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The nonlinear dynamics of coherent circular/elliptical cyclonic and anticyclonic vortices in plane
flow with constant shear is investigated numerically using a dealiased Fourier pseudospectral code.
The flow is asymptotically linearly stable, but is highly non-normal, allowing perturbations to gain
energy transiently from the background shear flow. This linear transient growth interplays with
nonlinear processes. In certain cases it is shown that the nonlinear feedback is positive, leading to
self-sustaining coherent vortices. Self-sustaining coherent vortices exist where the vorticity is
parallel to the mean flow vorticity !cyclonic rotation". The required nonlinear feedback is absent for
small amplitude anticyclonic vortices. However, elliptical anticyclonic vortices become
self-sustaining if the amplitude exceeds a threshold value. The self-sustaining of coherent vortices
is similar to the subcritical, so-called bypass, transition to turbulence in shear flows. The common
features are: transient linear growth; positive nonlinear feedback; and anisotropy of the linear and
nonlinear phenomena !in contrast to isotropic Kolmogorov turbulence". A plasma laboratory
experiment is suggested based on the results of this investigation. © 2006 American Institute of
Physics. #DOI: 10.1063/1.2209229$

I. INTRODUCTION

A turning point in understanding the energy-intensive
processes having their kinematic origin in smooth
!inflection-free" shear flows that are stable according to the
Rayleigh criterion has already been reached.1 The under-
standing came from recognizing the deficiency of the modal
approach !spectral expansion of perturbations in time and
analysis of the eigenmodes" for shear flows. The linear op-
erators in the mathematical formalism of the modal analysis
of shear flows !e.g., plane Couette and plane Poiseuille
flows" are non-normal and the corresponding eigenmodes are
nonorthogonal and strongly interfere.

A correct approach analyzes the interference of the
eigenmodes. In modal analysis, the focus is on the
asymptotic stability of flows, whereas little attention is di-
rected to any particular initial value or finite time period of
the dynamics. The transient evolution is regarded as having
no significance and left for speculation.

However, in the 1990s, the emphasis shifted from the
analysis of long-time asymptotic flow stability to the study of
transient behavior. The transient analyses have demonstrated
linear transient growth of asymptotically stable hydrody-
namic flows.2–5

It was suggested that transient linear growth modifies the
asymptotic behavior of the system if the nonlinearity plays a
role.6,7 The modification of asymptotic behavior by transient
growth leads to the concept of the onset of turbulence in
spectrally stable shear flows, the so-called bypass
transition.4,5,7–13

In the bypass transition, small perturbations become

large enough by the transient growth that nonlinear interac-
tion plays a role. The nonlinear terms are conservative and
can only redistribute fluctuation energy among the modes. In
the presence of sufficiently strong shear flow, energy can be
redistributed in a way that reinforces the linear transient
growth. A series of phenomena closes the loop so that the
growth phase can persist. This function of the nonlinearity is
coined “nonlinear mixing”6,7 or “positive nonlinear
feedback”.13 Hereafter, we use the term positive nonlinear
feedback, as this clearly underscores the positive action of
loop nonlinearities.

In a simple shear flow obeying the Euler equation
!analogous to the Hasegawa–Mima14 equation in plasma
physics", we will demonstrate !1" the transient growth of
vortical perturbations, !2" the evidence for positive nonlinear
feedback, and !3" the simultaneous interaction of these linear
and nonlinear processes required for the perturbation to be
self-sustaining. In Sec. II, we introduce all necessary defini-
tions and equations. In Sec. III, we numerically illustrate the
previous three issues regarding the dynamics of coherent
vortical perturbations in an unbounded flow with a linear
velocity shear. Perturbations in turbulent flows are chaotic,
but the self-sustenance scenarios for chaotic and coherent
perturbations are similar. Furthermore, coherent vortices may
be the main product of the dynamics and play a determining
role in anomalous transport phenomena.15,16 In Sec. IV, a
simple sketch of the self-sustenance of perturbations in the
wave number plane is presented. We compare the turbulence
scenarios in spectrally stable and unstable flow systems. The
scenarios illustrate the principal differences in the spectral
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characteristics of these turbulent regimes. In Sec. VI, a labo-
ratory plasma experiment is suggested based on the results of
this investigation. Some concluding remarks are presented in
Sec. VII.

II. BASIC EQUATIONS AND PROCESSES

The interplay of linear transient and nonlinear feedback
phenomena can be understood on the basis of the following
two-dimensional hydrodynamic equation:

% #

#t
+ U0!x"

#

#y
&!" + J!",!"" − #!2" = 0, !1"

where " is the stream function of a perturbation and # is the
kinematic viscosity. The spatial operators J and ! represent
the two-dimensional Jacobian and Laplacian, respectively.
The basic flow velocity U0!x"= !0,Ax" has a positive con-
stant shear A in the x direction. The velocity v, the vorticity
! and energy density e of the perturbation are defined in
terms of the stream function " and the constant fluid mass
density $:
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The vorticity ! measures the local angular momentum per
unit mass of the fluid and the Jacobian operator describes the
Lie or convective derivative v ·"! of the vorticity.

In this work we study cyclonic and anticyclonic coherent
vortical perturbations linearly and nonlinearly. Cyclonic vor-
tices are parallel to the basic flow vorticity "%U0=Aẑ.

Anticyclonic vortices are antiparallel to the basic flow vor-
ticity. A generic form for vortical perturbations in the !x ,y"
plane is the local Gaussian stream function

"0 ) "!x,y,t"* t=0 = b exp'−
x2 + &2y2

!2 ( , !5"

where & characterizes the eccentricity of the initial coherent
vortex and ! characterizes the vortex size.

We introduce dimensionless variables using the time
scale A−1 of the background shear flow vorticity and the
spatial scale !. The nondimensional parameters are
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In the dimensionless variables the dynamical Eq. !1" be-
comes
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with the dimensionless energy density
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and the dimensionless initial vortex function

(+'=0 = B exp!− X2 − &2Y2" . !8"

The shear parameter A, the amplitude of the initial per-
turbation b, and the characteristic linear scale along the flow
! combine to form one parameter B, which represents the
defining parameter of the vortex dynamics. The parameter B
is the ratio of the vortex eddy turnover time to the shear time
scale. Large values of B represent strong nonlinear interac-
tion compared to the linear shear interaction. As shown in
Fig. 1!a", coherent vortices with a negative value of B have

FIG. 1. The flow diagram of the background flow with
!a" cyclonic vortex !B)0", !b" anticyclonic vortex with
one stagnation point !0)B)0.5", and !c" anticyclonic
vortex with three stagnation points !B*0.5". The aster-
isks !*" indicate stagnation points.
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the same sign as the basic flow vorticity !counterclockwise
flow" and are cyclonic. The vortices with a positive value of
B have the opposite sign !clockwise flow" relative to the
basic flow vorticity and represent anticyclonic vortices. For
an anticyclonic vortex, there are stagnation points in the flow
between the outer sheared flow and the inner vortex flow. For
small amplitude anticyclonic vortices !0)B)0.5" in Fig.
1!b", there exists one stagnation point, whereas for large am-
plitude anticyclonic vortices !B*0.5" in Fig. 1!c", there exist
three stagnation points. These different configurations of the
flow diagrams result in the different dynamics of the coher-
ent anticyclonic vortices. Especially, as one will see later, the
threshold B=b /A!2,0.5 gives a reasonable estimate for the
onset of total energy amplification for anticyclonic vortices.

On performing Fourier analysis with respect to the vari-
ables X and Y:

( =- dkXdkX(kexp!ikXX + ikXY" , !9"

one finds

k2#(k
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Ek = k2+(k+2, !11"

where k2)kX
2 +kY

2 and Ek is twice the spectral energy density
associated with the wave vector k.

Equations !10" and !11" form the basis of our numerical
study: with these equations, one can quantitatively explore
the dynamics of the stream function, spectral energy density,
and total perturbed energy. However, to investigate the phys-
ics of the phenomena, it is helpful to analyze the dynamical
equation for the spectral energy density, which follows from
Eqs. !10" and !11":
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The term VkEk represents the energy density flux in the wave
number plane. The convolution in N̂k is a complicated func-
tion of (k that describes the effect of nonlinear interactions
on the total energy change.

One can see from Eq. !12" that the dynamics of Ek is the
result of the interplay of four basic phenomena:

!a" The second term on the left-hand side !lhs" represents
the energy exchange between the perturbations and the
background flow. Spatial Fourier harmonics !SFHs" for
which kX!'"kY *0 gain energy from the background
flow and their amplitudes increase, whereas the ampli-
tudes of SFHs for which kX!'"kY )0 decrease.

!b" The third term on the lhs represents the linear “drift” of
SFHs, kX!'"=kX!0"−kY', in the wave number plane.
The drift is caused by shearing of the perturbations by
the background shear flow. Physically the linear drift
corresponds to the statement that shear produces small-
scale structures in the longtime limit. We see that the
drift of a SFH does not cause a variation of the total
energy of a perturbation !/dkXdkY"k · !VkEk"=0", but
results in a transfer of SFHs from the amplification
region !kX!'"kY *0" to the attenuation one !kX!'"kY
)0". In terms of some characteristic wave number
k0= !k0X ,k0Y" of the energy spectrum, the time 'max to
reach the maximum energy and the maximum energy
amplification !Emax can be approximated as

'max 0
k0X

k0Y
, !Emax 0 '1 +

k0X
2

k0Y
2 (E0.

A large transient amplification !Emax/E0!1 occurs for the
high k0X /k0Y modes in the region k0Xk0Y *0.
!c" The fourth term on the lhs represents the energy dissi-

pation by viscosity.
!d" Nonlinear interactions in N̂k on the right-hand side

!rhs" lead to energy exchange between different SFHs,
redistributing perturbation energy on the wave number
plane while leaving the total energy unchanged.

III. THE DYNAMICS OF COHERENT
VORTICES—NUMERICAL SIMULATIONS

The simulations were done using the dealiased Fourier
pseudospectral method, with a 256%256 grid superimposed
on a spatial box of size 40! %40!, yielding a minimum
wave number k1! of 2+ /40=0.157 and maximum wave
number kmax! =85k1.

In the simulations, we computed the total energy evolu-
tion of circular !&=1" vortices at B= ±0.1 to ±11.0, Re=,
!Fig. 2" and Re=100 !Fig. 3". The normalized total energy of
the perturbations is given by

E!'"
E!0"

)
- dkXdkYEk!'"

- dkXdkYEk!0"
. !14"

The simulations were also performed for elliptical vortices of
two different aspect ratios, one extended !&=1/2" and one
contracted !&=2" in the Y direction !Fig. 4". The values of B
were chosen to get the same energy as in the circular case.
The initial energies of the vortex with &=1/2 ,2 and
B= ±4.472 are equal to the initial energy of the circular vor-
tex with B=5.0. The results of the numerical simulations are
presented in Figs. 2–5.

Figure 4 shows that the shape of the vortex is also criti-
cal. The energy of the streamwise cyclonic vortex drops
steeply and then bounces up, but the final energy is still less
than the initial energy.

A necessary condition for the self-sustenance of
perturbations—in our case, for the self-sustenance of coher-
ent circular/elliptical perturbations—is positive nonlinear
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feedback. The dominant transfer of Fourier harmonics by
nonlinear processes must be from the attenuation domains
!quadrants II and IV in k plane" to the amplification domains
!quadrants I and III in k plane"; i.e., one requires a predomi-
nantly positive Nk in quadrants I and III and a predominantly
negative Nk in quadrants II and IV, as described in detail in
Sec. IV.

The linear dynamics of cyclonic and anticyclonic vorti-
ces are identical. The differences evident between graphs !a"
and !b" of Figs. 2 and 3 arise from differences in the nonlin-
ear feedback. The simulations we performed confirm this
statement.

The energy of the small amplitude anticyclonic vortices
decreases !see the graphs for B=0.1 and 1.0 in Figs. 2 and 3"
due to the negative nonlinear feedback, as is evident in the
Nk field for B=1.0 depicted at t=1.25 and t=2.5 in Figs. 5!a"
and 5!b". The energy of the large amplitude anticyclonic vor-
tices increases !see the graphs for B*2.0 in Figs. 2 and 3"

due to the positive nonlinear feedback, as is evident in the Nk
field for B=5.0 depicted at t=1.25 and t=2.5 in Figs. 5!c"
and 5!d".

The vortex with B=5 has the maximum growth rate. For
B larger than 5, the grow rate is smaller. For smaller B, the
nonlinear interaction cannot redistribute the modes rapidly
enough to compensate for the loss of modes in the amplifi-
cation domains, whereas for larger B, the nonlinear redistri-
bution is so fast that there is not enough time for the modes
to experience the transient growth. Therefore for the inter-
mediate value B=5, the strongest amplification happens
when the conditions for positive nonlinear feedback are sat-
isfied.

The energy of the cyclonic vortices increases initially
and then oscillates. This is explained by a sign change of the
nonlinear feedback—note the opposite signs of Nk in the
amplification !I and III" and attenuation !II and IV" quadrants
for B=−3.0 at t=1.0 and t=2.25 in Figs. 5!e" and 5!f". At

FIG. 2. Time evolutions of !a" anticyclonic and !b" cyclonic perturbation energies at Re=, plotted with different B values. The total perturbation energy is
normalized by the initial energy.

FIG. 3. Time evolutions of !a" anticyclonic and !b" cyclonic perturbation energies at Re=100 plotted with different B values. The total perturbation energy is
normalized by the initial energy.
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t=1.0, Nk is mainly positive in quadrants I and III and is
mainly negative in quadrants II and IV. As a result, the total
energy is growing at this time. At t=2.25 the behavior of Nk
is opposite: the total energy is decreasing. As shown in Fig.
3, cyclonic vortices are vulnerable to the viscosity.

The contours of the modal energy Ek !black line con-
tours" and nonlinear energy contribution Nk !density plot,
color online only" in Fig. 5 emphasize the anisotropy of the
spectral characteristics and physical processes in the k plane,
in marked contrast to isotropic !Kolmogorov" turbulence.

IV. A QUALITATIVE SKETCH
OF THE SELF-SUSTENANCE MECHANISM

The self-sustaining vortex energy observed in Fig. 2!a"
!for B*2.0" and Fig. 2!b" is the result of a subtle interaction
between linear and nonlinear dynamics. Apparently, the bal-
anced interplay is achieved for a limited range of system
parameters.

A simple sketch in the !kX ,kY" wave number plane is
presented in Fig. 6 to explain this interplay. The active do-
main is the region where viscous dissipation is negligible:
kX

2 +kY
2 )1Re. The domain is described by the circle in Fig. 6.

The interaction of linear and nonlinear dynamics is described
following an individual SFH in the wave number plane.

!i" A SFH located initially at point 1 in Fig. 6 is in the
amplification domain of the active domain, where
kXkY *0. According to process !B", the SFH drifts in
the −kX direction, as indicated by the arrow. The en-
ergy of the SFH grows initially.

!ii" The growth lasts until the wave vector crosses the line
kY =0 at point 2 in Fig. 6.

!iii" Then, in the attenuation domain, where kXkY )0, the
SFH continues its drift until it reaches point 3, where
it is dissipated through viscous friction.

!iv" Alternatively, the SFH may be relocated to the ampli-
fication domain by three-wave interaction and the pro-
cess will repeat.

We present the drift of the SFH only in the right half-plane,
as (!kX ,kY"=(*!−kX ,−kY". The same process will occur
with all of the Fourier harmonics.

If the nonlinear interaction between the Fourier harmon-
ics is inefficient, the perturbation dissipates in the end. A
continuous transfer of shear energy to the perturbations is
necessary for their long lives. That is possible when the am-
plification domain !quadrants I and III" is being repopulated
through nonlinear interaction !e.g., k!+k"=k" between
Fourier harmonics that have reached sufficient amplitude.
The bypass scenario implies that the dominant transfer of the
perturbation energy is from the attenuation domain to the
amplification domain, a so-called positive nonlinear feed-
back mechanism.

The long-lived vortex in a shear flow indicates that lin-
ear drift and nonlinear interaction are in a positive feedback
loop or at least in balance. To what extent the reproduction of
the Fourier harmonics in quadrants I and III is sustained,
even in the case of positive feedback, depends both on the
amplitude and on the spectrum of the initial perturbation.
Nonlinear processes are weak at low amplitudes and are not
able to compensate for the linear drift of the SFH in the wave
number plane. As a result, weak perturbations are damped
without any trace and without inducing a transition to turbu-
lence. The higher the amplitude of the initial perturbation,
the stronger are the nonlinear effects. At a certain amplitude
!which, of course, depends on both the initial vortex pertur-
bation spectrum in the wave number plane and the Reynolds
number", the nonlinear processes are able to compensate for
the action of the linear drift, thus ensuring the permanent
return of the SFH to the amplification areas !quadrants I and
III". This eventually ensures the permanent extraction of the
energy from the background flow and the maintenance of the
perturbations. Hence, the bypass scenario can be realized
only in the case of finite amplitude perturbations. In each
case it has a threshold that depends on the perturbation spec-
trum and the Reynolds number.

FIG. 4. Time evolution of energy at elliptical !a" anticyclonic and !b" cyclonic vortices. The circular vortex !&=1" is B= ±5.0. For &=1/2 and 2, the
parameters B= ±4.472 are chosen such that the total energies are equal to the energy of a circular vortex with B= ±5.0.
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V. APPLICATION TO HASEGAWA-MIMA EQUATION

The electrostatic turbulence of magnetized plasmas
within the scale length of ion gyroradius $s=1Temi /eB is
described by Hasegawa-Mima !HM" model. The model re-
duced to

#

#'
!1 − !"- − X

#

#Y
!- − J!-,!-" + Re

−1!2- = 0, !15"

in terms of the electric potential -, the background E%B
velocity VE%B= !0,Ax", and the energy density

E!'" =
1
2
%-2 + ' #-

#X
(2

+ ' #-

#Y
(2& . !16"

Here, the dimensionless parameters and variables are res-
caled with the vortex size and amplitude as in Sec. II and the
density gradient is assumed to be zero.

The apparent differences between the Euler and HM
equations are the #- /#' term in the dynamics and the corre-
sponding +-+2 term in the energy, due to the electron adia-
batic response to the electrostatic perturbation.

Figure 7 shows that the HM model behaves almost the
same as the Euler model. The total energy of anticyclonic

FIG. 5. !Color online" Contours of energy Ek !line contour" and nonlinear energy contribution Nk !color density plot" in the k plane. !a" B=1.0t=1.25; !b"
B=1.0, t=2.5; !c" B=5.0, t=1.25; !d" B=5.0, t=2.5; !e" B=−3.0, t=1.0; and !f" B=−3.0, t=2.25.
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vortices increases above approximately B=2.0 and reaches
the maximum growth rate at B=5.0, but the maximum slope
!E /!',0.16E0 in energy is relatively smaller than the cor-
responding slope 0.4E0 in the Euler model. Aside from the
nonlinear interaction, anticyclonic vortices, where low-wave-
number modes are more dominant due to their immunity to
viscous decay, have lower transient growth, kXkY / !1+k2"
0kXkY "kXkY /k2, where kX ,kY "1. The cyclonic vortices
show less oscillation in the HM model. In the wave number
plane, the slow drift VkX

=−k2kY / !1+k2"0−k2kY, where
k"1, underlies the slow transition of the modes from the
amplification region to the attenuation region.

VI. PLASMA VORTEX EXPERIMENT

In high-power driven tokamaks, there are several sources
of perturbations that arise to seed the formation of vortices.
The beam injection lines piercing the magnetic surfaces as
well as the RF heating beams break the local symmetry of
the magnetic surface which is thought to be a source of local
E%B flow generation. The high central power deposition
produces sawteeth oscillations which are the finite ampli-
tudes needed to destabilize the neoclassical tearing modes.
Tearing modes have convective E%B motions associated
with their eigenfunctions. The clearest experimental evi-
dence for the finite amplitude seeds comes from magnetic
probes measuring the 1/1 and 3/2 magnetic signals associ-
ated with the low mode number m/n resistive magnetohy-
drodynamic modes. Brennan et al. 17 show an example
where 1/1 sawteeth with a recurrence period of 170 ms at
significant amplitudes finally destabilizes the damped 3/2
neoclassical tearing mode. Although these magnetic mea-
surements are for relatively large amplitude, low mode num-
ber m /n disturbances, driven by the auxiliary heating, we
argue that similar small scale drift vortices will be driven by
these disturbances. In space plasmas, during magnetic recon-
nection events in the geomagnetic tail, high speed plasma
streams and vortices are created.18

In basic laboratory plasma experiments, the mechanism
of self-sustenance of vortices by shear flow can be tested.
Basic plasma experiments that launch finite amplitude vortex
structures and measure their subsequent growth or decay
would be of considerable importance for a range of magne-
tized plasmas. In these experiments with Te210 eV, pulsed
probes can be used to excite and measure the initial vortices.

In a plasma device, the background electric field is im-
posed in terms of a bias voltage between a floating cathode
and the chamber wall. The imposed electric field forms a
background E%B flow. Self-sustaining vortical structures

FIG. 6. !Color online" A sketch of the bypass transition applied to planar flow, in the !kX ,kY" wave number plane. In the domain kX
2 +kY

2 )Re, viscous
dissipation is neglected, where kX and kY are the wave numbers in the flow and shear directions, respectively. The wave number of the SFH drifts from its
initial position 1, the SFH is amplified in quadrant I, reaches its maximum amplitude at 2, is attenuated in quadrant II, and undergoes viscous dissipation at
3. The amplification quadrant I is repopulated through nonlinear interaction !e.g., k!+k"=k" from SFHs located in the attenuation quadrants II and IV. !See
the text for details."

FIG. 7. Time evolutions of !a" anticyclonic and !b" cyclonic perturbation
energies at Re=, plotted with different B values with the HM equation. The
total perturbation energy is normalized by the initial energy.
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are observed by controlling a potential profile. The criterion
for the self-sustenance of vortices depends on the vortex size
and amplitude:

B =
e-̃/Te

Er!!
2/!.ciB̃"

0 5, !17"

in terms of the vortex amplitude -̃, electron temperature Te,
magnetic field B̃, ion gyrofrequency .ci, electric field gradi-
ent Er!=dEr /dr, and vortex size !$s where ! is dimension-
less. For example, in a helium plasma with temperature
Te=10 eV and magnetic field B=0.1 T !for which the scale
$s is 0.6 cm and the ion gyrofrequency .ci is 2.4
%106 rad/s", the vortical structure with amplitude e- /Te
,0.1 and radius 10$s,6 cm needs the voltage !-
=1/2Er!!l$s"2=cs$sB /10000.1 V across the vortical struc-
ture in order to survive for a long time.

To test the lifetime of localized vortices, we propose to
use two vorticity probes at the same radius but displaced
along B in the LAPD experiment.19 The first probe is used as
an antenna to produce cyclonic or anticyclonic vortices and
the second probe is used to measure their vorticity with time
after launching. The details of the experimental arrangement
remain to be fully worked out.

VII. CONCLUSION

In the frame of the two-dimensional Euler equation, we
show that a fixed background shear flow can maintain finite
amplitude anticyclonic and cyclonic vortices for a long time
through a positive feedback mechanism between the nonlin-
ear interactions and the external shearing of the vortex flow.
The existence of this positive feedback may indicate a sub-
critical transition to turbulence. The positive feedback is ob-
served in the simulation, along with self-sustaining vortex
perturbations. As optimal growth is expected in three-

dimensional flow, the transition to subcritical turbulence will
be the next subject of our research. For the simulation of the
Hasegawa-Mima equation, we estimated the condition for
self-sustaining perturbations. The comparison with plasmas
experiments in Helimak or LAPD plasma devices will yield
a more controlled understanding of the process.
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