
Kinetic theory of flowing, magnetized plasma
R. D. Hazeltine
Institute for Fusion Studies and Department of Physics, The University of Texas at Austin,
Austin, Texas 78712-0262

F. L. Hinton
General Atomics, P.O. Box 85608, San Diego, California 92186-5608

!Received 11 June 2005; accepted 31 August 2005; published online 5 October 2005"

The drift-kinetic equation for a rapidly flowing magnetized plasma is derived, allowing for arbitrary
anisotropy of the distribution function. © 2005 American Institute of Physics.
#DOI: 10.1063/1.2082007$

I. INTRODUCTION

This work derives a drift-kinetic equation1,2,14—that is, a
kinetic equation for guiding-center motion—for a magne-
tized plasma whose flow velocity is comparable to its ther-
mal speed. Such rapidly flowing plasmas play an increas-
ingly important role in several areas of plasma physics
research. For example, they occur in a number of astrophysi-
cal phenomena, such as galactic jets;3 they play a key role in
various laboratory plasmas, such as the “centrifugal confine-
ment” device;4 and they underly studies of novel plasma
equilibria, such as Ref. 5. Finally, rapid plasma flow can
have dramatic effects on plasma confinement in tokamak
devices.6

Most previous studies of rapidly flowing, magnetized
plasmas are based on fluid models. However, in many appli-
cations the collision frequency is relatively small, allowing
significant departure from Maxwellian distribution functions
and requiring kinetic analysis. There are a number of kinetic
treatments,7–9,11,12 but these are not sufficiently general to
treat some plasmas of recent interest. In particular the previ-
ous studies assume the lowest-order distribution function to
be Maxwellian and thus isotropic in velocity space. This as-
sumption simplifies the kinetic equation and its derivation,
but it may not apply to the low collisionality regimes asso-
ciated with astrophysical jets, to laboratory plasmas in non-
toroidal geometry, or to toroidal plasmas that are strongly
driven. The main objective of this work is to remove the
isotropy assumption and derive a drift-kinetic that is fully
general with regard both to isotropy and plasma geometry.

In deriving the new result, we also attempt to improve
upon previous literature in other ways. First, we have tried to
make the derivation as transparent and systematic as pos-
sible, and to express the result in a convenient form. Second,
we demonstrate its invariance to velocity-coordinate rota-
tions in the plane normal to the magnetic field, by expressing
all the drift-kinetic coefficients in term of the local magnetic
field and its gradients. Third, we relate the new result to the
well-known kinetic equation13 used in “kinetic magnetohy-
drodynamics !MHD",” showing in the process that both new
and previous results conserve phase space. More generally
we include detailed comparisons of our result to previous
kinetic descriptions, including Refs. 7, 11, and 13.

Our work is similar in some respects to Ref. 10, in which

the authors carried out a derivation of the gyrokinetic equa-
tion, in a small gyroradius expansion limit. They assumed a
flow which did not need to be small compared with the ther-
mal speed, but they assumed that this large flow was perpen-
dicular to the magnetic field. That is, any parallel component
of the flow was assumed to be much smaller than the thermal
speed. In contrast, we have assumed that the flow has an
arbitrary parallel component, which need not be small. Our
results are expected to be more useful in the treatment of
magnetically confined plasmas, where the perpendicular and
parallel flow components may be comparable. Also, the gen-
eral discussion of phase-space conservation given in Ref. 10
applies directly to the zeroth-order terms in our drift-kinetic
equation, but it is not clear how to apply it to the first-order
!drift" terms, because the operator ! defined in Sec. III ap-
pears twice in Eqs. !10" and !11". We have included a direct
proof of phase-space conservation for the first-order terms, in
Sec. VI, which is independent of the discussion in Ref. 10.

The following section presents our notational and geo-
metrical conventions. The heart of the analysis is displayed
in Sec. III, and the results given in Sec. IV. A discussion of
the zero-gyroradius limit and its relation to MHD is pre-
sented in Sec. V. Phase-space conservation through first or-
der in gyroradius is demonstrated in Sec. VI. Our conclu-
sions are summarized in Sec. VII, which displays a relatively
self-contained statement of the drift-kinetic equation.

II. GEOMETRY AND NOTATION

A. Kinetic equation and small gyroradius

The starting point for our analysis is the kinetic equation
for the distribution function f!x ,v , t" of charged particles in a
quasi-neutral, magnetized plasma. To conveniently treat rap-
idly moving plasma, this equation is written in a noninertial
reference frame which approximates the rest frame of the
distribution. Thus, while the first velocity moment of f will
be relatively small, we allow the frame velocity U to be
comparable to the thermal speed vt associated with f . In this
case “inertial” forces play an important role.

The kinetic equation in the moving frame has the well-
known form11
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#f

#t
+ !v + U" · $f + % e

m
v " B + F − v · $U& ·

#f

#v
= C!f" ,

!1"

where e is the particle charge, m its mass, B is the magnetic
field, C a collision operator and the force

F =
e

m
!E + U " B" −

#U
#t

− U · $U !2"

includes the inertial forces along with the Lorentz force as-
sociated with plasma flow. The drift-kinetic equation applies
to a magnetized plasma, in which the thermal gyroradius

# =
vt

$
,

where $=eB /m is the gyrofrequency, is small compared to a
gradient scale length L. The corresponding gyroradius pa-
rameter is denoted by

% '
#

L
.

It is then convenient to introduce unit vectors !e1 ,e2 ,b", with
b'B /B=e1"e2, and to express the velocity coordinate as

v = u + s ,

where u is the parallel velocity,

u = bb · v

and s is the perpendicular velocity,

s = sŝ = s!e1 cos & + e2 sin &" .

Here & is the gyrophase angle. It is helpful to decompose the
distribution function into its gyrophase average, f̄ , and the
residual f̃:

f!x,u,s,&,t" = f̄!x,u,s,t" + f̃!x,u,s,&,t" ,

where

f̄ ' (f) ' * d&

2'
f .

Rapid gyration implies that f̃ is relatively small:7

f̄/ f̃ + % . !3"

Returning to the kinetic equation, Eq. !1", we note that
the last term on the left-hand side,

e

m
!v " B" ·

#f

#v
= − $

#f

#&
,

is measured by the gyrofrequency. Since this term acts ex-
clusively on f̃ , our basic ordering, Eq. !3", will hold as long
as the other terms on the right-hand side correspond to
slower motions. For a precise statement of this condition, we
introduce the operator

! = !v + U" · $ + !F − v · $U" ·
#

#v
. !4"

This operator will be expressed in the variables !x ,u ,s ,&" in
Sec. III. It is clear that Eq. !3" will describe evolution on
time scales long compared to the gyroperiod, provided the
collision frequency is smaller than the gyrofrequency and
provided that

!!f" + %$f . !5"

Most of the terms in ! obviously satisfy Eq. !5". The
exceptions are two terms contained in the force F:

! =
e

m
!E + U " B" ·

#

#v
+ O!%" .

These terms will contradict Eq. !5" unless they nearly
cancel—unless E balances the large U"B force. We there-
fore assume

E + U " B = bE, , !6"

where

e

m
E, + %$vt. !7"

Then Eq. !2" becomes

F =
e

m
bE, −

#U
#t

− U · $U . !8"

Furthermore, the velocity U must have the form

U = bU, + VE, !9"

where

VE =
!E " b"

B

is the familiar E"B drift, and the parallel flow U, is arbi-
trary.

The drift-kinetic equation is the gyrophase-average of
Eq. !1":

# f̄

#t
+ (!! f̄ + f̃") = C! f̄" . !10"

Here f̃ is to be expressed in terms of f̄ , using the first-order
equation

$
# f̃

#&
= !! f̄" − (!! f̄") . !11"

While this recursive procedure14 evidently omits some
second-order terms in f̃ ,15 it captures in the drift-kinetic
equation all first-order contributions, along with second-
order terms coming from the first-order part of f̄ . Equations
including all second-order terms, with more specialized as-
sumptions concerning plasma flow or collisionality, have
also been derived.15,16
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B. Geometry

Because the magnetic field is not uniform, the unit vec-
tors !e1 ,e2 ,b" depend upon position. To describe this varia-
tion we will sometimes use the curvature coefficients Rij de-
fined by

ei · !$e j" · ei =
1

Rij

and the torsion coefficients Tij defined by

ek · !$e j" · ei =
1

Tij
= −

1
Tji

.

Here k is the unique index unequal to i or j. Notice that we
use the notation

ei · !$V" · e j ' #!ei · $"V$ · e j .

We often abbreviate

b · $ = $, .

The curvatures and torsions essentially measure compo-
nents of the symmetric tensor B'!b+ !!b"T, with compo-
nents

Bij ' ei · !$b" · e j + e j · !$b" · ei. !12"

In particular,

B12 =
1

T13
+

1
T23

!13"

and

1
2

!B11 − B22" =
1

R13
−

1
R23

. !14"

Our drift-kinetic equation will apply only for relatively
slow temporal change,

#

#t
+ %2$ . !15"

In that case temporal variation of the unit vectors is too weak
to affect Eq. !10", and we treat the set !e1 ,e2 ,b" as constant
in time.

This is the most relevant assumption about the time de-
pendence for many applications, e.g., plasma transport.
However, we temporarily relax this assumption, allowing
faster time dependence, in Sec. V, where we discuss the zero
gyroradius limit and demonstrate phase-space conservation
for this limit.

C. Consistency condition

It follows from Eq. !15" that the electric field is prima-
rily electrostatic:

E - − $( ,

where ( is the potential. In this case a large perpendicular
flow, U!+vt, can occur only if

% e

T
&.$(. +

1
#

. !16"

It is not obvious that the ordering Eq. !16" is consistent with
the small-gyroradius assumption. We consider that consis-
tency here.

We call the plasma magnetized if its parameters vary
slowly on the scale of the gyroradius. The electrostatic po-
tential must be counted as one of these parameters; in par-
ticular, its variation is typically linked to that of the plasma
density.11 But what does it mean to say that the potential
varies slowly? The obvious condition

#.$(. ) .(.!?"

is not gauge-invariant and therefore meaningless.
A gauge-invariant measure involves the difference *(

between the potential’s maximum and its minimum in the
system. If e.*(. /T is comparable to or less than unity, and if
other plasma parameters vary sufficiently slowly, then the
plasma is magnetized, and its velocity is small: U!+%vt.
The present study emphasizes the case of rapid flow, U!

+U, +vt. For electrostatic E"B motion on this scale we
must allow

e.*(.
T

+
1
%

!17"

while at the same time imposing the gauge-invariant magne-
tization requirement,

#.$(. + %.*(. . !18"

It is easily seen that Eqs. !17" and !18" combine to reproduce
the rapid flow condition, Eq. !16". Hence they express the
consistency conditions for an electrostatic E"B flow to ap-
proach thermal speed, in a magnetized plasma.

III. ANALYSIS

A. The operator "

To understand the structure of the operator !, we first
isolate its averaged part, writing

! = !̄ + !̃ ,

where

!̄ = ẋ̄ · $u̇̄
#

#u
+ ṡ̄

#

#s
.

Here ẋ̄=U+bu and

u̇̄ =
s2

2
$ · b + F · b − u!$,U" · b , !19"

ṡ̄ = −
us

2
$ · b +

s

2
#!$,U" · b − $ · U$ . !20"

The residual !̃ is expressed in terms of a scalar, J, a vector K
and a second-rank tensor, L:
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!̃ = J
#

#&
+ s · K − !ss"̃:L , !21"

where

!ss"̃ =
s2

2
#cos 2&!e1e1 − e2e2" + sin 2&!e1e2 + e2e1"$

and

J = !U + bu + s" · $& + !F − u$,U − s · $U" ·
b " s

s2 ,

!22"

K = $ + !U + bu" · $b% #

#u
−

u

s

#

#s
& − !$U" · b

#

#u

+ !F − u$,U"
1
s

#

#s
, !23"

and

Lij =
1
2s
/!Wij + uBij"

#

#s
− sBij

#

#u
0 . !24"

Here Bij is defined by Eq. !12" and, similarly,

Wij ' ei · !$U" · e j + e j · !$U" · ei.

All gradients are performed at fixed u ,s ,& except $&, which
is performed at fixed v'bu+s. Now the drift-kinetic equa-
tion can be written as

# f̄

#t
+ !f +1J

# f̃

#&
2 + (s · K! f̃") − (ss:L! f̃") = C! f̄" . !25"

Notice that we use parentheses to indicate the operand of
each operator.

We refer to the last three terms on the left-hand side of
Eq. !26" as the scalar, vector, and tensor terms, in the obvi-
ous order. We evaluate these terms after finding the distribu-
tion f̃ .

B. Gyro-varying distribution

The function f̃ is obtained from Eq. !11", or,

$
# f̃

#&
= !̃! f̄" = s · K! f̄" − !ss"̃:L! f̄" .

Here we used Eq. !21". The integration constant is deter-
mined by requiring ( f̃)=0. Thus we find

f̃ = − # · K! f̄" −
s2

4$
+̂:L! f̄" , !26"

where

# =
s

$
!− e1 sin & + e2 cos &" !27"

and

+̂ = sin 2&!e1e1 − e2e2" − cos 2&!e1e2 + e2e1" . !28"

The expression, Eq. !26", agrees with the previously pub-
lished version.7

C. Scalar term

Straightforward calculation shows that

$& = !e1 · $"e2 + e1 " $ " e2 +
u

s
#cos &!b · $e2

+ b " $ " e2" − sin &!b · $e1 + b " $ " e1"$ . !29"

We use this result to compute

1J
# f̃

#&
2 = Z · K! f̄" +

s2

16$
!B,W"

# f̄

#u
!30"

in terms of the abbreviations

!B,W" ' B12!W11 − W22" − W12!B11 − B22" !31"

and

Z ' −
s2

2$
% e2

R21
−

e1

R12
& −

b
2$

" !F − u2$ − u%" , !32"

where $=b ·$b and

% ' U · $b + b · $U . !33"

Note that the s derivatives have canceled in the second term
on the right-hand side of Eq. !30".

The terms in Eq. !31" involving Z will combine with
terms from the vector contribution, computed next, to give
the correct guiding-center drift; the remaining terms combine
with identical terms from the tensor contribution to give the
correct u̇.

D. Vector term

Next consider

(s · K! f̃") = − (siKi„# jKj! f̄"…)

= − (siKi!# j")Kj! f̄" − (si# j)Ki!Kj" f̄ . !34"

It is convenient to write

K = $ + Ku #

#u
+ Ks #

#s

with

Ku = !U + bu" · $b − !$U" · b , !35"

Ks = s−1#F − u2$ − u%$ . !36"

Then one finds that

(s · K! f̃") = v*D · $ f̄ + K*u # f̄

#u
+ K*s# f̄

#s
, !37"

where
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v*D ' uD +
s2

2$
/b " $ log B + % e2

R21
−

e1

R12
&0

−
b

2$
!F − u2$ − u%" !38"

and

K*u = v*D · Ku −
s2

2$
b · !$ " Ku − $ " Ku" , !39"

K*s = v*D · Ks −
s2

2$
b · #$ " Ks − s−1Ku " !u$ + b · W"$ .

!40"

In Eq. !38"

uD '
s2

2$
bb · $ " b

is the usual parallel drift.

E. Tensor term

Because the tensor operator L acts only on u and s, and
because the &-varying part of ss contains only cos 2& and
sin 2& terms, we have

− (ss:L! f̃") =
s2

4$
(ŝiŝ j+̂kl)Lij!s2Lkl f̄" . !41"

Here we have noted that the tensor Ê'4(ŝiŝ j+̂kl) is an-
tisymmetric under !i , j"↔ !k , l". It is given by

Ê = !1211" − !1222" + !2111" − !2122" − !1112"

− !1121" + !2212" + !2221" ,

where, for example, !1211"'e1e2e1e1.
The only nonvanishing contribution to Eq. !41" comes

from

Lij!s2" = Wij + uBij .

Since, furthermore,

Lij!s2"Lkl = −
1
2
WijBkl,

we have

− (ss:L! f̃") = −
s2

32$
ÊijklWijBkl

or

− (ss:L! f̃") =
s2

16$
!B,W"

# f̄

#u
. !42"

IV. DRIFT-KINETIC COEFFICIENTS

A. Drift velocity and accelerations

We use the notation

(!̃! f̃") = vD · $ f̄ + u̇D
# f̄

#u
+ ṡD

# f̄

#s
.

The coefficients are found by combining Eqs. !30", !37", and
!42". We find that

!1" The guiding-center velocity vD has contributions from
Eqs. !30" and !37", and is given by vD=v*D+Z or

vD ' uD +
s2

2$
b " $ log B −

b
$

" !F − u2$ − u%" . !43"

Note that the E"B drift is contained in U, allowing it to
become large; this drift is therefore missing from vD.

!2" The guiding-center parallel acceleration has contribu-
tions from all three parts of !̃, and is given by

u̇D = vD · Ku −
s2

2$
b · !$ " Ku − $ " Ku" +

s2

8$
!B,W" .

!44"

Here Ku is defined by Eq. !35".
!3" The guiding-center perpendicular acceleration is given

by

ṡD = vD · Ks −
s2

2$
b · #$ " Ks − s−1Ku " !u$ + b · W"$ .

!45"

The above expression for (!̃! f̃") is to be used in Eq.
!10", along with the expressions given at the beginning of
Sec. III, to form the complete drift-kinetic equation in the
variables !u ,s".

B. Guiding-center energy change

The particle kinetic energy is defined by w=v2 /2= !u2

+s2" /2. We compute ẇD=uu̇D+sṡD from Eqs. !44" and !45",
noticing that

uKu + sKs = F − ub · W . !46"

We also introduce the conventional17 measure of velocity
shear:

W ' 1
2#$U + !$U"T − 2

3I $ · U$ .

Thus

W = 2
3I $ · U + 2W !47"

and we find

ẇD = vD · !F − 2ub · W" −
s2

2$
b · $ " !F − 2ub · W"

+
s2

$
b · Ku " !b · W" +

us2

4$
!B,W" . !48"

To make Eq. !48" more explicit, we first observe that

!B,W" = % 1
T13

+
1

T23
&!W11 − W22" − 2W12% 1

R13
−

1
R23

& .

We also note that
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b · Ku " !b · W" = b " % · !b · W" + !b " u$" · !b · W"

where the last term can be written explicitly as

!b " u$" · !b · W" = u%W13

R32
−

W23

R31
& .

Combining these observations we find

ẇD = ẇ1 + ẇ2 + ẇ3 + ẇ4 !49"

with

ẇ1 = vD · !F − 2ub · W" −
s2

2$
b · $ " !F − 2ub · W" ,

ẇ2 =
2,B

$
/u%W13

R32
−

W23

R31
& + b " % · !b · W"0 ,

!50"

ẇ3 =
u,B

2$
% 1

T13
+

1
T23

&!W11 − W22" ,

ẇ4 =
u,B

$
W12% 1

R23
−

1
R13

& .

Notice that the curl in Eq. !50" is performed at fixed u. This
expression for ẇD is easily compared to previous literature,7

with which it agrees. An alternative, somewhat simpler ex-
pression is derived presently and given by Eq. !64".

C. Guiding-center magnetic moment change

The rate of change of magnetic moment ,'s2 / !2B" is

,̇ = B−1!sṡ − ,ẋ · $B" .

We show in Sec. V that the lowest-order terms in this expres-
sion, coming from ṡ̄ and ẋ̄=U+bu, nearly cancel, essentially
because of Eq. !9". Here we consider only the higher-order
terms,

,̇D ' B−1!sṡD − ,vD · $B" !51"

without using Eq. !9". From Eq. !45" we have

B,̇D = vD · !sKs − , $ B" −
,B

$
b · #$ " sKs − Ku

"!u$ + b · W"$ . !52"

Recalling Eq. !36" and taking advantage of several can-
cellations, we find that Eq. !52" can be written as

,̇D = ,̇1 + ,̇2 + ,̇3 !53"

with

B,̇1 = uD!F, − ub · $, − ,$,B" , !54"

B,̇2 = −
,B

$
b · $ " !F − u2$ − u%" , !55"

B,̇3 =
,B

$
b · #u!% − 4b · W" " $ + 2% " b · W$ . !56"

In Eq. !55", as in Eq. !50", the curl is performed at fixed u.

D. Summary

The drift-kinetic equation can be written as

#f

#t
+ !u + U + vD" · $f + ẇ

#f

#w
+ ,̇

#f

#,
= C!f" , !57"

where we suppress the overbar on f for simplicity, and where

ẇ = ẇ̄ + ẇD, !58"

,̇ = ,̇̄ + ,̇D. !59"

Here ẇD and ,̇D are given by Eqs. !49" and !53", respec-
tively, while the leading terms are

ẇ̄ = uu̇̄ + sṡ̄ , !60"

,̇̄ = B−1sṡ̄ − ,!bu + U" · $ log B . !61"

These barred terms are the only terms that survive in the
limit of vanishing gyroradius, %→0. They are considered in
more detail in Sec. V.

E. Symmetry

Since the choice of the unit vectors e1!x" and e2!x" is
constrained only by e1"e2=b, the kinetic equation must be
invariant under rotation of the coordinate system about the
local field b!x". !Such rotation is equivalent to redefining the
gyrophase at each point, and is closely analogous to local
gauge symmetry in quantum field theory." A simple way to
verify this “gyrosymmetry” is to begin with Eq. !48", in
which every term is clearly symmetric except the last, in-
volving !B ,W". However, this quantity can be written as

!B,W" = 1
2 #!B:&"!W:'" − !B:'"!W:&"$ ,

where '=e1e1−e2e2 and &=e1e2+e2e1. Therefore !B ,W" is
symmetric if the tensor &'−'& is gyrosymmetric; but this
gyrosymmetry is easily demonstrated by direct substitution,
&→&+-.

A manifestly symmetric version of the kinetic equation is
obtained by expressing Eq. !57" in terms of b alone, without
reference to e1 or e2. This version is in fact relatively simple,
so we derive it here.

The only term in Eq. !57" that involves the e’s is the
coefficient of u,B /$ in ẇD; we denote this quantity by

X ' 2%W13

R32
−

W23

R31
& +

1
2
% 1

T13
+

1
T23

&!W11 − W22"

+ W12% 1
R23

−
1

R13
& .

It can be seen that

1
R3i

= − .i,

where $'b ·$b is the magnetic field curvature. Combining
this result with Eqs. !13" and !14" we obtain
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X = 2!.1W23 − .2W13" + 1
2 #!B12!W11 − W22"

− W12!B11 − B22""$ . !62"

Next consider the quantity

Y ' bi/ijkWjmBmk,

where /ijk is the unit antisymmetric tensor. Because Wjm and
Bmk are components of second-rank tensors, Y is manifestly
gyrosymmetric !in variant under rotation in the transverse
plane". Straightforward expansion reveals that

Y = B12!W11 − W22" − W12!B11 − B22" + .2W13 − .1W23.

Thus

X = 1
2Y − 5

2 !.2W13 − .1W23"

or

X = 1
2bieijkWjmBmk − 5

2b · $ " !W · b" . !63"

We conclude that Eq. !49" can be expressed in gyrosym-
metric form as

ẇD = ẇ1 +
2,B

$
b " % · !W · b" +

u,B

$
X , !64"

where ẇ1 is given by Eq. !50" and X by Eq. !63".

V. ZERO GYRORADIUS LIMIT

A. Magnetic moment change

We compute the lowest-order magnetic moment varia-
tion ,̇̄ from Eqs. !61" and !20". After noting that

$ · b = − $, log B

we find that

,̇̄ = ,#!$,U" · b − $ · U − U · $ log B$ .

The identities

!$,U" · b = $,U, − $ · U , !65"

$ · U = $,U, + $ · VE − U,$, log B , !66"

where $=$,b is the magnetic curvature, then provide

,̇̄ = − ,!$ · VE + $ · VE + VE · $ log B" . !67"

We next use Faraday’s law to compute

$ · VE = − VE · $ log B − $ · VE −
E,

B
b · $ " b . !68"

Here we consistently neglect the term !, /B"#B /#t; however,
had we kept this term it would precisely cancel with the
time-derivative term omitted from Eq. !61". Thus Eq. !67"
reduces to

,̇̄ = ,%E,

B
&b · $ " b . !69"

This quantity is O!%", in view of Eq. !7": there is no zeroth-
order magnetic moment change.

B. Energy change

We compute the lowest-order energy change from Eqs.
!19", !20", and !60":

ẇ̄ = ub · !F − u$,U" + ,B#!$,U" · b − $ · U$ . !70"

The last term in this expression brings in a first-order contri-
bution, given by the last term in Eq. !68"; all the other terms
are nominally O!1". The small term is consistently omitted
from the lowest-order energy change, which we denote by
ẇ̄0. Using Eqs. !65", !66", and !68", we find that

ẇ̄0 = u/ e

m
E, − U · !$U" · b0 + ,BU · $ log B

− u2!$,U" · b . !71"

The lowest-order drift-kinetic equation is therefore

!bu + U" · $f0 + ẇ̄0
#f0

#w
= C!f0" , !72"

where f0 is the lowest-order distribution and ẇ̄0 is given by
Eq. !71".

C. Phase-space conservation

In this subsection we relax the time-ordering Eq. !15",
allowing temporal variation in zeroth order. Provided that
Eq. !70" is used for ẇ̄, the only change in the lowest-order
kinetic equation is the addition of an obvious term to Eq.
!72":

#f

#t
+ !bu + U" · $f + ẇ̄

#f

#w
= 0. !73"

We also omit collisions, for simplicity, and suppress 0 sub-
scripts. The kinetic equation, Eq. !73", is essentially the same
as that of Rosenbluth and Rostoker !RR":13 it is part of the
foundation of “kinetic MHD.” Thus one can view the present
analysis as an extension of the RR theory to include terms of
first order in the gyroradius.

We let (= !01 , . . . ,06" denote arbitrary curvilinear coor-
dinates for the six-dimensional phase space; in our case (
= !x ,, ,w ,&". Thus the total number of particles is

N '3 d3xd3vf =3 d60Jf ,

where J denotes the Jacobian for the six-dimensional coor-
dinate transformation !x ,v"→(. Any kinetic equation ex-
presses the conservation of N; if each 0i changes according to
some specified 0̇i!(", then the natural, particle-conserving
form of the kinetic equation is

1
J

#!Jf"
#t

+
1
J

#

#0i !0̇
iJf" = 0. !74"

The kinetic equation, Eq. !72", has a different form:
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#f

#t
+ 0̇i #f

#0i = 0. !75"

However, if the rates of change 0̇i satisfy the phase-space
conservation law,

#J

#t
+

#

#0i !J0̇i" = 0, !76"

then the two forms of the kinetic equation, Eqs. !74" and
!75", are equivalent and N is manifestly conserved.

To study the conservation properties of the RR equation,
Eq. !73", we first note that the variables

( = !x,,,w,&"

have the Jacobian

J =
B

u

and the dynamical laws

ẋ = bu + U, ,̇ = 0, &̇ = 0,
!77"

ẇ = − u2$,U · b + ,B#!$,U" · b − $ · U$ .

In Eq. !77" we omit a term proportional to u, since it cannot
contribute to Eq. !76".

Hence Eq. !76" takes the form

#

#t
%B

u
& + $ · %B

u
U& +

#

#w
%B

u
ẇ& = 0. !78"

Note that the velocity term !B /u"ub=B is obviously diver-
gence free.

To verify Eq. !78", we first use

u = 42!w − ,B"

to compute

#

#t
%B

u
& + $ · %B

u
U& =

u2 + ,B

u3

dB

dt
+

B

u
$ · U ,

where

dB

dt
'

#B

#t
+ U · $B .

Faraday’s law, using Eq. !9" for U, can be used to show that

dB

dt
= B#!$,U" · b − $ · U$ + O!%"

and therefore that

#

dt
%B

u
& + $ · %B

u
U& =

u2 + ,B

u3 B#!$,U" · b − $ · U$

+
B

u
$ · U . !79"

Finally, we use the identity #u /#w=1/u to find that the last
term in Eq. !78" precisely cancels the right-hand side of Eq.
!79".

Hence the RR equation conserves phase space. We re-
store the collision operator to express the equation as

#

#t
%Bf

u
& + $ · /Bf

u
!bu + U"0 +

#

#w
%Bf

u
ẇ& =

B

u
C!f" .

!80"

This form is especially convenient for computing moments
of the RR equation.

D. Lowest-order distribution: Maxwellian case

We consider the lowest-order theory in the special case
of a Maxwellian f0, as must occur in toroidal geometry with-
out external sources. This case has been studied
previously;7,11 our purpose here is to see how the familiar
results are obtained from the present formulation.

When

f0 = !2'T"−3/2n!x"e−mw/T!x"

we find that Eq. !72" implies

!bu + U" · %$ log n −
3
2

$ log T +
mw

T
$ log T&

+
mu

T
% e

m
$,( + U · $U · b& −

m,B

T
U · $ log B

+
mu2

T
b · $U · b = 0.

Noting that this relation must hold for all , and w, we infer
that

$, log T = 0,

U · !$ log n − 3
2 $ log T" = 0,

U · $ log T − U · $ log B = 0,

$, log n +
e

T
$,( +

m

T
U · $U · b = 0,

b · $U · b + 1
2U · $ log B = 0.

If we next specialize to axisymmetric !tokamak" geom-
etry, then these relations quickly yield the familiar11 rigid-
body toroidal rotation, with density and potential variation
modified by centrifugal force.

VI. PHASE-SPACE CONSERVATION

We now demonstrate phase-space conservation for our
drift-kinetic equation including the first-order !drift" terms.
This is simplest using the variables !u ,s", for which the Jaco-
bian is s. The zeroth-order coefficients are given by ẋ̄=U
+bu and Eqs. !19" and !20" for u̇̄ and ṡ̄. We find easily

$ · ẋ̄ +
#u̇̄

#u
+

1
s

#

#s
!sṡ̄" = 0. !81"

The first-order coefficients are given by Eqs. !43", !44",
and !45". We write Eq. !43" in the form
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vD = uD +
b
$

" % s2

2B
$ B − sKs& , !82"

where sKs is given by Eq. !36". Using

b · $!b · $ " b" + !$ · b"b · $ " b = b · $ " $ , !83"

we have

$ · uD =
s2

2$
/b · $ " $ − !b · $ " b"

b · $B

B
0 . !84"

Also,

$ · !vD − uD" =
s2

2$
!$ " b" · $ log B −

1
$
%$ " b

+
b " $B

B
& · !sKs" +

1
$

b · $ " !sKs" .

!85"

Then, using

$ " b = b!b · $ " b" + b " $ , !86"

we have

$ · vD =
s2

2$
%b · $ " $ +

b " $ · $B

B
& −

1
$
%$ " b

+
b " $B

B
& · !sKs" +

1
$

b · $ " !sKs" . !87"

Also, using Eq. !44" for u̇D and, from Eq. !35", #Ku /#u
=$, we have

#u̇D

#u
=

b
$

" !2u$ + %" · Ku + $ · vD −
s2

2$
b · $ " $ . !88"

And, finally, from Eq. !45" for sḊ, noting that # /#s!sKs"=0,
we find

1
s

#

#s
!ssḊ" =

1
$
/bb · $ " b +

b " $B

B
0 · !sKs" −

1
$

b · $

" !sKs" −
1
$

b " !u$ + b · W" · Ku. !89"

By adding these together, using Eq. !82" for vD and

Ku = u$ + % − b · W , !90"

we obtain

$ · vD +
#u̇D

#u
+

1
s

#

#s
!ssḊ" = 0. !91"

Finally, by adding the zeroth-order and first-order terms,
we have

$ · !U + bu + vD" +
#

#u
!u̇̄ + u̇D" +

1
s

#

#s
#s!ṡ̄ + sḊ"$ = 0

!92"

which expresses phase-space conservation through first order
in %.

VII. CONCLUSIONS

The main result of this paper is the drift-kinetic equation,
Eq. !57", where the coefficients are given in Sec. IV. For
convenience we recapitulate the key results here:

#f

#t
+ !u + U + vD" · $f + ẇ

#f

#w
+ ,̇

#f

#,
= C!f" ,

where the kinetic energy and magnetic moment are defined
by w=v2 /2 and ,=s2 / !2B", and where

vD = uD +
s2

2$
b " $ log B −

b
$

" !F − u2$ − u%" ,

ẇ = u/ e

m
E, − U · !$U" · b0 + ,BU · $ log B

− u2!$,U" · b +
2,B

$
b " % · !b · W"

+
u,B

2$
bieijkWjmBmk −

5
2

b · $ " !b · W"

+ ,E,b · $ " b ,

,̇ = ,%E,

B
&b · $ " b + uD · !F − u$,U − , $ B"

−
,B

$
b · $ " !F − u2$ − u%" +

,B

$
b · #u!% − 4b · W"

" $ + 2% " !b · W"$ .

Here the curl is performed at fixed u, and we use the abbre-
viations

uD =
,B

$
bb · $ " b ,

F =
e

m
bE, −

#U
#t

− U · $U ,

% = U · $b + b · $U ,

B = !b + !!b"T,

W = 1
2#$U + !$U"T − 2

3I $ · U$
and $=b ·$b is the magnetic curvature. We remind the
reader that the E"B drift is missing from vD because it
appears in U; the point is that this drift is allowed to become
large as part of U, while vD+%. We also point out that the
first-order term in ẇ̄, omitted in the lowest-order Eq. !71",
has now been restored; it appears as the last term in ẇ,
above.

Our drift-kinetic equation includes all terms of first order
in the gyroradius !as well as certain second-order terms",
while allowing the lowest-order flow velocity U=bU, +VE to
be comparable to the thermal speed. There is no assumption
about the form of the guiding-center distribution f . We have
demonstrated phase-space conservation for our drift-kinetic
equation.
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