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The linear stability of the resistive ballooning mode, as
described by the resistive MHD medel, is investigated both analytically

and numerically. When the pressure evolution is approximated by fluid

convection (reduced MHD model), an instability driven by geodesic
curvature, with a growth rate ny ~ nl/aﬁ 278 is found. For conditions
relevant to the Impurity Study Experiment (ISX-B), it is shown that for
modest poloidal beta (8p ~ 1), high current, and relatively high
temperatures, compressibility has a significant stabilizing influence,
relative to the pressure convection model, for low toroidal mode number
modes.  However, at high Bp (32), low current, and lower temperatures,

compressibility has much less effect.
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I. INTRODUCTION

Studies of resistive ballooning modes have been made by various
authors.!=® A possible |ink between resistive ballooning mode activity
and energy transport in high beta tokamaks has been proposed.6 This
transport model has been shown to be in good agreement with
experimental results for the Impurity Study Experiment  (ISX-B)
tokamak.” For this transport model and the related study of the
nonlinear resistive ballooning mode, the equations used were the
reduced high beta tokamak equations, where pressure evolution is
approx imated by fluid convection, and propagation by coupling to sound
waves is neglectea._ These assumptions result in a resistive ballooning
instability driven by geodesic curvature. These modes are extended
along the magnetic field lines and have a growth rate given by

0 D dpo 2/3 n2 1/3

In this paper the linear stability of the resistive ballooning
mode is studied using the full resistive MHD equations. In particular,
the effects of préssure evolution by coupling to ion sound waves
propagating along and compressing across the magnetic field are
retained. Here, the study will focus on the parameter regime relevant
to the ISX-B tokamak. Figure 1 indicates the regime we are exploring
by plotting the electron temperature at half-radius and By, the average
toroidal beta, as a function of the safety factor q at the plasma edge.
Two plasma current scans at injection powers of 0.91 MW and 2 MW are
shown. Ideal MHD stability studies® using equilibria reconstructed
from experimental data show that most of these equilibria are very
close to the marginal ballconing stability Iimit. This fact is also
illustrated in Fig. 1 by plotting the value of the critical By to ideal
modes, as parameterized by the General Atomic group.9 The regime with
%y > 3.5, which is characterized by being very close to marginal ideal
stability, having 5p 2 1.5 and relatively low electron temperatures in
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~ the confinement region, will be studied in detail. In this regime the
plasma is particularly unstable to resistive ballooning modes.

In general, it will be shown that for modest poloidal beta, high
current, and relatively high temperatures coupling to sound waves and
compression has a significant stabilizing effect on low toroidal mode
number instabilities. However, at high ﬁp (>2), low current, and lower
temperatures, the inclusion of coupling to sound waves has little
effect on the predictions of the pressure convection model.

The equations studied and numerical techniques employed will be
briefly described in the next section. The pressure convection model,
relative to which the effects of compressibility are measured, will be

discussed in Sec. III. In Sec. IV the effects of compressibility will
be examined in detail, and conclusions will be drawn in Sec. V.

II. EQUATIONS

It is convenient to use an equilibrium coordinate system (p,©,)
in which the magnetic field lines are straight. Representing .the
equilibrium magnetic field as '

By = Flg+ Vo x W, e

where ¢ is the toroidal angle and 2m is the poloidal flux, a flux
coordinate system may be derived from the knowledge of ¢ as a function
of the Cartesian coordinates X = (R/Ry - 1), Z. [Here X, Z are
normalized to the value of the averaged minor radius (a)]. A straight
field line system is determined by choosing the Jacobian as R2.10,11
The variables p and 6 then take the roles of the generalized radial and
poloidal  coordinates, respectively. In the normalized variables
employed, p varies between O at the magnetic axis and 1 at the plasma

edge.
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Using an eikonal ballooning representation®?

. w . . A
€p.0.9,8) = Lo [ ofmy + Ik oy 1) gy, (2)
L _

a set of equations to leading order in the toroidal mode number (n) is
derived from the |inearized resistive MHD equations. In the p, 8, and
¢ system of coordinates, the eikonal phase A =¢ - q(y - yo) s
. particularly simple. For the equations to be consistent, it can be
shown that V = Vl =0, to order n, and that the perturbed pressure
balance must be maintained to highest order:

-+ >
P1+Bo’81=0, (3)

where subscripts 0, 1 denote equilibrium and perturbed quantities
S >

respectively. To the next order in n, an expression for V * Vy may be

obtained from the component of the momentum equation parallel to the

equilibrium magnetic field:

- - :
",BO.”O" 19 2 =2
-V [Ea- V(ga) +V In BO} -Eggﬁﬁ; By * By - (4)
It is convenient to normalize the variables. All lengths are

normalized to

a:(:—“%fR'de) ,
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an averaged plasma minor radius. The magnetic fields are normalized to
the vacuum toroidal magnetic field at the magnetic axis (BQO);
pressure, density, and resistivity are normalized to their equilibrium
values at the magnetic axis (Py, pg, and mg, respectively) Time is
normalized to the poloidal Alfvén transit time, THp = Ropo /BQO The
inverse aspect ratio is given by ¢ =a/Ry and S = THp /TR, where T is
the reSIStlve transit time o = 2 /no Using the above relations and
v Bl =0, in normallzed varlables the projections of the momentum

equation paraliel to Bo and Vp are

oP
My Po 1 P, o 8 (gonys, (5)

2 2
»12 e2 pe , BBO ) IBO a C!.bl
_ g _9 (y - - _— —=1]. 6
* oq U 7Y 0 | =y ) Rqe O \g?/ - ©

The component of Ohm’s law parallel to ap is

o bl , (7

and the adiabatic pressure equation combined with Eqs. (3) and (4) yields

L Pop PN g oy 0%
2 BO2 ot pI dp 802R2q ay ]

TPy [ Bo 2 el o, Y (18 Fo 2
802 (SQ oPy - R2q803y+1 5T (6P+B
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L1 [eP® 970 - 50)] 287 @©
R?B,>2 = o)

-+ - -+
where I=-F/(ReBeg), V) = Vo W o/ (2Bgg) s Yy = V1 * Byrhp/ (2Bp).
b, = bl . Vw RO/(a 320) I' is the ratio of specific heats, and
olp,y) = IVA]Q whxch in this coordinate system is given by ‘

a(e.y) =5 +§—— e"”+—“L—‘i(y—yo)gpe+q G - yp)2gP .

The content and physical interpretation of Egs. (5) through (8)
may be summarized as follows. Equation (6) is the radial momentum

balance equation, where the effects of curvature drive and field line
bending are opposed by inertia Notlng that Eq. (6) is equxvalent to
> > =" = -)

Veld=0, where Ved=V, +J + (V J ) eury * (V i)lnertaa’ it

can be seen that Tield llne bending corresponds to the paral[el
gradient of J” while the curvature and lnertia terms contribute to J
 In Eq. (7), the Ohm’s law relates J” to El/n, where E is determined by
| inductive (Bb /Bt) and electrosEatlc (avl/ay) ef;ects Equation (8) is

the parallel component of the B equation, where the adiabatic pressure
evolution equation and perturbed pﬁessure balance [Eq. (3)] have been
used to eliminate §0 . §1 in terms of Py. Hence, the right-hand side
of Eq. (8) -contains the terms corresponding to the effects of
convecbion of pressure, compressional Alfvén wave propagation, and
coupling to sound waves propagating along the magnetic field. Finally,
Eq. (5) describes the evolution of V. ‘

Equations (5) through (8) are solved either as an initial value
problem using a simple explicit numerical method or as an eigenvalue
problem using a library boundary value routine.*® The initial value
approach is simple to use, and it is easy to include additional
physics, such as diamagnetic effects, without any major coding
alteration. The boundary value approach requires a good initial guess
of the eigenvalue but permits tracking of the whole spectrum of
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eigenvalues in the complex plane. Detailed tests of these codes, in
the I"'=0 Ilimit, have been made by comparing their results to a
boundary value code based on the equations of Ref. 2.

III. PRESSURE CONVECTION MODEL
In the pressure convection model limit (I° = 0), Eqs (6), (7),
(8) yield the following eigenvalue equation:

0 o 1 0 Bo , )
ﬁy'[ o 63] wp dp € K(Y) - Wq uvl =0, (9)
W + ng_g
where

P q y

and w = 4 + iwg (normalized to Tﬁ%), 4 being the growth rate and wp
being the real frequency. Small aspect ratio corrections are ignored

to—simplify —matters—Equation—(9)—states that-the-effects-of—field
line bending (first term) and inertia (third term) oppose the
destabilizing curvature drive (second term). Note that the inclusion.
of resistivity (nn? a/S) weakens the stablllzxng effect of field . ,Line
bending when k2 (= n?0) becomes large. Hence, resistive balloéﬁlng
modes are extended iny and may peak away from y =0, at y values
corresponding to large radial wave numbers. Figure 2 shows typical
eigenfunctions of YV, in the incompressible limit, for three equilibria
with increasing poloidal betas (3 ). The 5p = 1.20 equilibrium is
computed to match experimental measurements from ISX-B.8-1* The other
two equilibria used for Fig. 2 are derived from the Bp =1.29
equilibrium, by multiplying the pressure profile by a constant. The
highest poloidal beta equilibria (5p = 1.88) is ideally unstable. The
eigenfunctions in Fig. 2 show that as the equilibria become
increasingly ideally stable, so the mode has to extend further to
overcome the influence of the field line bending term. In real space
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this corresponds to modes becoming radially localized and thus
requiring less energy for the interchange of field lines. 'Figure 3
shows how the eigenfunction structure varies as a function of toroidal
mode number (n) for the 6p = 1.29 equilibrium. For the incompressible
resistive ballooning mode, the effects of varying resistivity or
toroidal mode number are described by the single parameter an/S.
Hence, Fig. 3 shows that as n increases, or equivalently n/S increases,
the mode has to extend less in y to overcome the influence of the field
line bending term. The reason for this is that the resistivity allows
slippage between the field lines and fluid; thus, as nn2/S increases
the mode has to extend less in ballooning space, or equivalently become
less radially localized in real space, to make the interchange of field
lines energetically possible.

Equation (9) may be solved approximately using a two-length scale

expansion'® and a shifted circle approximation for the equilibrium-

X :_X0A+ pcos® , Z=psinb. : . (10)

Defining Dy = dXp/dp, then to order Dy the equilibrium quantities in
Eq. (9) are

| 2. . .
a(e,y) =-9§{1 + §%y% + 2y(cos y + Sy sin y)] ,
p |

(11)
Klp,y) = —%(DO +cos y + Sy siny) ,

where S = pq”/q is the shear parameter. Using these analytic
approximation equations, Eq. (9) becomes

9 1+ §2y2 + 2Dp(cos y + éy sin y) v,

3 = - %
© oy [1 + 8%y + ¢®a . + Wy(cos y + Sy sin y) Oy ]
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- w2[1 + §2y2 + Dp(cos y + éy sin y)]Vl

+ 2u(Dg + cos y + Sy sin y)Vl =0, (12)

Qhere u = (—30/26)(dP0/dpj and a, = (p2/q4)(S/nn2). It is convenient

to remove the first derivative in Eq. (12) by using the transformation -

12

2,
il W (13)

V. =11+ = =
. 1+ S%y? + My(cos y + Sy sin y)

Expanding to first order in Dy, Eq. (12) then becomes

2
arw‘§‘§'+ [r(y) + s(y)siny + c(y)cos ylH =0, (14)
4 ¥ |

where details of the coefficients r, s, and c are given in the
appendix. Equation (14) may be solved approximately using a two-length
scale expansion

W(y) =Hgly) + U (y)cos y + H(y)siny , (15)

where all the rapid fluctuations of length scale 2w are contained in
the trigonometric terms and Wy, W, W are broad envelope functions.
Substituting Eq. (15) into Eq. (14) and equating terms yields

S WO 18

Hs = apw ~ r’ (16)
R

0_, (17)

¢ auw-r
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and the averaged part combined with these equations gives

.
. ar.w 0
. dy2

+ r-(y)wo + SE'Y)Q * c('y)2 NO =0 . (18)
' r

Figure 4 compares the V, eigenfunctions obtained by numerical boundary
value solutions of Eq. (9), Eq. (18), and the full equations with no
aspect ratio ordering. Two sets of eigenfunctions for large aspect
ratio (€ = 0.1) and small aspect ratio (e = 0.833) are shown. The
eigenfunctions obtained from the solution of Eq. (18) are reconstructed
using Eqs. (15) through (17). Numerical equilibria were used for the
full and reduced equation solutions shown in Fig. 4. The
eigenfunctions always agree reasonably well in width, but at small
aspect ratios the details of the eigenfunction do not agree so.well.
This disagreement is primarily due to the use of a shifted circle
approximation to the real equilibrium. The width of the mode is
determined by the balance of field line bending with inertia at large
y. Hence, the width L is given by

2 -1/4
)

L= (U udfq™ (19)

It is interesting to note that the width of the mode along y, the
extended poloidal coordinate, is effectively the reciprocal of the
resistive layer width determined by Coppi, Greene, and Johnson.t®
Hence, the two-scale expansion separates k, into a fast scale 1/Rq and
a slow scale 1/RqL. These correspond to radial scales A and A., where
A = (nqé/p)‘l, the spatial separation of poloidal harmonics at fixed n,
and A, =-p/an§, the resistive layer thickness. In light of this
interpretation of the scales, it is instructive to note that the
destabilizing effect in Eq. (18) can be traced to the slow-scale
average of the product of the fast-scale geodesic curvature and the
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pressure fluctuation. Hence, it may be said that the resistive
ballooning mode is driven by geodesic curvature.

Further analytic progress may be made by ignoring the average well
(Dg = 0) and making an electrostatic approximation. The electrostatic
approximation is valid at large y, where the mode envelope peaks in the
region in which. field line bending is weakened by resistivity. With
~ these approximations Eq. (18) reduces to

d2w0 . (1 + S2y%) [24® - arwg -t (1 + By2)]

dy? arm[arm + w1+ §2y2)]

My =0 . (20)

Equation {20) is a potential equation, for which a necessary condition
for a solution with adequate boundary conditions at y = %o is that the
potential be negative in some interval. Therefore, equating the
coefficient of §2y2 to zero yields the dispersion relation

PR+ aw) = 22 . (21)

In the limit w << a./2 this dispersion relation yields a pure growing

mode, with growth rate

1/3

N 2 g o
qz(_‘i_u_) =(E€9%d_§> (%%—) . (22)

r

These modes were considered in Ref. 6, where a nonlinear theory is
discussed. Figure 5 shows a comparison of this dispersion relation
[Eq. (21)] with numerical solutions of Eq. (18) and of the full and
reduced ballooning equations. The reduced equations are those obtained
from Eqs. (8), (7), and (8) by ignoring small aspect ratio corrections.
In real space these equations are the reduced high beta tokamak
equations.!” Reasonable quantitative agreement is dfsplayed in Fig. &
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at low n. At larger values of nnZ/S the mode becomes more localized
about y = 0, and the multiple-scale length approximation breaks down.
This is responsible for the discrepancy at large n in Fig. 5. The
regime in which the growth rate has no dependence on toroidal mode

" number {or resistivity) is termed the fast ballooning limit, by analogy

with the Coppi, Greene, and Johnson fast interchange limit.
Ideal modes that tend to be very localized, in ballooning space,
about y = 0 are sensitive to their parity at y = 0 and to the value of

- the radial wave number (yp). Resistive balloconing modes that are very

extended in ballooning space show little dependence on these factors.
Figure & shows how the growth rate varies as a function of y, for the
ﬁp = 1.29 equilibria mentioned above. The n = b curve corresponds to a
very extended mode, and the growth rate appears practically degenerate
inyg- The n = 20 mode is localized about y = 0 and, as an ideal mode,
has a maximum in its growth rate for Yo = 0. In the next section, it

will be shown that modes which are very extended are completely, or

almost completely, stabilized by compressibility effects, whereas modes
localized about y = 0 are affected to a much lesser extent. Hence, the
dominant modes when compressibility effects are taken into account have
even parity in V, and yy = 0.

The limit of validity for the reduced high beta tokamak equations

~ has been investigated for the convective pressure model. Figure 7

shows the growth rate as a function of radius for the three varying
beta equilibria used in Fig. 2. For the low poloidal beta case
(ﬁp‘= 0.91) the full and reduced equations agree well. However, at
higher poloidal betas, as the ordering assumptions used in deriving the
reduced equations are violated, the agreement deteriorates. For these
values of 6p the full MHD equations give larger linear growth rates.
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IV. COMPRESSIBILITY EFFECTS
Equations (5) through (8) may be reduced to the coupled eigenvalue

equations:
oY B
1 0 o 1 0 _
_2"87[ 5 ay]—wavl-q?wK(y)Pl_O, (23)
-9 1+(—“—-—)a
wS

(1___25__5_2__) 1.__q_dPOV BOFPO dPg g [ 1 BVL]

— Sm————— _I_ -—
ay2 p dp QWQ(mw +?§% @J
I" Pgn 6 |
+ 9eT" Poq K(y)V, __go__QQ n2oPy (24)

where small aspect ratio corrections are ignored. Here wi = Byl PO/Qq2
is the sound frequency. Equations (23) and (24) mey again be solved by
a two-length scales approach. Using a shifted circle equilibria with
Dp =0 and making an electrostatic approximation, the following
eigenvalue equation is obtained for the slow scale: '

AW

- &2 2
21+ )Yy 4 w“(l *Sy)
[1 +—+—(1 + 82 2)}

. 2
X ( 2u _ chg Vg

w2 A "~
<[a W+ w (1 + &2 2)] [1 +-55%#1 + S2y2)] + Qw%(l + S2y%)
r
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 Some insight into the principal effects of compressibility may be

gained by consideration of a simplified version of Eq. (25). By noting

ap > W, W,, and wg and considering extended modes, Eq. (25) can be
simplified to ‘

a2V i o 2 2 N 2
P 0 _ (1 + S2y2)w2vo + U(l -+ S _y ) /2U _ C Vo = 0 . (26)
"oy (1+ Bf?) B Y

In the limit wg = w, = 0, Eq. (26) reduces to the a. > w limit of
Eq. (20). It is apparent that there are two compression effects. The
first, associated with wg, is due to coupling to the parallel sound

-

wave [V”V”‘ in Eq. (8)]. When wg/w -+, the pressure-driving term
vanishes because under such conditions the fast-scale pressure
fluctuation tends to isobarize along y. Hence, B-W=0 and' Py o
(B?dPo/dp)/(Bon). However, at large y resistive diffusion forces
By 80, and thus Py N 0, which destroys the instability drive. It
should be noted that in the case of isobaric fast-scale pressure
fluctuations, instabilities with growth rates scaling as g« n3/5
persist.15 However, such instabilities do not tap free expansion energy
at a rate sufficient to be of relevance to transport in ISX-B. Modes
with w > wg are not affected much by parallel compression. The second
effect, associated with mc,_is due to compression across the magnetic

field [? . %BO in Eq. (8)] and the necessity of balance of plasma and

magnetic compression as given in Eq. (8). The perpendicular
compression effects enter secularly, as y2, due to the beating of
oscillatory curvature terms in Egs. (8) and (6). For w; 2w,

perpendicular compression replaces inertia in the balance with pressure
drive, thus drastically reducing the growth rate to resistive diffusion
time scales. For w, < w, perpendicular compression has [ittle effect
and the pfessure convection model is recovered. Note that, since q 21
‘In the region of interest, perpendicular compression is the most
important effect associated with finite I. Finally, it is interesting
to observe that perpendicular compression appears in kinetic treatments
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from the expansion to first order of the pressure-driving terms in
wp/w, where wpy is the magnetic drift frequency.

An approximate dispersion relation solution of Eq. (25) is

ot Bug\ éwz 8.2 i 2 2 o2 6%, » 9:2)
W+ {ap, +-Ei:- w” + {Bug + 8wy +.:;?- w® + Jan(ug + Qc) +-:i:{ws + 2w3) |w
) r
+ 2w + 28)? = 282 . (27)

In the limit w >> w, (and therefore w >> wg, since ¢ > 1 in the region
of interest), the dispersion relation Eq. (27) reduces to the
incompressible limit [Eq. (21)], and thus compressibility has little
effect, as discussed above. In the other limit of practical interest
wa, >> w2, w <K wg, W, and ignoring inertia effects, which are only
important at very high n, Eq. (27) reduces to

aw( + Qw%) = 22 . | | | (28)

In this limit the growth rate scales linearly with the resistivity and
is greatly reduced by the compressibility effects. Also, since q> 1
the stabilizing influence of +the perpendicular compressibility will
always dominate that of the parallel dynamics. The parallel dynamics
limit (w, = 0) has been considered previously.®

These results are borne out by the numerical solutions of Egs. (5)
through (8) for parameters relevant to ISX-B. The shots corresponding
to the Bp = 1.29 equilibria, used in Fig. 2, have a magnetic Reynolds
number S~ 2.1 x 10%. Using this value and a flux surface average of a
resistivity that would maintain a resistive equilibrium, Fig. 8 shows
the growth rate as a function of toroidal mode number in the limits
I"=0 and "= 5/3 for two flux surfaces. Also indicated on the figure
are the separate contributions from the parallel and perpendicular
compressibility. The perpendicular effects dominate, as the dispersion
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relation indicates. The reason that the compressibility has less
effect on the outer surfaces is that the growth rate changes slowly
with radius, whereas wc(mPo) decreases with radius. Figure 9 shows the
dispersion relation solution corresponding to the [ower graph of
Fig. 8. The relative importance of the parallel and perpendicular
compressibility is resolved, but exact quantitative agreement is not
achieved. |

- DOne effect not resolved by the dispersion relation is that of
overstability. = In the regime where the compressibility completely, or
almost completely, stabilizes the mode, the numerical solution is
overstable. Using the initial value approach to solve Egs. (5) through
(8), the overstability is manifested by the dependent variables (b,
Vi, Pp) oscillating with a fixed period. Using the boundary value
approach, the overstability corresponds to complex eigenvalues.
Figure 10 traces the roots in the complex plane as a function of
- toroidal mode number for the flux surfaces and parameters as Fig. 8.
The particular branches traced in Fig. 10 are continuations of the
fastest growing compressible branches shown in Fig. 8; various other
branches exist.!?

Equilibria reconstructed from high poloidal beta (Bp 2 2) shots on
ISX-B using the methods of Ref. 14 are not available. - Instead,
numerical equilibria that approximately match experimental conditions
- and are just ideally stable are used. In particular, an equilibrium
with the g value varying between 0.9 on axis and 7.0 at the edge and
with Bp = 2.0 will be considered. Since the electron temperatures in
ISX-B are lower for shots of this type, a correspondingly lower
magnetic Reynolds number S = 10° is used. Figure 11 shows how the
compressibility effects vary for the numerical solution and dispersion
relations, between the p = 0.4 and 0.7 surfaces. Good qualitative
agreement can be seen between the dispersion relation and numerical
solution. Figure 12 traces the compressible roots in the complex plane
for the same flux surfaces and parameters as Fig. 11. Comparing the
results of this equilibrium with those of the 6P =1.29 equilibrium
shows that . at higher Bp and lower temperature (larger 1) the
compressibility has less effect. This is because the growth rates rise
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in the pressure convection limit with 7 and BP, and so the regime
w > W, is more easily attained. When the modes become overstable,
their growth rates have been greatly reduced by the effects of
compressibility. Hence the maximum toroidal mode number for
overstability  (ng.;i) provides a good means of quantifying the
compressibility effects. Figure 13 shows n..;y as a function of radius
for the ﬁp = 1.29 and 2.0 equilibria. The compressibility effects can
again be seen to be less important at high ﬁp and low temperatures.

V. CONCLUSIONS

The effects of compressibility on the resistive ballooning mode
have been assessed for situations relevant to ISX-B. The pressure
convection model predicts a resistive ballooning instability with

growth rate

By 2 dPp\2/8 fmr2\1/3
- [P0 g” TOW/E (qn”
1= (e o o 95 :

The full MHD equations are studied to understand the stabilizing
effects of compression and to determine the validity of the pressure
canvection model. At high current, modest Bp (~1), and relatively high
temperature, the stabilizing influence of the compressibility is quite
large and can completely, or almost completely, stabilize low toroidal
mode number modes. However, at higher 6p (~v2) and lower temperatures,
the compressibility has much less effect and imposes little restriction
on the unstable wave numbers predicted by the pressure convection model

for the outer surfaces.
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APPENDIX

The functions used
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in Eq. (14) are:

4D0q2arw§3y2

1+ &2

3 344 2 4 PR .
‘ auw°S S 242
r(y) = —T y 9  ~qa 2 (1 - 4y*S )
V(1 +5%%)2%  v(1 + $%?)
- Wy + 2uDg ,
S2yq4aﬁ 8 x A
s{y) = — 12vDy (S - 1) - 85§Dy -
v (1 + 52y2)2 [ 0 0
T (sy -2 M5 -1 L)
v(1 +<5? 2) y v V2
4,3 383 A
, DoqawSy [ 48y
V2(1 + 82y2)2 v
- QDOSyw +-—22l§1——,
1+ S2y2
S3y2 433w3D . 4g%a uS
°(y)=3yq2222v'85’q*;2>
v (1 + §%y%) 1+ Sy
L S
v(l + §? 2) v v v2

|
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2D0q4aiw3é2 (é 4§2y2>
21+ By

2uy
— D+ —2
0¥ 1+ 82y2

where

v=1+ §2y2 + qzarw .
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FIGURE CAPTIONS

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
F}g. 6

Fig. 7

Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Electron temperature at half radius and toroidal beta () es
a function of q edge for two fixed beam power scans on ISX-B.
Variation in ballooning mode eigenfunction structure of V, for
three equilibria with differing poloidal betas (mn?/s = 107%).
Variation in eigenfunction structure with toroidal mode number
(n) for B, = 1.29 equilibria of Fig. 2 (n/S = 1079).
Comparison of V, eigenfunctions from numerical and two-length
scale solutions for large and small aspect ratio equilibrium.
Comparison of dispersion relation, two-scale length solution,
and numerical solutions for large aspect ratio equilibrium.
Variation of growth rate with radial wave number (yq) for
n=5and 20 (B, =1.29, /S = 10-°).

Comparison of growth rates as a function of radius between

full (solid lines) and reduced (broken lines) ballooning

equations for the three equilibria used in Fig. 2 (nn2/S = 4 X
1074). | -

Growth rates as a function of toroidal mode number for two
flux surfaces p = 0.4, 0.8 (Bp =1.29). The effects of
compressibility (I" = 5/3) and the contributions of paraliel
and perpendicular compressibility are shown.

Dispersion relation solution corresponding to the lower pldt
of Fig. 8.

Complex eigenvalues for same flux surfaces and equilibria as
Fig. 8. Arrows show the direction of decreasing toroidal mode
number (indicated numbers are toroidal mode numbers).
Comparison of numerical solutions and dispersion relation at
p=0.4and 0.7 for high BP case (Bp =2.0).

Complex eigenvalues for same flux surfaces and equilibria as
Fig. 11. Arrows show the direction of decreasing toroidal
mode number (indicated numbers are toroidal mode numbers).
Minimum toroidal mode number for pure growing mode (n,.;i) as
a function of radius for 6p = 1.29 and 2.0 equilibria.
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