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When a tokamak plasma makes a transition into the good or the high confinement H mode, the edge
density and pressure steepen and develop a very sharp pressure pedestal. Prediction of the height
and width of this pressure profile has been actively pursued so as to provide a reliable extrapolation
to future burning plasma devices. The double-Beltrami two-fluid equilibria of Mahajan and Yoshida
fPhys. Plasmas7, 635 s2000dg are invoked and extended to derive scalings for the edge pedestal
width and height with plasma parameters: these scalings come out in agreement with the established
semiempirical scalings. The theory predictions are also compared with limited published H-mode
data and the agreement is found to be very encouraging. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1852468g

I. INTRODUCTION

When the heating power exceeds a critical value, the
tokamak plasmas undergo a spontaneous self-organizing
transition from a lowsL-moded to a high confinement state
sH-moded.1–3 The improved confinement is believed to be
caused by the generation of a shearszonald flow, which is
responsible for suppressing fluctuations and thus inhibiting
transport. After this transition, a very steep pressure gradient
develops at the edge. The height of the pressure pedestal is a
natural figure of merit for energy confinement.4 Elucidation
of the physics of pedestal formation, and predicting its maxi-
mum achievable height are issues crucial for magnetic fusion
devices.

A variety of theoretical models have been proposed to
explain and predict experimentally established empirical
scaling laws governing the pedestal width and height.
Hubbard,5 e.g., has provided a very comprehensive review of
both the experiment and theory. Here it was pointed out that
although the various theories have pedestal widths which are
not very solidly in agreement with observations, the exis-
tence of a critical pressure gradient consistent with magne-
tohydrodynamicssMHDd stability limits seems to provide a
reasonable quantitative comparison with observations. A
careful comparison of empirical, semiempirical, and theory-
based scalings of the pedestal height with the datasavailable
in the pedestal databased was performed by Sugiharaet al.6

and Onjunet al.7 The focus of the former study was to de-
lineate the difference in scalings between plasmas with and
without magnetic shear. Since the data subset with informa-
tion on magnetic shear was limited, the study could not quite
pin down the characteristic exponents associated with the
relevant plasma parameters. In the study by Onjunet al.,7

comparison of the pedestal height from a database compris-
ing of over 500 shots from four tokamaks, with six different

models showed that all the models had a root-mean-squared
srmsd deviation which is in excess of 30%.

Thus, the present database studies, it seems, do not pref-
erentially select any particular model or even a set of models.
To understand the physics of the formation and the properties
sincluding the maximum sustainable pressured of the pedes-
tal, therefore, a two-pronged attack is strongly indicated: a
systematic buildup of the database as well as the develop-
ment of pertinent theories.

In this paper, the theory of Mahajan and Yoshida8 for the
H-mode layer is extended to determine specifically the scal-
ings of the pedestal height and width with plasma param-
eters. In a series of recent papers, Mahajan and Yoshida9,10

have developed a theory of plasma relaxed states with flow.
The centerpiece of this enterprise is the so-called double-
Beltrami statessDBd obtained by the interaction of the mag-
netic and velocity fields. Under well-defined conditions,8 the
self-organized DB state provides a description for the edge
region of the H-mode plasma. We will demonstrate that the
detailed solution of the DB system with physically meaning-
ful boundary conditions, augmented by the ballooning mode
stability condition, determines uniquely the pedestal width
and the pedestal height of the H-mode in tokamak plasmas. It
is shown that the theoretically derived expressions for the
height and width can be readily cast into forms that are
equivalent to certain empirical scaling laws for DIII-D
discharges.11,12 Furthermore the theory will be compared
with experimental observations from Japanese Atomic En-
ergy Research Institute Tokamak-60 UpgradesJT-60Ud sRef.
13d and Joint European TorussJETd sRef. 14d.

II. EQUATIONS

The theoretical framework for this study is provided by
the normalized two-fluid Hall MHD equations,
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Here, the magnetic field is normalized toB0 whose magni-
tude is equal to the strength of the toroidal field in the edge
region and the density is normalized ton0, the density at the
top of the density pedestal. In terms ofB0 and n0, the fol-
lowing consistent normalizations emerge: the ion skin-depth
li for spatial variables, the Alfvén speedVA for velocities,
li /VA for time, liB0 for the vector potentialA, liB0VA/c for
the scalar potentialf, and B0

2/4p for the electron and ion
pressures. At this stage, the plasma density is allowed to vary
within the H-mode layer.

The detailed derivation of appropriate equations describ-
ing the H-mode layer is given in Ref. 8. For self-sufficiency
of this paper, we provide here a brief summary. One begins
by separating the total magnetic field into two parts:B=B0

+Bs, whereB0 represents the field rooted in currents outside
the layer andBs is the self-field generated by the currents in
the layer. The curl of the Lorentz force due to beB0 for each
of the species can be expressed as a scalar potential to be
determineda posteriori.8 The fundamental basis of magnetic
confinement, that the plasma pressure gradient in the edge
will be supported by the diamagnetic pressure of the mag-
netic field, leads to the orderingB* /B0=b /2, B* being the
measure of the self-field.

The curl of Eqs.s2d and s3d yields the generalized vor-
ticity equations,

]V j

]t
− = 3 sU j 3 V jd + s− 1d j 1

n2 = n 3 = pj = 0

s j = 1,2d s4d

with the two vorticities

V1 = Bs, V2 = Bs + = 3 V s5d

and their associated generalized flows

U1 = V −
= 3 Bs

n
, U2 = V . s6d

Here p1=pe and p2=pi. For the full three-dimensional
case, the last term vanishes fors1d n or T=constant ands2d
pj = f jsnd, wheref jsnd are general functions of the densityn.
For one-dimensional equilibrium, however, the last term is
identically zero. Aligning the vorticities along the corre-
sponding flows,

Bs = m1snV − = 3 Bsd, s7d

Bs + = 3 V = m2nV , s8d

yields the double-Beltrami states. Herem1 and m2 are con-
stants to be determined. In the steady state, these equations
together with the Bernoulli condition and an equation of state
define a fully self-consistent equilibrium. The Bernoulli con-
dition to first order inb is

p + Bs ·B0 = C. s9d

Here p=pe+pi and C is a constant. Finally, with an
equation of state

p

ng = 1 s10d

the set, namely, Eqs.s7d–s10d, is complete. Incidentally the
conservation of particle flux for the steady state in Eq.s1d is
trivially satisfied. Thus for nonconstant density, these equa-
tions are the generalizations of Eqs.s12d–s14d of Ref. 8.
Similar equations have been derived by Mahajanet al.15 in
the context of the solar atmosphere, where the flow and grav-
ity determine the density in the generalized Bernoulli condi-
tion. For issues of accessibility, or the variational principles
from which these states may be derived, the interested reader
is directed to Refs. 8–10 and 16. The current goal is limited
to using these solutions to make definitive predictions of
plasma pedestal parameters in the H-mode layer.

III. NUMERICAL SOLUTIONS

In one-dimensional slab geometry, Eqs.s7d–s10d reduce
to

dBs,y

dx
− nVz +

1

m1
Bs,y = 0,

dBs,z

dx
+ nVy −

1

m1
Bs,y = 0,

dVy

dx
+ Bs,z − m2nVz = 0, s11d

dVz

dx
− Bs,y + m2nVy = 0,

n1/g + Bs,z = 0.

We have solved this system of equations numerically in the
domain 0øxø1, wherex=0 is the inner boundary at the top
of the pedestal, whilex=1 is the outer boundary representing
the last closed flux surface. The boundary conditions defin-
ing the layer areVys0d=Vzs0d=Bs,y=0, Bs,zs0d=−1. As
pointed out by Mahajan and Yoshida,8 with a requirement
that the flows do not have any oscillations in the edge bound-
ary layer and the specific boundary conditionBs,1=0, m1

=1/m2. The eigenvaluem1 is adjusted to make the pressure
go to zero atx=1. Four specific “equations of state” were
employed:s1d constant densityn=1, s2d isothermal withg
=1, s3d adiabatic withg=5/3, ands4d adiabatic withg=3;
the last pertaining to a plasma with one degree of freedom
which can be expected for a strongly magnetized plasma. In
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Fig. 1, are shown the equilibriumBs,y, Bs,z, Vy, Vz, p, n, T,
respectively, for the four different cases with the following
color code: constant densitysredd, g=1 smagentad, g=5/3
sgreend, and g=3 sblued. Three important conclusions may
be drawn from the numerical work:s1d the total plasma pres-
sure and the two magnetic field components are almost iden-
tical for all four cases,s2d the density, velocity and tempera-
ture profiles are significantly different for different equations
of state, ands3d For the three nonconstant density examples,
the equilibria have both poloidal as well as toroidal shear
flows in the edge region. On examining the structure of the
equations it is fairly clear that the fluxG=nV, the magnetic
field, and the pressure remain unchanged for different equa-
tions of state. The density and temperature profiles, however,
change through the Bernoulli condition as the equation of
state is changed. The velocity profile is automatically ad-
justed to preserve near invariance of the flux. It is important
to note that density and temperature profiles forg=3 look
qualitatively similar to the experimentally observed profiles
where for most tokamaks the density pedestal is steeper than
the temperature pedestal. It is also apparent that a tangent
hyperbolic fit to the density and temperature profiles can be
reasonable, even though it was original motivated by a neu-
tral penetration model.17 The plasma current densitiesJy and
Jz and the radial electric fieldEx are displayed as a function
of x in Fig. 2 for the four cases shown in Fig. 1. The plasma
develops a edge current on the scale of the ion skin depth.
The radial electric field has been computed by assuming that
the ion and electron temperatures are the same.

In this paper the principal goal is to determine the struc-
ture of the pressure pedestal. Since the pressure profile is
mostly insensitive to the variation in density, we will, hence-
forth explore the constant density case for which analytical
solutions already exist.8 We will now derive the parametric
scalings for the pressure pedestal characteristics by con-
straining the maximum pressure gradient by demanding sta-
bility to the ballooning mode.

IV. ANALYTICAL RESULTS

The general solution of the constant density DB system
is known to bes=3GL±

=L±GL±
d,

V = C+GL+ + C−GL−, s12d

Bs = C+sm2 − L+dGL+ + C−sm2 − L−dGL−, s13d

with

L± =
1

2
H−

1

m1
+ m2 7 FS 1

m1
+ m2D2

− 4G1/2J . s14d

In one-dimensional slab geometry, it becomes

GL± = f0,SinsL±x + u±d,CossL±x + u±dg. s15d

Using the same boundary conditions as in the numerical
study discussed in the last section, the unnormalized solu-
tions can be written as

FIG. 1. sColord. Bs,y, Bs,z, Vs,y, Vs,z, n, T, p, vs x for
constant densitysredd, g=1 smagentad, g=5/3 sgreend,
andg=3 sblued.
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Bs,z = − B*cosS px

2li
D , s16d

Bs,y = S1 +
4

p2D1/2

B*sinS px

2li
D , s17d

Vy =
2

p

B*

B0
VAsinS px

2li
D . s18d

The total pressure is related to the magnetic field by the
pressure balance condition derived earlier

p +
Bs,zB0

4p
= 0. s19d

Furthermore, the plasma currents and the flow velocityVE,y

due to radial electric field are also determined,

Js,y = −
cB*

8li
sinS px

2li
D , s20d

Js,z =
cB*

8li
S1 +

4

p2D1/2

cosS px

2li
D , s21d

VE,y = −
2

p
S1 +

p2t

4s1 + tdDB*

B0
VAsinS px

2li
D . s22d

Equationss16d–s22d form an explicit and complete solu-
tion except for a single undetermined quantity; the magni-
tudeB* of the magnetic field or equivalently the plasma pres-
sure at the top of the pedestal. To determine this it is
stipulated that the H-mode state maximizes the pressure gra-
dient consistent with the ballooning stability criterion,

8pq2R

B0
2

dp

dx
= ac, s23d

whereq is the local plasma safety factorR, the major radius
and the parameterac contains the plasma shaping effects7 in
determining the stability of these modes. The pressure ped-
estal height expressed as pedestalb, then, is

bped=
2ac

p

li

q2R
= 2

B*

B0
s24d

with the pedestal width given by

Dped= li . s25d

Since the amplitudes of all the physical quantities defined in
Eqs. s16d–s22d are determined byB* , the stability criterion
which determines the maximum pedestalb, determines the
magnitude ofB* fEq. s24dg and hence the magnitude of all
these physical quantities. A comparison of these quantities
with experimental data for some typical parameters will be
presented at the end of this section. However, first, to con-
form to the standard practice of expressing the empirical
scalings in terms of the poloidal Larmor radiusrpi, and re-
calling that li = Î2rpi / Îbpi, where bpi is the ion poloidal
plasmab, we convert Eqs.s21d and s22d to the alternative
form

bped=
2

q2Sac

p
D2/3S1 +

Te

Ti
D1/3Srpie

R
D2/3

s26d

and the pedestal width as

Dped

R
= S p

ac
D1/3S1 +

Te

Ti
D1/3Srpie

R
D2/3

. s27d

Here e=a/R is the inverse aspect ratio. In this form, the
theoretical prediction for the pedestal width closely re-
sembles one of the empirical scalings for data from DIII-D.12

The earliest theories on L-H transitions invoking ion banana
orbit loss18,19 implied that the pedestal width should scale as
the poloidal larmor radiusrpi and this has guided subsequent
comparisons with observations.20 It is clear that a convincing
comparison with data requires a more focused effort which is
being actively pursued. Nevertheless, there are many features
of the scalings derived above which reflect consistency with
observations on DIII-D, JT-60U, and JET.

Before we end this section we give quantitative esti-
mates of various quantities to show that they are in the range

FIG. 2. sColord. Js,y, Js,z, Es,x, vs x for constant densitysredd, g=1 sma-
gentad, g=5/3 sgreend, andg=3 sblued.

FIG. 3. Te,ped for experimental pointsssquaresd and theoryssolid lined vs
nped for JET discharges.

032502-4 Guzdar, Mahajan, and Yoshida Phys. Plasmas 12, 032502 ~2005!

Downloaded 08 Aug 2006 to 128.83.179.119. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



of measurements on present-day machines. We find that for
pedestal densities varying from 1013−531014 cm−3, the
pressure pedestal width varies from 10.3 to 1.5 cm. For the
toroidal field B0=2 T, AH=2, Z=1, ac=3–6, nped=3
31013 cm−3, q=3, andR=2 m, the sum of the electron and
ion temperatures at the top of the pedestal,Te,ped+Ti,ped

=2–4 keV. The Hall current densitiesJs,y,Js,z=30 A/cm2,
are comparable to the Bootstrap current using the Sauter
formula21 and theE3B flow velocity VE,y=12 km/s.

V. COMPARISON WITH OBSERVATIONS

We first discuss qualitatively our results in the context of
general observations on pedestals and their scaling on DIII-D
and JT-60U, and then make quantitative comparisons with
specific data on these machines as well as on JET. In its most
basic form, the height and the width of the pressure pedestal
scale as the ion skin-depthfs24d and s25dg. It was shown by
Osborneet al.22 for DIII-D fsee Fig. 1sbd of Osborneet al.g,
that for different triangularities, the quantityPe,pedR

2/ Ip
2, de-

creased as a function ofne,ped, and the highest pedestal
heights occur for the highest triangularity. HerePe,ped is the
electron pressure at the top of its pedestal,ne,ped is the elec-
tron density at the pedestal height,R is the major radius, and
Ip is the plasma current. The experimental results, cited
above, agree with Eq.s21d on two counts. First, the decrease
in the pedestal height with density is consistent with the
inverse dependence on the square root of the density of the
ion skin depth. Second, the observed dependence on triangu-
larity is to be expected from the plasma shape parametric
dependence ofac.

7 In fact the observed decrease in the ped-
estal height at high density22 is attributed to the decrease in
the pedestal width—a deduction fully consistent with the

present theory. The scaling implied by the alternate form
fEq. s23dg, in fact, agree very well with the best-fit empirical
scaling for DIII-D.12 The slightly weakerrpi is in reasonable
agreement with the linear scaling of the pedestal width ob-
served on JT-60U for edge-localized-mode-free H-mode
discharges.20 In fact, in a study comparing JT-60U and
DIII-D, Hatae et al.23 investigated the pedestal widthsDd
scalingD /R~ srpi /Rd0.66, and found it to be in good agree-
ment with both the devices. However, they concluded that
the normalized width should have some aspect ratio depen-
dence. Equations24d, which has the samerpi dependence
used in the comparative study, also has a dependence on the
inverse aspect ratioe which can be tested against the data.

Next we make quantitative comparisons of the pedestal
height and widthsif availabled with two machines using data
in published literature. To facilitate comparison, we cast the
pedestal width and pedestal height into practical units. In
meters, the pedestal width is given by

Dsmd =
0.023

Z
S AH

nped
D1/2

s28d

and the sum of the ion and electron temperaturessin keVd is

Te,ped+ Ti,ped= 0.36
acAH

1/2BT
2

Zq2Rnped
3/2 . s29d

In these formulas, the density has been normalized to
1020/m3, the major radius is in meters, the magnetic field is
in Tesla,Z is the ionic charge, andAH is the ion atomic mass
relative to hydrogen. The first comparison is with the data
from JET drawn24,25 from fifteen discharges with high elon-
gation and triangularity andIP=2.5 MA andBT=2.3 T. All
these discharges displayed type I ELMy behavior. In Fig. 3,

FIG. 4. sad ExperimentalTe,ped scircled, Ti,ped scrossd,
Te,ped+Ti,ped ssquared, theoryTe,ped+Ti,ped ssolid lined vs
nped for JT-60U discharges.sbd Experimental pressure
pedestal widthdped ssquared and theoretical pedestal
width ssolid lined vs the pedestal densitynped.
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the square boxes are experimental data points. Since the
dataset does not include the ion temperature, we have as-
sumed that the electron and ion temperatures are equal. This
is expected to be true for the high density discharges but not
so for the lower density cases. The solid line is a plot of Eq.
s29d and fits the data forac/q2=0.9. If q=2.8 at the top of
the pedestal, then the fit requiresac=7. This is consistent
with ballooning mode stability studies which indicate that for
low elongation and triangularity,ac=3, while for high elon-
gation and triangularityac=6–8.26,27

In Figs. 4sad and 4sbd, the data from JT-60U is
compared28 with the theory. For these type I ELMing dis-
charges, with low elongation and triangularity,Ip=1.8 MA
andBT=3 T. In Figure 4sad the temperature at the top of the
pedestal is plotted as a function of the pedestal density. The
circles scrossesd represent the measured electronsiond tem-
perature. The boxes are the sum of the experimental ion and
electron temperatures at the top of the pedestal. The solid
curve is from Eq.s29d with ac/q2=0.22. If we assume that
q=3.5 at the pedestal height, thenac=2.7 which is the low
value expected for these low elongation and low triangularity
discharges. What is clearly seen from the data is that the
electron and ion temperatures at the top of the pedestal are
equilibrated for the high density discharges but not for the
low density ones. Plotted in Fig. 4sbd are the experimental
pedestal widthssboxesd, the theoretical pedestal widths
ssolid lined given by Eq.s28d.

The agreement between the data and the theoretical pre-
dictions is reasonably good. We remind the reader that in all
these comparisons we have tacitly assumed thatac/q2 is the
same for all discharges for a given device. This is, to some
degree, justified because for the shots used in these studies,
the plasma current, magnetic field, elongation, and triangu-
larity were nearly constant or varied in a narrow range. How-
ever, for a more reliable comparison one should compute
ac/q2 from a stability code and use it in Eq.s29d for each
discharge.

VI. CONCLUSIONS

In conclusion, the theory of Mahajan and Yoshida8 to-
gether with the constraint on the pressure gradient dictated
by ballooning modes stability, predicts fully determined ex-
pressions for the width and height of the pressure pedestal
for an H-mode plasma. For a realistic equation of statesg
=3d, the theory yields a steeper density profile compared to
the temperature profile consistent with the profiles observed
inside the closed flux region at the edge of most tokamaks.
The sign of the electric field associated with the flow is also
consistent with experimentsinward directedd. For all non-
constant density cases, a finite toroidal flow is predicted.
Equations27d also agrees with one of the empirical scalings
found earlier for data from DIII-D.12 With the existing error
bars on data, however, some other empirical scalings also do
as well as the class represented by Eq.s27d. The principal
merit of the current effort is that a physics-based self-
organization model has been harnessed to derive the results.
A more quantitative, though limited, comparison of the
theory with experimental data involving density scans for

JET, JT-60U, and DIII-D as shown in Figs. 3 and 4, respec-
tively, yields encouraging agreement. Naturally a much more
thorough and detailed comparison with data from various
machines, with systematic scan of plasma parameters, is
needed. Extension of the theory to two dimensions is
planned for the near future.

ACKNOWLEDGMENTS

The authors would like to thank T. Onjun and the Lehigh
group for discussions related to their work. They would also
like to thank Dr. Urano and Dr. Kamada for providing them
with the data for JT-60U used in Fig. 4 and Dr. Sugihara for
providing the data for Fig. 3. The work of PNG was sup-
ported by the U.S. Department of Energy under Grant No.
DE-FG02-93ER54197 at UMD. The study of SMM was sup-
ported by U.S. Department of Energy Contract No. DE-
FG03-96ER-54366.
1ASDEX Team and F. Wagner, Phys. Rev. Lett.49, 1408s1982d.
2DIII-D Team and K. H. Burrell, Plasma Phys. Controlled Fusion34, 1859
s1992d.

3R. J. Groebner, Phys. Fluids B5, 2343s1993d.
4M. Kotschenreuther, W. Dorland, Q. P. Liu, G. M. Hammett, M. A. Beer,
S. A. Smith, A. Bondeson, and S. C. Cowley, inProceedings of the 16th
Conference Plasma Physics Contrl Fusion Research Montreal, 1996
sIAEA, Vienna, 1997d, Vol. 2, p. 371.

5A. Hubbard, Plasma Phys. Controlled Fusion42, A15 s2000d.
6International H-Mode Edge Pedestal Expert Group, M. Sugihara, and T.
Takizuka, Plasma Phys. Controlled Fusion44, A299 s2002d.

7T. Onjun, G. Bateman, A. H. Kritz, and G. Hammett, Phys. Plasmas9,
5018 s2002d.

8S. M. Mahajan and Z. Yoshida, Phys. Plasmas7, 635 s2000d.
9S. M. Mahajan and Z. Yoshida, Phys. Rev. Lett.81, 4863s1998d.

10Z. Yoshida and S. M. Mahajan, Phys. Rev. Lett.88, 095001s2002d.
11J. L. Luxon, Nucl. Fusion42, 614 s2002d.
12T. H. Osborne, K. H. Burrell, R. J. Groebner, L. L. Lao, A. W. Leonard, R.

Maingi, R. L. Miller, G. D. Porter, G. M. Staebler, and A. D. Turnbull, J.
Nucl. Mater. 266–269, 131 s1999d.

13JT-60 Team and S. Ishida, Nucl. Fusion39, 1211s1999d.
14G. J. Sadler, S. W. Conroy, O. N. Jarviset al., Fusion Technol.18, 556

s1990d.
15S. M. Mahajan, K. I. Nikol’skaya, N. Shatashvili, and Z. Yoshida, Astro-

phys. J. 576, L161 s2002d.
16Z. Yoshida and S. M. Mahajan, J. Math. Phys.40, 5080s1999d.
17R. J. Groebner, M. A. Mahdavi, A. W. Leonard, T. H. Osborne, and G. D.

Porter, Plasma Phys. Controlled Fusion44, A265 s2002d.
18S.-I. Itoh and K. Itoh, Phys. Rev. Lett.60, 2276s1988d.
19K. C. Shaing and E. C. Crume, Phys. Rev. Lett.63, 2369s1989d.
20T. Hatae, Y. Kamada, S. Ishida, T. Fukuda, T. Takizuka, H. Shirai, Y.

Koide, M. Kikuchi, H. Yoshida, and O. Naito, Plasma Phys. Controlled
Fusion 40, 1073s1998d.

21P. B. Snydersprivate communicationd.
22DIII-D Team and T. H. Osborne, J. R. Ferron, R. J. Groebner, L. L. Lao,

A. W. Leonard, M. A. Mahdavi, P. B. Snyder, and the , inProceedings of
the 29th EPS Conference Plasma Physics and Controlled Fusion, Mon-
treaux, edited by R. Behn and C. VarandassEuropean Physical Society,
Mulhouse, 2002d, ECA Vol. 26B, p. P1.062.

23T. Hatae, T. H. Osborne, Y. Kamada, R. J. Groebner, T. Takizuka, T.
Fukuda, and L. L. Lao, Plasma Phys. Controlled Fusion42, A283 s2000d.

24M. Sugihara, Yu. Igitkhanov, G. Janeschitz, A. E. Hubbard, Y. Kamada, J.
Lingertat, T. H. Osborne, and W. Suttrop, Nucl. Fusion40, 1743s2000d.

25J. Lingertat, V. Bhatnagar, G. D. Conway, I.-G. Eriksson, K. Günther, M.
von Hellermann, M. Mantsinen, V. Parail, R. Prentice, G. Saibene, R.
Smith, and K.-D. Zastrow, J. Nucl. Mater.266–269, 124 s1999d.

26T. Onjun sprivate communicationd.
27P. B. Snyder, H. R. Wilson, J. F. Ferron, L. L. Lao, A. W. Leonard, D.

Mossessian, T. H. Osborne, A. D. Turnbull, and X. Q. Xu, Nucl. Fusion
44, 320 s2004d.

28H. Urano, Y. Kamada, H. Shirai, T. Takizuka, S. Ide, T. Fujita, and T.
Fukuda, Nucl. Fusion42, 76 s2002d.

032502-6 Guzdar, Mahajan, and Yoshida Phys. Plasmas 12, 032502 ~2005!

Downloaded 08 Aug 2006 to 128.83.179.119. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp


