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A gradient in the plasma density across the guiding magnetic field can support a low-frequency
radially localized helicon !RLH" wave in a plasma column. If the radial density gradient changes
along the magnetic field, this wave can undergo reflection and also excite conventional whistlers.
This paper presents calculations of the corresponding reflection coefficient, including the effect of
whistler radiation. It is shown that a sharp longitudinal density drop causes a nearly complete
reflection of the RLH wave. The longitudinal wavelength of the excited whistlers is much greater
than that of the RLH wave, and, as a result, only a small fraction of the RLH wave energy is
transferred to the whistlers. © 2006 American Institute of Physics. #DOI: 10.1063/1.2212367$

I. INTRODUCTION

This work is motivated by the development of helicon
plasma sources for plasma-based space thrusters.1,2 Opera-
tion of such sources usually involves excitation of rf eigen-
modes in the plasma.3 Although helicon sources have been
extensively studied in laboratory experiments,4 the closed-
end laboratory devices do not quite reproduce the conditions
of a plasma thruster, because one end of the source must be
open in a thruster. It is then important to understand whether
having an open-end system would still allow the rf waves to
be confined inside the source as they are in laboratory ex-
periments.

The operational frequency of helicon sources is below
the electron gyrofrequency and above the ion gyrofrequency.
In uniform plasmas, whistler waves belong to this frequency
range.5 However, in actual helicon plasma sources, the
plasma density is usually nonuniform across the equilibrium
magnetic field. This nonuniformity can modify dramatically
both the whistler wave structure and its dispersion relation.6

A radial density gradient in a plasma cylinder can create a
potential well for whistlers, allowing radially localized
solutions.7 We refer to such solutions as radially localized
helicon !RLH" waves.

It is noteworthy that RLH waves must have a nonzero
azimuthal mode number, m.7 An essential element of RLH
waves is the presence of a Hall current in the direction of the
plasma density gradient, which vanishes for axisymmetric
!m=0" modes. The radial Hall current generates an electron
current along the equilibrium magnetic field to keep the di-
vergence of the total plasma current equal to zero and pre-
vent charge separation.

The RLH mode has been identified experimentally by its
resonant response to the rf antenna.8 The power balance
analysis presented in Ref. 8 shows that this mode provides
the dominant power deposition mechanism into the helicon
discharge. The radial gradient of the plasma prohibits con-
ventional !uniform plasma" whistlers in that particular ex-
periment. The mode damping rate measured in Ref. 8 is rela-
tively low, which allows the RLH wave to travel many times

along the plasma without significant dissipation. This leaves
no doubt that the wave is trapped axially along the magnetic-
field lines. What is less obvious is whether the end walls or
the plasma itself are responsible for such trapping. This dis-
tinction is crucial for space propulsion applications, where
the plasma source is open downstream.

RLH waves may still be confined axially in an open-end
system due to intrinsic nonuniformity of the plasma in the
axial direction. The underlying reasons for such nonunifor-
mity can be ion acceleration by the ambipolar electric field
and radial plasma losses.9 It is therefore important to exam-
ine the behavior of RLH waves in longitudinally nonuniform
plasmas.

In this paper, we consider the RLH wave propagation
within a slab model of the plasma cylinder, so that the x and
y coordinates correspond to the radial and azimuthal coordi-
nates, respectively. The z axis is directed along the unper-
turbed magnetic field. The equilibrium plasma density is as-
sumed to be a function of x and z only, i.e., it is uniform
along the y axis. The azimuthal wave number of the RLH
wave reported in Ref. 8 is m= +1. The characteristic radial
and azimuthal scales for this mode are comparable to each
other and they are much shorter than the axial scale of the
wave, since the plasma is elongated. In order to incorporate
these essential elements into the slab model, we assume that
the wave has a finite y component of the wave vector !ky".
This ensures that there is a nonzero component of the elec-
tron !E!B"-drift velocity along the density gradient !the x
axis". We also assume that the characteristic longitudinal
scale of the wave field is much longer than ky

−1, whereas the
characteristic transverse scales are comparable to ky

−1.
We use the slab model to consider propagation and re-

flection of an RLH wave that is localized in x and travels in
the z direction. We assume that the incident wave comes
from z→−", where the unperturbed plasma density is uni-
form in z but nonuniform in x. The density is also assumed to
be independent of z at z→ +". The reflection takes place
within a finite interval around z=0, where the plasma density
is both x- and z-dependent. We show that a sharp drop in
plasma density along the magnetic field causes a nearly com-
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plete reflection of the incident RLH wave. The reflection is
generally accompanied by radiation of whistler waves whose
wavelength is much greater than that of the RLH wave. We
find that only a small fraction of the RLH wave energy is
transferred to these large-scale whistlers.

The paper is organized as follows. In Sec. II, we derive a
reduced equation that describes whistlers and RLH waves. In
Sec. III, we consider reflection of RLH waves in a longitu-
dinally nonuniform plasma. Section IV addresses the linear
transformation of an RLH wave into large-scale whistlers. In
Sec. V we summarize the results.

II. BASIC EQUATIONS

The waves under consideration belong to the frequency
range of

#ce $ # $ #ci, !1"

where # is the wave frequency, and #ce%&e&B0 /mec and
#ci%&e&B0 /mic are the electron and ion gyrofrequencies.
Note that the quantities #ce and #ci are positive in our nota-
tion. The waves are described by the following linearized
equations:10

# ! B =
4%

c
j , !2"

# ! E = −
1
c

$B
$t

, !3"

0 = E −
1

&e&n0c
j ! B0, !4"

where n0 and B0%B0ez are the equilibrium density and mag-
netic field and B, E, and j are the perturbed magnetic field,
electric field, and electron current.

Equations !2" and !3" are Maxwell’s equations without
the displacement current. The displacement current can be
neglected when the plasma is sufficiently dense, so that
#pe$#ce, where #pe%'4%n0e2 /me is the electron plasma
frequency. Equation !4" is the electron equation of motion in
the zero-inertia limit, which is justified at #&#ce. This equa-
tion implies that the plasma current across the magnetic field
is the electron Hall current. It also shows that the perturbed
electric field E is orthogonal to B0. The z component of E
vanishes due to high electron conductivity along the
magnetic-field lines, provided that the characteristic scale
lengths of the wave fields and plasma density are greater than
the plasma skin depth c /#pe. Note that this assumption au-
tomatically excludes electrostatic modes from the analysis.

Since the plasma is uniform in the y direction, we use a
Fourier expansion of the perturbed fields to select a single
harmonic that depends on y as eikyy. The time dependence is
assumed to be e−i#t. Elimination of B and j reduces Eqs.
!2"–!4" to a closed set of equations for Ex and Ey,

iky
$Ey

$x
+ ky

2Ex =
$2Ex

$z2 −
#

#ce

#pe
2

c2 iEy , !5"

iky
$Ex

$x
−

$2Ey

$x2 =
$2Ey

$z2 +
#

#ce

#pe
2

c2 iEx. !6"

As explained in the Introduction, we will treat the z de-
rivatives as being smaller than ky and the x derivatives as
being comparable to ky. In this limit, the eigenfrequency of a
whistler wave satisfies the condition

# & #ce
ky

2c2

#pe
2 , !7"

where ky
2c2 /#pe

2 &1, and is given by5

# ( #ce

'kx
2 + ky

2&kz&c2

#pe
2 , !8"

with kz=−i$ /$z and kx=−i$ /$x. We assume that condition
!7" holds for all waves under consideration, which makes it
convenient to introduce a dimensionless function

G %
#

#ce

#pe
2

ky
2c2 & 1 !9"

that will be treated as a small quantity.
Next, we use Eq. !5" to express Ex in Eq. !6" in terms of

Ey, $Ey /$x, and $2Ex /$z2. Collecting Ex terms on the left-
hand side and Ey terms on the right-hand side, we find that
Eqs. !5" and !6" transform to

iky
2Ex − i

$2Ex

$z2 = ky
$Ey

$x
+ ky

2GEy , !10"

iky
$2

$z2) $Ex

$x
* − iky

2G
$2Ex

$z2 = ky
2$2Ey

$z2 − ky
3$G

$x
Ey + ky

4G2Ey .

!11"

We now make use of the smallness of the z derivatives
and G. To lowest order in these small quantities, we put
$ /$z=0 and G=0 in Eq. !10" to find that

ikyEx =
$Ey

$x
. !12"

We use this relation to eliminate Ex from Eq. !11" and we
omit the second term on the left-hand side of Eq. !11", since
for G&1 it is much smaller than the first term. We thereby
reduce Eq. !11" to

$2

$z2) $2Ey

$x2 − ky
2Ey* = − ky

3$G

$x
Ey + ky

4G2Ey . !13"

It is convenient to eliminate ky from Eq. !13" by replac-
ing x and z by x /ky and z /ky, with x and y being dimension-
less variables from now on. Then Eq. !13" takes the form

$2

$z2) $2E

$x2 − E* = −
$G

$x
E + G2E , !14"

where the subscript y is omitted for brevity, so that E%Ey.
As shown below, Eq. !14" describes both the whistler waves
and the slab version of the RLH waves.
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In the case of a longitudinally uniform plasma, $2 /$z2

can be replaced by −'z
2, with E(ei'zz. Consequently, Eq. !14"

takes the form of a one-dimensional Schrödinger’s equation
for a “particle” with an “energy” )0=−1,

$2E

$x2 + #)0 − U!x"$E = 0, !15"

where

U!x" %
− 1

'z
2 )G2 −

$G

$x
* !16"

is the effective potential energy. If the plasma is also uniform
in x, then U!x" is a constant and Eq. !15" describes “free
motion” with a constant “momentum,” i.e. E(ei'xx, with

'x = ±'G2

'z
2 − 1. !17"

Equation !17" is equivalent to the whistler dispersion relation
in the limit of small longitudinal wave numbers.5 “Free mo-
tion” implies that the potential energy is lower than )0,
which requires G* &'z&.

In a nonuniform plasma, the dominant contribution to
the potential energy tends to come from $G /$x, as the G2

term is relatively small for G&1. We observe that a mono-
tonically decreasing density profile can create a potential
well. For example, G!x"(const-arctan!x" produces a poten-
tial well located at x=0. Depending on the depth of the well,
there can be one or more bound states. The depth of the well
scales as 'z

−2, so that for any bound state there exists a value
of 'z such that the bound state energy is equal to )0.

Consider a step-like density profile that creates a +
well,11

U!x" (
1

'z
2

$G

$x
( −

&,G&
'z

2 +!x" . !18"

The energy of the only bound state in this well is −&,G& /2'z
2.

The requirement that this energy equals )0=−1 selects the
following value of 'z:

'z
2 = &,G&/2. !19"

This equation reproduces the dispersion relation for the RLH
waves derived in Ref. 7. We thus conclude that, in the con-
text of the quantum-mechanical analogy, RLH waves repre-
sent discrete bound states, whereas whistler waves belong to
the continuous spectrum.

III. NONRADIATIVE PROPAGATION OF RLH WAVES

In this section, we consider propagation of RLH waves
in a longitudinally nonuniform plasma in the regime where
whistler waves can be neglected. A generic density profile of
interest is shown in Fig. 1. It is nonuniform in the x direction,
with $n /$x-0, so that the plasma can support an RLH wave.
The density is z-dependent only within a finite interval
around z=0. We assume that there is an incident RLH wave
with a given frequency # at z→−".

Under the condition G&1, RLH waves are typically
much shorter than whistler waves. It follows from Eq. !17"

that the longitudinal scale length of whistler waves is at least
1 /G. On the other hand, the characteristic longitudinal scale
length of RLH waves is 1 /'&,G& #see Eq. !19"$. For a non-
uniformity with &,G&+G, RLH waves are indeed much
shorter than whistler waves. Longitudinal scales of RLH and
whistler waves can become comparable only in the case of
very weak nonuniformity with &,G&.G2.

The difference in scales implies that RLH waves are
only weakly coupled to whistler waves. We can then limit
our consideration just to RLH waves and neglect in Eq. !14"
the G2 term that is only important for whistler waves. For the
sake of simplicity, we assume that the density changes in the
x direction on a scale smaller than the transverse scale of
RLH waves. In this case, the transverse density gradient can
be treated as a + function, so that

$G

$x
( − &,G!z"&+!x" , !20"

where it is explicitly assumed that $n!x ,z" /$x-0. This sim-
plification allows us to construct an x-localized solution in
the form

E!x,z" = E0!z"e−&x&, !21"

which automatically satisfies Eq. !14", without the G2 term,
for x*0 and x-0. To find an equation for the amplitude
E0!z", we integrate Eq. !14" over a small vicinity of x=0,
which yields

$2E0

$z2 = −
&,G!z"&

2
E0. !22"

If the plasma density is a smooth function of z with a
scale length much greater than 1/'&,G&, then the WKB ap-
proximation applies to the incident RLH wave, indicating
that the wave propagates along z without much reflection.
For shorter plasma density scale lengths, reflection becomes
increasingly important.

FIG. 1. Normalized plasma density profile with a gradient along the x axis.
The density gradient changes in the vicinity of z=0. The density is normal-
ized to nmax%#n!x ,z"$x→−";z→−" and coordinates x and z are normalized to
1/ky.
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The reflection is most pronounced when the density has
a discontinuity at z=0, such that

&,G!z"& = /!− z"&,G1& + /!z"&,G2& , !23"

where /!z" is the step function and &,G1& and &,G2& are the
values of &,G& at z-0 and z*0, respectively. The corre-
sponding solution of Eq. !22" is

E0!z" = ,E*eiz'&,G1&/2−&x& + E1e−iz'&,G1&/2−&x&, z - 0;

E2eiz'&,G2&/2−&x&, z * 0;
-

!24"

where E* is a given amplitude of the incident wave and E1
and E2 are the amplitudes of the reflected and transmitted
RLH waves that satisfy matching conditions for E0 and
$E0 /$z at z=0. The ensuing reflection coefficient R and
transmission coefficient T are

R =
&E1&2

&E*&2
= )1 − 0

1 + 0
*2

, !25"

T = 1 −
&E1&2

&E*&2
=

40

!1 + 0"2 , !26"

where 0%'&,G2 /,G1&. As seen from these expressions, the
reflection approaches 100% and the transmitted power goes
to zero for 0→0.

To be more precise, Eqs. !25" and !26" need to be cor-
rected if the transverse density jump at z*0 is so small that
&,G2&.G2. In this case, the transmitted RLH wave is no
longer much shorter than the whistler waves radiated from
the vicinity of the z=0 point. Although the whistler waves
need to be taken into consideration to find the correct reflec-
tion and transmission coefficients, the reflection is still going
to be very close to 100%, because the longitudinal scales of
the incident RLH wave and the whistler waves are signifi-
cantly different.

In order to address the situation with small &,G2& in
more detail, we consider a special case in which ,G2=0.
Then the plasma at z*0 can support only whistler waves
and all the transmitted power is attributed to radiation of
whistlers. This case involves a technical challenge, because
one has to take into account the large-scale component of the
wave field both at z*0 and z-0. The next section presents
an analytical treatment of this problem. Our calculations
show that the radiated power is indeed smaller than the re-
flected power and the ratio of the two is of the order of
G2 / &,G1&.

IV. RADIATION OF WHISTLERS

In order to examine the transformation of RLH waves
into large-scale whistler waves, we retain the G2 term in Eq.
!14" and put ,G2=0 in the expression for $G /$x #see Eqs.
!20" and !23"$, so that

$2

$z2) $2E

$x2 − E* − G2E = /!− z"+!x"E&,G1& . !27"

Similarly to the previous section, we are interested in the
limiting case of &,G1&$G2. However, we make an additional

simplifying assumption that &,G1&& &G&, which allows us to
treat G2 as a constant and makes Eq. !27" parity-invariant
with respect to x.

Similarly to Eq. !21", the incident RLH solution of Eq.
!27" is an even function of x. It is therefore appropriate to
limit our consideration to solutions that are symmetric in x.
The corresponding Fourier representation of E is

E'x
!z" = .

−"

+"

E!x,z"cos!'xx"dx , !28"

with E'x
satisfying the Fourier-transformed Eq. !27",

!'x
2 + 1"

$2E'x

$12 + E'x
= − /!− 1"22.

−"

+"

E'x!
d'x!, !29"

where

1 % zG , !30"

2 %'&,G1&
2%G2 $ 1. !31"

In this notation, the field of the incident RLH wave is
E'x

!1"=3'x
ei'z1/G, where

3'x
=

1

'x
2 + 1 − G2'z

2 (
1

'x
2 + 1

!32"

and the value of 'z is given by straightforwardly modified
Eq. !19",

&,G1& = 2&'z&''z
2 − G2 ( 2'z

2. !33"

Note that the amplitude of the incident wave is not normal-
ized. The field of the reflected wave can then be written as
E'x

!1"=43'x
e−i'z1/G, where 4 is a complex amplitude that

remains to be found. It is important to point out that 4 is
independent of 'x.

Taking into account the known structure of the RLH
waves, we represent E'x

as a sum of three terms,

E'x
!1" = 3'x

!ei'z1/G + 4e−i'z1/G"/!− 1" + F'x
!1" . !34"

The last term describes the radiated whistler waves that ac-
company reflection of the incident RLH wave from the den-
sity discontinuity at 1=0. The problem now reduces to find-
ing F'x

!1" and 4 from Eq. !29".
The field of the radiated whistler wave at 1*0, where

the right-hand side of Eq. !29" vanishes, can easily be ex-
pressed in terms of the total field at 1=0,

F'x
!1" = E'x

!0"eis1, !35"

where

s % 1/''x
2 + 1, !36"

and s is positive, because there are no whistler waves coming
from 1= +".

For 1-0, Eqs. !29" and !34" yield
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$2F'x

$12 + s2F'x
=

Q!1"
'x

2 + 1
, !37"

where Q!1" is a functional of F'x
!1",

Q!1" % − 22.
−"

+"

F'x!
!1"d'x!. !38"

Equation !37" describes radiation of whistler waves by a self-
consistently determined source Q!1". This equation gives the
following expression for F'x

!1" in terms of Q!1":

F'x
!1" = A'x

eis1 + B'x
e−is1

−
i

2s/.−"

z Q!5"
'x

2 + 1
eis!1−5"d5 + .

z

0 Q!5"
'x

2 + 1
eis!5−1"d50 ,

!39"

where A'x
and B'x

are functions of 'x only. The continuity
conditions for E'x

and $E'x
/$1 at 1=0 yield two equations

for A'x
and B'x

,

3'x
!1 + 4" + A'x

+ B'x
−

i

2s
.

−"

0 Q!5"
'x

2 + 1
e−is5d5 = E'x

!0" ,

!40"

'z

G
3'x

!1 − 4" + s!A'x
− B'x

" −
i

2
.

−"

0 Q!5"
'x

2 + 1
e−is5d5 = sE'x

!0" .

!41"

We now eliminate A'x
and B'x

from Eq. !39", which
gives

F'x
!1" = E'x

!0"eis1 − 3'x/!1 + 4"cos!s1"

+
i'z

sG
!1 − 4"sin!s1"0

+ .
z

0

Q!5"
sin!s#5 − 1$"

s!'x
2 + 1"

d5 . !42"

There are no whistler waves coming from 1=−" and, there-
fore, all terms proportional to eis1 on the right-hand side of
Eq. !42" must vanish as 1→−", which determines E'x

!0",

E'x
!0" =

3'x

2
/!1 + 4" +

'z

sG
!1 − 4"0 −

i

2
.

−"

0 Q!5"e−is5

s!'x
2 + 1"

d5 .

!43"

In order to find 4, we note that Eq. !43" must give a
finite value of 1−"

+"E'x
!0"d'x. On the other hand, it follows

from Eq. !43" that E'x
!0" is proportional to 1/ &'x& for large

values of &'x&,

E'x
!0" (

'z

2&'x&G
/!1 − 4" −

iG

'z
.

−"

0

Q!5"d50 . !44"

For the integral 1−"
+"E'x

!0"d'x to converge, the square-bracket
term in Eq. !44" must vanish. This requirement yields

4 = 1 −
iG

'z
.

−"

0

Q!5"d5 ( 1 −
1
2) i

'%
.

−"

0

Q!5"d5* . !45"

Next, we use Eqs. !43" and !45" to eliminate E'x
!0" and

4 from Eq. !42",

F'x
!1" = − 3'x

e−is1 +
i

2
)G

'z
+

1
s
*3'x

e−is1

!.
−"

0

Q!5"d5 −
i

2
.

1

0 Q!5"eis!5−1"

s!'x
2 + 1"

d5

−
i

2
.

−"

1 Q!5"eis!1−5"

s!'x
2 + 1"

d5 . !46"

Finally, we integrate Eq. !46" over 'x to obtain an integral
equation for Q!1",

Q!1"
22 = .

−"

+" e−is1d'x

'x
2 + 1

−
i

2/.−"

+" e−is1d'x

''x
2 + 1

0
!.

−"

0

Q!5"d5 +
i

2
.

−"

+"

d'x.
1

0 Q!5"eis!5−1"

''x
2 + 1

d5

+
i

2
.

−"

+"

d'x.
−"

1 Q!5"eis!1−5"

''x
2 + 1

d5 . !47"

In deriving Eq. !47", we have taken into account that
'z$sG, so that 3k(1/ !'x

2+1". After Q!1" is found from Eq.
!47", one can readily calculate the amplitude of the reflected
wave from Eq. !45".

Being interested in the limiting case of 2$1, we neglect
the left-hand side in Eq. !47". The resulting equation has a
universal form, as it does not contain 2. It can be solved
iteratively, following the procedure described in the Appen-
dix. The corresponding solution of Eq. !47" is shown in Fig.
2. It yields the following value of 4 #see Eq. !45"$:

FIG. 2. Real and imaginary parts of the solution of Eq. !47" in the limiting
case of 2$1.
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4 ( 1 −
0.377

2
. !48"

The ensuing reflection and transmission coefficients are

R = &4&2 ( 1 −
0.754

2
, !49"

T = 1 − R (
0.754

2
. !50"

V. SUMMARY

We have considered the propagation of waves with fre-
quencies in the helicon range !#ce$#$#ci" through a mag-
netized nonuniform plasma, where the equilibrium magnetic
field is directed along the z axis and the equilibrium plasma
density is a function of x and z only. The waves under con-
sideration have a finite y component of the wave vector !ky"
and their characteristic longitudinal scale is much longer
than ky

−1, whereas the characteristic transverse scales are
comparable to ky

−1.
There are two distinct types of waves in the considered

frequency range: RLH and whistler waves. In the case of a
longitudinally uniform plasma with a density gradient across
the magnetic field, the wave equation takes the form of a
one-dimensional Schrödinger’s equation #Eq. !15"$. We have
shown that RLH waves represent discrete bound states,
whereas whistler waves belong to the continuous spectrum.

In Secs. III and IV we used a slab configuration to ana-
lyze the reflection of an RLH wave traveling in the z direc-
tion in a longitudinally nonuniform plasma. The plasma den-
sity is independent of z at z→ +", so that reflection takes
place within a finite interval around z=0, where the plasma
density is both x- and z-dependent. In general, the reflection
of RLH waves is accompanied by the radiation of whistlers.

The wave field structure is decided by the profile of a
single dimensionless function G%!# /#ce"!#pe

2 /ky
2c2" that is

proportional to the plasma density #Eq. !9"$. This function is
a small quantity for the waves under consideration !G&1"
and, as a result, the RLH and whistler waves have different
longitudinal scale lengths and are only weakly coupled. In
the case of &,G&+G, where ,G corresponds to the density
drop across the magnetic field, RLH waves are much shorter
than whistler waves.

Taking advantage of weak coupling between RLH waves
and whistlers, we first address the problem of RLH reflection
without radiation of whistlers. The reflection off the longitu-
dinal nonuniformity is most pronounced when its scale
length is much shorter than the longitudinal scale length of
the incident wave. The corresponding reflection coefficient is

R = )1 − 0

1 + 0
*2

, !51"

where 0%'&,G2 /,G1&, and &,G1& and &,G2& correspond to
the density drop across the magnetic field at z-0 and z*0,
respectively. The reflection approaches 100% for 0→0.
Equation !51" is valid only if the transverse density jump at
z*0 is not very small !&,G2&*G2".

Radiated whistler waves must be taken into account in
the case of a very weak nonuniformity !&,G2&.G2", when
the longitudinal scale length of the radiated whistlers be-
comes comparable to that of the transmitted RLH wave. In
order to address the situation with small ,G2 in more detail,
we have considered a special case in which ,G2=0. In this
case, the plasma at z*0 can support only whistler waves and
all the transmitted power is attributed to the radiation of
whistlers. The ensuing reflection coefficient #Eq. !49"$ is
close to unity, because the longitudinal scales of the incident
RLH wave and the radiated whistlers are significantly differ-
ent.

Finally, it must be pointed out that the smallness of the
dimensionless function G implies that the waves under con-
sideration are elongated, such that the characteristic scale
length of the wave field along the magnetic-field lines is
much bigger than the characteristic scale length across the
field lines. Indeed, it follows from the dispersion relation for
the RLH waves #see Eq. !19"$ that the condition G&1 trans-
lates into 'z&1, where 'z is the longitudinal component of
the wave vector normalized to ky. The extent of the RLH
wave elongation determines the coupling between the RLH
and the whistler waves. For example, the fraction of the in-
cident RLH wave energy that goes into the radiated whistlers
is roughly equal to 'z for a nonuniformity with &,G&+G #see
Eqs. !31" and !50"$. Therefore, coupling between RLH
waves and whistlers should be stronger in compact plasma
sources with an order of unity aspect ratio.
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APPENDIX: ITERATIVE PROCEDURE FOR SOLVING
EQ. „47…

Being interested in the limiting case of 2$1, we neglect
the left-hand side in Eq. !47". To improve the convergence of
integrals in Eq. !47", we differentiate Eq. !47" twice with
respect to 1. The resulting equation has a universal form, as
it does not contain 2,

− .
−"

+" e−is1d'x

!'x
2 + 1"2

= %Q!1" −
i

2/.−"

+" e−is1d'x

!'x
2 + 1"3/20

!.
−"

0

Q!5"d5 +
i

2
.

−"

+"

d'x.
1

0 Q!5"eis!5−1"

!'x
2 + 1"3/2 d5

+
i

2
.

−"

+"

d'x.
−"

1 Q!5"eis!1−5"

!'x
2 + 1"3/2 d5 . !A1"

It is convenient to eliminate oscillations in Q!1" by introduc-
ing a new function,
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W!1" % Q!1"ei1. !A2"

Equation !A1" transforms to

− .
−"

+" e−i!s−1"1d'x

!'x
2 + 1"2

= %W!1" − R!1".
−"

0

W!5"e−i5d5

+ .
1

0

R!1 − 5"W!5"d5 + .
−"

1

A!5 − 1"W!5"d5 ,

!A3"

where

R!1" %
i

2
.

−"

+" e−i!s−1"1d'x

!'x
2 + 1"3/2 , !A4"

A!1" %
i

2
.

−"

+" e−i!s+1"1d'x

!'x
2 + 1"3/2 . !A5"

We solve Eq. !A3" numerically, using consecutive itera-
tions. Our first step is to find W0!1" satisfying the equation

− .
−"

+" e−i!s−1"1d'x

!'x
2 + 1"2 = %W0!1" + .

1

0

R!1 − 5"W0!5"d5 .

!A6"

We then use W0!1" to compute the terms in Eq. !A3" that did
not enter Eq. !A6". Our next step, which is the first iteration,
is to find W1!1" satisfying the equation

− .
−"

+" e−i!s−1"1d'x

!'x
2 + 1"2

= %W1!1" − R!1".
−"

0

W0!5"e−i5d5

+ .
1

0

R!1 − 5"W1!5"d5 + .
−"

1

A!5 − 1"W0!5"d5 .

!A7"

After that, we replace W0!1" by W1!1" and W1!1" by W2!1".
This gives us an equation for our second iteration that we
solve to find W2!1". We continue this procedure until we
achieve desirable precision.

Since &W!1"&→0 as 1→−", we can truncate the interval
on which the equation is solved,

1 ! #1*,0$ . !A8"

We take 1*=−!N−1"+=−80, where +=0.02 is the step size
and N=4001 is the number of grid points on a uniform grid
that we use. We compute 4 after each iteration and we de-
termine the convergence by tracking the value of 4. It takes
15 iterations for the relative change in 4 to become smaller
than 1%. The solution of Eq. !47" after 15 iterations is shown
in Fig. 2.
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