*i and this term becomes negligible.

The eighth term on the r.h.s. of Eq. �32� is of order
��* /����∧ /a� as compared to the fourth term on the r.h.s. of
Eq. �32� and therefore can be neglected.

The ninth term on the r.h.s. of Eq. �32� is odd in v�.
Therefore, in the following ordering estimate, the v�-odd en-
hancement in the discussion of Eq. �B1� needs to be
taken into account. The i�	A part of the ninth term is
of order �∧ /a as compared to the first term on the r.h.s. of
Eq. �B2�. The �	x� part is of order ��* /��2��∧

2 /��LB�, as
compared to the fourth term on the r.h.s. of Eq. �32�, taking
into consideration that ��e2 ·���e1 ·��− �e1 ·���e2 ·���	�
	�1/��LB�	�. Therefore, the ninth term can be neglected.

Finally, the last term on the r.h.s. of Eq. �32� is of order
��* /����∧ /����Lp /LB� as compared to the first term on the
r.h.s. of Eq. �32�, with the v�-odd enhancement in the discus-
sion of Eq. �B1� taken into account. Therefore, this term
needs to be retained. The gyrophase average of the last term
yields

�v�eb · ��x��x� · �Fg0 − �X��X� · �Fg0���

=
v�v�

2

�
�e1e1 + e2e2�:���eb · �� · �Fg0�

−
v�v�

2

�
��e1 · �eb� · ��e1 · �� · �Fg0�

+ �e2 · �eb� · ��e2 · �� · �Fg0�� .
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