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Pfirsch-Schlüter fluxes in tokamaks are shown to drive strong poloidal and toroidal shear flows that are
localized to the edge and scrape-off layer in the presence of temperature gradients and finite bootstrap
current in the pedestal. Within a magnetohydrodynamic model, the effect of these flows on core rotation
and their role in the magnetic configuration dependence of the power threshold for the low- (L-) to high-
(H-)mode transition are discussed. Theoretical predictions based on symmetries of the underlying
equations, coupled with computational results, are found to be in general agreement with observations
in the Alcator C-Mod tokamak [Phys. Plasmas 12, 056111 (2005)].
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Macroscopic flows have a significant effect on transport
and stability in tokamaks. In particular, shear flows at the
edge play an essential role in the transition from low- (L-)
to high- (H-)mode observed in all tokamaks that lead to
improved confinement [1– 4]. Flows responsible for this
desirable enhanced-confinement regime are associated
with a negative radial electric field at the plasma edge
that becomes more negative during the L-H transition,
leading to an increase in the poloidal rotation velocity
and its shear. Although the exact mechanism is not well
understood, one of the principal drives behind this torque is
believed to be the ‘‘ion orbit loss’’ [2]. This effect and
others are reviewed in a comprehensive article by Connor
and Wilson [5].

Tokamaks in general exhibit other flows not directly
associated with the L-H transition. The central (core)
region rotates toroidally, especially when the plasma is
heated using unbalanced neutral beams that contribute a
net toroidal angular momentum to the plasma. Because of
its stabilizing influence on macroscopic instabilities like
the resistive wall mode, toroidal rotation in tokamaks has
received a great deal of theoretical and experimental atten-
tion. A puzzling feature of this rotation is its spontaneous
occurrence even without an apparent momentum source in
purely Ohmic plasmas [6,7], so far without a generally
accepted explanation.

Tokamak experiments report flows also in the scrape-off
layer (SOL), the narrow layer outside the last closed flux
surface that plays the role of an ‘‘exhaust’’ for heat and
particles that escape the region of toroidally-nested flux
surfaces within the separatrix [8–10]. These flows have
been documented in detail in C-Mod [11] in a series of
works by LaBombard and coworkers [10,12,13].

All macroscopic flows in different parts of a tokamak do
not necessarily have a single physical cause. However,
there are ubiquitous ‘‘Pfirsch-Schlüter flows’’ [14], essen-
tially a by-product of toroidal geometry itself, that connect
the core plasma to the edge and the SOL. When coupled
with other neoclassical effects like the bootstrap current
[14], these may have a strong and unifying influence on all
of the aforementioned flows in today’s and the next gen-

eration tokamaks. This point constitutes the main theme of
this Letter.

Recently, without explicitly identifying them as Pfirsch-
Schlüter flows, Montgomery and co-workers have pointed
out that steady-state conditions necessarily include flows,
both poloidal and toroidal, when simple nonideal processes
are included in a fluid description of toroidal plasmas
[15,16]. Since they considered only atypical equilibria
with vacuum fields and uniform transport coefficients,
the flows they found were of insignificant amplitude. We
demonstrate below that the same processes, when exam-
ined under more realistic conditions and augmented by
neoclassical physics, can generate flows that are orders of
magnitude larger, and that they can have a significant
impact on toroidal confinement.

In particular, we show that the edge and SOL flows may
play an important role in the self spin-up of Ohmic H-mode
discharges, as seen in C-Mod and elsewhere [6,7,13]. Since
the sign of the momentum input due to these flows depends
on the magnetic configuration, they may also provide an
explanation for the increased H-mode power threshold
under certain conditions [17], which may not necessarily
be rB drift-dependent, as previously assumed.

Some important characteristics of these flows can be
obtained simply from a generalized Ohms’ law,

 

�r��r�Vl�� � �u� B� di�J�B�rpe�

� ��J� JBS�; (1)

where u ’ vi, JBS is the bootstrap current, and Vl is the
loop voltage. A typical magnetohydrodynamic (MHD)
normalization with vA � B0=

��������������
�0min
p

, etc., has been
used to put the equation in a nondimensional form so
that di � �c=!pi�=a, !2

pi � ne2=��0mi�, and a is the mi-
nor radius. Assuming axisymmetry, we can write B �
r �r� � Fr� , where  is the poloidal flux function
 � R2A � r� , and F � R2B � r� . Then the covariant
components of the Ohm’s law in a flux coordinate system
( , �, �) can be written as
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 � u � �diJ � �J	� � Vl: (4)

where J � 1=r � r��r� is the Jacobian, and for
convenience, we let J	 � J� JBS in the resistive terms.

First, we show how the basic poloidal flow patterns arise
in this model. Assuming velocities are small (juj 
 cs,
where cs is the sound speed) so that we can use the Grad-
Shafranov equation to represent force-balance, with F �
F� � only (in general, with u � 0, F � F� ; �� [18]), flux-
surface average of Eq. (4) leads to �hu i � ��FF0 �
p0hR2i� � �hJBS� i � Vl: If we use the simple bootstrap
current model [19], JBS � ��Fp

0=hB2i�B, where � is a
numerical factor, then we can define the following measure
of the radial velocity (note that our r points inward
towards the magnetic axis):

 urad � �u � hu i � �p0� ��R2 � hR2i�: (5)

Here urad represents a net, toroidally outward, Pfirsch-
Schlüter flux in the MHD limit and forms the basis of the
flows considered in this work (solid arrows in Fig. 1).
Particle conservation implies that these perpendicular
flows in the plasma are accompanied by return flows in
the SOL (dashed arrows in Fig. 1); the poloidal projection
of the complete flow has a dipole pattern [15]. In an up-
down symmetric system, the half above the midplane is in
the counterclockwise direction for a monotonically de-

creasing pressure profile, fixed by toroidal geometry, inde-
pendent of the direction of the fields and currents. It is
accompanied by a clockwise flow below the midplane. For
a ‘‘normal’’ configuration of the plasma current and toroi-
dal field, with the ion rB-drift towards the field null in a
lower single-null (LSN) geometry, the toroidal projection
of the flow in the SOL (essentially a parallel flow) is
positive above the midplane and negative below.

Next, we formally examine symmetries of the system,
i.e., transformations that leave Eqs. (2)–(4) invariant, in
order to understand the changes that occur when current or
field directions are reversed. For this purpose, we define a
‘‘parity’’ factor �f associated with each variable f such
that �2

f � 1 and �f � �1 implies reversal of the variable:
f ! �f. For instance, in order to leave Eq. (4) invariant,
any set of parity transforms has to satisfy the relations
�u � �di�J�F�� � �J	� . All relationships of this form

derived from Eqs. (2)–(4) can be combined and reduced to
the following:

 �u � � ; �u� � ��; �u� � ���F� ;

�� � �di � ���F:
(6)

Note that u � u � r , u� � u � r� changes sign only
with the basis vectors r , r�, which does not imply an
actual change in the flow velocity u itself. However, the
toroidal component depends on the direction of the plasma
current Ip and toroidal field BT also: projection of the SOL
flow onto the poloidal plane has to be in the direction of the
dashed arrows in Fig. 1, which also determines the sense of
the toroidal projection.

Keeping Eq. (6) and Fig. 1 in mind and summarizing, we
see that no set of transformations of the fields and currents
alone will change the direction of the poloidal flow. For
fixed r� , the toroidal component of the velocity reverses
when  (all toroidal currents) or F (toroidal field) is
reversed, but not when both change sign simultaneously.

Another important transformation involves switching
from a LSN to USN (upper-single null) configuration.
This change is accomplished (in an abstract sense) by a
rotation of the torus by 180� that flips it upside down,
followed by a reversal of all toroidal currents and toroidal
field. Rotation corresponds to a parity transform (x! �x)
in the poloidal plane that results in �! 	� �, � ! 	� �
and reversal of the fields. Following the rotation with  !
� , F ! �F leads to B! B, J! J, u! u but with the
magnetic geometry flipped from LSN to USN. Thus, the
flow is not affected directly by this change; however, its
interaction with the fields is altered in an important way, as
we will see below. Note that since  �  p �  ext,  !
� implies reversal of all toroidal currents, including
those responsible for the field null.

Next, we turn to a discussion of numerical calculations
of these flows, their interpretation in terms of the symme-
tries shown above, and their comparison with experimental
observations.
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FIG. 1 (color online). Pfirsch-Schlüter flows (solid arrows) and
the parallel return flows in the SOL (dashed arrows) that accom-
pany them. For the normal plasma current and toroidal field
configuration shown here, the toroidal projection of the parallel
flows has to be positive above the midplane and negative below.
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Figure 2 shows the quasisteady edge and SOL flows in
various magnetic geometries, self-consistently generated
within an MHD model using the Ohm’s law in Eq. (1) with
di � 0 and JBS=J0 ’ 0:2� 0:3, where J0 is the current
density on axis. The dipole structure of the flows that is
suggested by Eq. (5) is evident in the DN configuration
[Fig. 2(a)], both in the poloidal and toroidal components of
the velocities. In DN, the flows are antisymmetric with
respect to the midplane and carry no net toroidal angular
momentum. In the USN and LSN configurations, the basic
flow patterns are essentially repeated, consistent with
Eq. (6), but with modifications introduced externally by
the asymmetric field geometry. In Fig. 2(b) (USN), the
poloidal flows in the lower half of the poloidal plane
have expanded past the midplane at the expense of those
in the upper half, which have now been altered. Interaction
of the flow with the line-tied open field lines around the
X-point damps the toroidal flow there, leaving behind a net
negative (countercurrent) momentum input in the lower
half of the poloidal plane. In Fig. 2(c) (LSN), the effect
is reversed, now providing a net positive (cocurrent) toroi-
dal momentum contribution. Both the sense and location of
momentum input (the edge) are consistent with the obser-
vations in C-Mod [10,12].

Thus, asymmetric damping of one half of the toroidal
dipole seen in Fig. 2(a) through its interaction with the
single-null point in LSN or USN provides an explanation
for the ‘‘self spin-up’’ of Ohmic discharges without an
apparent external momentum source [6,7,13]. Since the
Pfirsch-Schlüter flux responsible for these antisymmetric
flows are part of tokamak plasmas in all collisionality
regimes, this is a robust and universal mechanism for
momentum input to toroidal plasmas. However, the source
is localized to the edge; how momentum is transported
from the edge inward is not clear and is not addressed in
this Letter. An experimental check for the validity of this
mechanism as a toroidal momentum source would be the
following: since the source is vertically asymmetric, lo-
cated opposite from the active null point, in steady-state
the toroidal velocity profile should also be sheared in the
same direction.

Our calculations also support the conjecture by
LaBombard et al. [10] that the edge-generated toroidal
flows can explain the increased power requirements for
the L-H transition observed under certain conditions. If we
assume (a) toroidal rotation is involved in the transition,
and (b) there is an independent cocurrent rotation drive in
the core, for example, due to rf heating [20], then the
toroidal momentum input from the Pfirsch-Schlüter flows
adds to that by the heating source in the normal LSN
configuration [Fig. 2(c)] and opposes it in the USN
[Fig. 2(b)], or when both Ip and BT are reversed in LSN.

At this point, based on the symmetry arguments and the
calculations presented here, we can make a couple of
experimentally testable predictions. Starting in the normal
configuration and reversing only the toroidal field in LSN

should also reverse the toroidal momentum input, thus
making it more difficult to enter H-mode. Also, since
reversing both Ip and BT while maintaining LSN does
not affect the flows, if heating, for example due to neutral
beams, continues to input momentum in the original (now
countercurrent) direction, the power threshold should not
be affected, although the rB drift now would point away
from the X-point.

The poloidal flow patterns in Fig. 2 are qualitatively
consistent with the experimental observations (e.g.,
Fig. 16 in Ref. [10]), in particular, with those identified
as ‘‘transport-driven’’ flows. In all configurations, but most
clearly in the DN, there is a stagnation point approximately
at the outboard midplane. There are also strong flows from
the outboard to the inboard SOL both in LSN and USN,
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FIG. 2 (color online). Edge and SOL flows in various field
geometries. (a) Double-null (DN), (b) Upper single-null (USN),
(c) Lower single-null (LSN). Toroidal velocities are plotted
along the vertical lines shown on the left, starting from the top
of the torus.
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directed towards the inner strike point of the divertor,
independent of the direction of Ip and BT [10].

Localization of the flows around the separatrix is due to
the parallel electric field associated with the bootstrap
current and resistivity gradient at the edge; without these,
the dipole flow patterns persist but are more diffuse, similar
to those reported in Ref. [16]. Figure 3 summarizes scaling
of these flows with resistivity and bootstrap current frac-
tion at fixed 
. In Fig. 3(a), maximum poloidal velocity,
Vpol � jupoljmax, is plotted as a function of resistivity. In the
absence of bootstrap current contribution, the expected
scaling is linear; however, with finite JBS, it is clearly
�1=2 for small �0. This scaling is consistent with that of
the toroidal electric field E� � ��J� � JBS�� � shown in
Fig. 3(b). It follows from the following simple scaling
argument: �J� � JBS�� � � B=�, where the width ��
�1=2. It is also consistent with the expectation that the total
current density J ! JBS only in the limit �! 1. (Recall
that JBS is essentially a free parameter here.) Poloidal flows
scale linearly with the bootstrap current amplitude, as seen
in Fig. 2(c), where we plot the maximum poloidal velocity
Vpol again, but at fixed resistivity as we increase JBS. There
are indications that the flow amplitude scales linearly with

, which would be consistent with Eq. (5); however, a clear
confirmation of this trend is left for a future work.

We conclude by pointing out once more that the self-
consistent flows considered here have their origin in the
toroidal geometry itself; thus, the direction of their poloi-
dal projection is independent of the field or current direc-
tions, although the toroidal velocity does depend on the
magnetic configuration.
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FIG. 3 (color online). Scaling of the poloidal flows with re-
sistivity and the bootstrap current. Average toroidal 
 � 5�
10�5 for all cases. (a) Maximum of the poloidal velocity, Vpol �

jupoljmax, as a function of �0, resistivity on axis. For this scan
�edge=�0 � 105: Here and in (b) below, the dashed line illus-
trates an exact �1=2 scaling. (b) Scaling of the electric field E� �
��J� � JBS�� � at the outboard midplane with resistivity.
(c) Scaling of Vpol with the bootstrap parameter JBS at fixed
�0 � 10�6. Here the dashed line has unit slope.
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