Low frequency sawtooth precursor in ASDEX upgrade

G. Papp1,2, G. I. Pokol1, G. Por1, N. Lazányi1, L. Horváth1, A. Magyarkuti1, V. Igochine3, M. Maraschek3 and ASDEX Upgrade Team3

1) Budapest University of Technology and Economics, Budapest, Hungary
2) Chalmers University of Technology, Göteborg, Sweden
3) Max-Planck-Institut für Plasmaphysik, Garching, Germany
Introduction

• For a safe tokamak operation the sawteeth have to be controlled. We lack a complete understanding of the crash.
• We have to take into account the transient precursor oscillations.
• A Low Frequency Sawtooth Precursor (LFSP) - lower than the (1,1) mode - was observed on several tokamaks1-3

\begin{itemize}
 \item The LFSP on ASDEX Upgrade was analysed in detail
 \item It may play an important role in the sawtooth crash
\end{itemize}

• Frequent experimental observation: sawtooth-like jumps of the soft x-ray emission in the core plasma.

• Quasi-periodic flattening of the radial parameter profiles - CRASH

• Precursor oscillations before the crash - kink mode with (m,n)=(1,1) spatial structure
The stochastic model

• Local ergodic zones arise and lead to the transient transport
• This theory is consistent with the measurements (q-prof. evolution, postcursor mode, etc.) - but exact cause is unknown
• Experimental result: a Low Frequency Sawtooth Precursor (LFSP) is observable in the precursor phase with lower frequency than the kink - Properties? Role in the crash?

Time-frequency evolution

- Analysis of $O(100)$ crashes from several years of data
- The LFSP appears in most of the crashes investigated
- Crash occurs a few (~5) ms after the energy gain of the LFSP
- Average growth rate ~400 1/s => possibly a core MHD mode
Time-frequency evolution

- Ridge following algorithm based on graph theory to analyse low energy modes - global shortest path search
- $0.5 < \text{LFSP}/(1,1) < 0.7$ - not a small order rational
- (So far) no correlation was observed with plasma parameters
Connection between the modes

- Integrate the spectrogram in frequency for a given frequency range \Rightarrow time fluctuation of the bandpower
- > 50% Cross-correlation between the bandpowers
 \Rightarrow Energy fluctuations of the two modes are connected
 \Rightarrow Spatial localisation: inside, and slightly outside of $q=1$
Connection between the modes

- Significant **bicoherence** (phase coupling) between the (1,1) and the LFSP, already 15 ms before crash

- **Clear signs of interaction before the crash**
 - LFSP excited by the (1,1) kink?

Auto-spectrum

- LFSP: 8-9 kHz
- LFSP+ (1,1): 21-22 kHz
- (2,2): 25 kHz

Bicoherence

- (1,1) - (2,2)
- LFSP - (1,1)
Toroidal mode number

- Two Identical SXR cameras at different toroidal positions

ASDEX-U Top view
Toroidal modenumber

- Modenumbers are based on phase difference, calculated in the time-frequency plane (cont. wavelet analysis)
- Filtering to globally coherent modes and goodness-of-fit.
- Toroidal modenumber is n=1, same as (1,1)
Poloidal modal number

- Tangential channels in the same toroidal cross-section

“Detector position” (Straight field line coord.)
Poloidal modenumber

- Poloidal modenumber $m=1$, same as $(1,1)$
- **Spatial structure is the same as for the $(1,1)$ kink!**
- Interaction of the two is very likely (magnetic coupling?)

![Poloidal modenumber](image)
The possible role of the LFSP

- Interaction may lead to the generation of a broader ergodic zone around the (1,1) island
- Steep gradient can onset fast MHD instabilities that speed up the collapse

Conclusions

• The stochastic model is a promising theoretical description for the sawtooth crash

• Precursor oscillations are of key importance
 ➡ Time-frequency evolution, spatial localisation and structure of the LFSP was determined6
 ➡ Clear signs of interaction between the two modes
 ➡ The LFSP is most probably an MHD mode that might play an important role in the collapse mechanism

• MHD simulations could aid our understanding

\[6\] G. Papp et al, PPCF 53 065007, 2011.