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Abstract

A model which incorporates the effects of electron cyclotron current drive (ECCD) into the magnetohydrodynamic
(MHD) equations is implemented in the NIMROD code [C. R. Sovinec et al., J. Comp. Phys. 195, 355 (2004)] and
used to investigate the effect of ECCD injection on the stability, growth, and dynamical behavior of magnetic islands
associated with resistive tearing modes. Predictions of the model are shown to quantitatively and qualitatively agree
with numerical results obtained from the inclusion of localized ECCD deposition in static equilibrium solvers. The
complete suppression of the (2, 1) resistive tearing mode by ECCD is demonstrated. Consequences of the shifting of
the mode rational surface in response to the injected current are explored, as are the consequences of spatial ECCD
misalignment. We discuss the relevance of this work to the development of more comprehensive predictive models
(in support of existing/future experiments, e.g. ITER) for ECCD–based mitigation and control of neoclassical tearing
modes.
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1 Introduction
Electron cyclotron current drive (ECCD) has successfully been used to stabilize tearing modes in multiple experi-
ments [1, 2, 3, 4]. Such experiments may rely on sophisticated active feedback control to locate and drive time–
modulated current in island O–points of the rotating plasma [4, 5, 6]; alternatively, continuously driven current whose
spatial alignment is tailored to yield a net stabilizing effect on the mode may be employed [4, 7, 8]. Using these two
approaches, considerable efforts have been made to determine an optimal strategy for the mitigation and control of
magnetic islands in the ITER device [9, 10]. Initial theoretical calculations relevant to the suppression and control of
NTMs [11, 12, 13] have also demonstrated that localized ECRH or ECCD applied at the O–point of magnetic islands
can reduce island saturation widths. These analytic results explore the ECRF-induced modifications to the Rutherford
equation [14], and emphasize the importance of localization of the driven current within the magnetic island for the
most efficient stabilization of the tearing modes. If the driven current is perfectly localized, then currents less than
one percent of the plasma current are needed to stabilize the modes. Current work includes adding a synthetic control
system for studying the effects of the modes.

2 Mathematical Formulation of Computational Approach
Computational efforts in the modeling of ECCD stabilization in MHD codes can be roughly generalized into two
groups, depending on the complexity of the model. In the first group [15, 16, 17, 18], the current source is given by
modifying the resistive Ohm’s law,

E + u×B =
η

µ0
(J− JRF ) , (1)

and various heuristic models for the current driven by the applied electric field are employed. In the second group of
simulations [19, 20], the basic model of Eq. (1) for the driven current is retained, but reduced MHD equations are used
(in which the dynamics of compressional Alfvén waves is not retained). An auxiliary drag/diffusion equation for the
RF source is also added to equilibrate the current. In this way, the parallel and perpendicular transport of the electrons
that are driven by the RF sources can be modeled;

∂JRF
∂t

= ∇ · (χ‖∇‖JRF ) +∇ · (χ⊥∇⊥JRF ) + ν(J − JRF ) (2)

This model is heuristically derived based on the Fokker-Planck equation, and we will refer to it as the Giruzzi
model [21].

Rigorously, the mathematical formulation of how ECCD sources can be incorporated into a fluid model relies on
the observation [22] that ECCD only slightly modifies the distribution function; thus, the induced distortion of the
distribution function away from Maxwellian is on the same order as the distortions required to calculate the stress
tensors, heat fluxes, and collisional frictions used to close the fluid moments. The procedure outlined in Ref. [22]
develops the equation for the kinetic distortion in terms of a Chapman-Enskog-like closure [23]. Ramos improved this
formalism to more rigorously include the drift effects required to obtain the bootstrap current form [24]. The numerical
implementation of the closure scheme will be discussed later. In the simulations presented in the next section, we will
set the closure terms to zero; a discussion of where the RF-induced physics appears in the fluid moment model will
elucidate the strengths and weaknesses of this approach.

Inclusion of the physics of RF waves into low-order moment equations is a multiscale problem. To proceed, the
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high-frequency RF fields and the consequent plasma response are separated from the slower spatiotemporal evolution:

fα(x,v, t) = 〈fα〉MHD (xMHD,vMHD, tMHD)

+ εfαRF (xMHD,vMHD, tMHD,xRF ,vRF , tRF ),

E(x, t) = 〈E〉MHD (xMHD, tMHD) + εERF (xMHD, tMHD,xRF , tRF ),

B(x, t) = 〈B〉MHD (xMHD, tMHD) + εBRF (xMHD, tMHD,xRF , tRF ), (3)

where 〈. . .〉 denotes an average over the RF time and spatial scales. The RF terms are annihilated with this operator;
the averaged kinetic equation thus represents the familiar kinetic equation applicable at MHD spatiotemporal scales,
along with a new term:

∂ 〈fα〉MHD

∂t
+ vMHD · ~∇〈fα〉MHD +

qα
mα

[〈E〉MHD + vMHD × 〈B〉MHD] · ~∇V 〈fα〉MHD (4)

+

〈
qα
mα

[ERF + v ×BRF ] · ~∇VfαRF

〉
= C(〈fα〉MHD) (5)

The RF term represents the beating of a high-frequency RF wave and a nearly-commensurate, RF-induced high-
frequency perturbation to the distribution function; the ensuing beat frequencies are thus considerably higher/lower
than the characteristic RF frequency. While the high-frequency beating effects are inconsequential, the low-frequency
effects are comparable to characteristic MHD frequencies; thus, although this term is of order ε2, it must be retained.

The procedure to find this term is the quasilinear theory that is described in Stix [25]. Briefly, equations of order ε0

describe the evolution of MHD density, temperature, and flow velocity profiles at lowest order, while the order ε equa-
tions describe the linear propagation of RF waves through these MHD profiles. Windowed Fourier transforms are used
to solve the latter equations at this order, and the resultant expressions for RF-induced fields and distribution functions
can then be put back into the new source term in the kinetic equations. Upon averaging over RF spatiotemporal scales,
this term becomes a quasilinear diffusion operator. Dropping the MHD subscripts and averaging operator, we have:

∂fα
∂t

+ V · ~∇fα +
qα
mα

[E + v ×B] · ~∇fα = C(fα) +Qrf (fα) (6)

where Qrf (fα) is the quasilinear operator, the moments of which will be shown below.
Derivation of the fluid equations can either be carried out by taking moments of the kinetic equation and then

ordering to obtain a closure, or (as has more recently been shown) by ordering the kinetic equation directly to obtain
a drift-kinetic equation and then calculating moments and closures [26, 24]. The fluid equations can be written as [26,
24, 22]:

∂ρ

∂t
+∇ · (ρu) = 0 , (7)

ρ
∂u

∂t
+ ρ(u · ∇)u = −∇p+ J×B−∇·

↔
Π, (8)

E + u×B = Re +
1

ne

[
J×B− ~∇(pe)− ~∇ ·Π + Frfe

]
, (9)

3

2
nα

(
∂Tα
∂t

+ (uα · ∇)Tα

)
+ pα∇ · uα = −∇ · qα−

↔
Πα: ∇uα +Qα + Srfα , (10)

along with the pre-Maxwell equations:

∇×B = µ0J ; ∇ ·B = 0 ; ∇×E = −∂B

∂t
. (11)
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The closures include the higher-order moments

qrfα =

∫
mαvfαdv ; Πrf

α =

∫
mαvαvαfαdv , (12)

with collisional moments

Rrf
e =

∫
mevC(fα)dv ; Qrfe =

∫
mev

2

2
C(fα)dv , (13)

and the quasilinear moments

Frfe =

∫
mevQrf (fα)dv ; Srfe =

∫
mev

2

2
Qrf (fα)dv , (14)

To obtain these closures, a CEL-like formalism [23] is used. The entire equation for the kinetic closure may be found
in Ref. [24], but here we note that the RF terms also drive the kinetic distortion:

dFe
dt
− C(fM + Fe) = · · ·+Q(fM )− v · FRFe

T
fM −

2

3

SRFe
nT

[
mv2

2T
− 3

2

]
fM (15)

RF physics is typically explained in terms of a simplified kinetic equation called a Fokker-Planck equation [27]. For
analytic studies, these equations are typically as simple as possible to clarify the qualitative physics of RF processes;
however, modern Fokker-Planck codes use bounce-averaged drift-kinetic equations which also contain the quasilinear
terms [28, 29]. Our above drift-kinetic equation contains the physics needed for describing ECCD current drive.

Before discussing how RF physics enters into the fluid approach, we wish to discuss the collisional friction in
particular. Using a moment approach, this term can be written as [30]:

Rei = η

[
J +

3eqe
5Te

]
(16)

Thus, even in the absence of RF physics, the closure physics can be seen to affect the resistivity in the Spitzer problem.
As discussed in Refs. [31, 27], the physics associated with the ECCD can be categorized into three distinct effects:

• Wave-electron parallel momentum exchange. This is represented by the FRFe term. This term drives only about
a third of the total driven current of ECCD due to its resonance with the perpendicular component of the velocity.
The time scale for this term is the time scale due to the gyrotron [32], which is on the order of 10− 100µs and
is dominantly determined by the time scale of the voltage supplies.

• Asymmetric collisionality. Because energy is deposited into the perpendicular component of the electron dis-
tribution function, the distortion gives an asymmetric resistivity that causes current to be driven. This is the
Fisch-Boozer effect [33] and is the dominant mechanism for the current drive.

• Selective electron trapping. For resonant particles near the trapped-passing boundary, the energy deposited
into the electrons can cause passing electrons to become trapped, thus decreasing the total current. This is the
Ohkawa effect [34].

These terms are often termed “currents”, in the same way the electron stress tensor term in the moment equation is
termed the bootstrap current, because they all have collisional dependency similar to the ηJ term. However, the total
plasma current (as defined by the integral over the current density) will rise on an inductive time scale.

The Fisch-Boozer current can be described using a drift kinetic equation without the drift terms [33]. Solutions
of the kinetic distortion equation without the drift terms [23] show that the dominant effect is on the parallel heat
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Figure 1: Compressional Alfvén waves equilibrate current sources, as demonstrated in this example in cylindrical
geometry. From a poloidally localized source, the toroidal current density evolves to fill the surface in approximately
5 Alfvén times.

flux. This is consistent with the modifications of collisional friction occurring through heat flux modifications in the
standard ηJ term (as seen in Eq. 16). The Ohkawa term is a modification of the trapped particle effects, and requires
the inclusion of the drift terms in the drift kinetic equations, to obtain correctly [34, 27]. This is the DKE term required
to give a correct calculation for the bootstrap current. Because the trapped particles will also reduce the parallel heat
flux [35], the Ohkawa current requires the stress tensor and heat flux terms calculated from a drift kinetic equation that
contains the correct drift terms [24].

The Giruzzi model for the coupled RF/MHD problem, therefore, can be viewed as a model for the stress tensor
and heat flux effects with an emphasis on getting the time scales of the individual terms correct [31]. In the subsequent
work, we will ignore the electron stress tensor, use a Braginskii closure for the parallel heat flux, and ignore the heat
flux contributions to the resistivity. Although our source will be analytically specified in the next section, we will
use a tanh function with a fast time scale. This gives the same qualitative behavior as the Giruzzi model. For the
equilibration along a field line, we rely on compressional Alfvén waves to equilibrate the sources instead of an explicit
anisotropic operator. That this effectively equilibrates the sources is shown in Fig. 1.

3 Computational approach
The MHD dynamics of our simulations will be solved using the NIMROD code, the details of which will be discussed
shortly. We must first return to the calculation needed to get the momentum and thermal source terms arising from
the quasilinear operator. Beginning with the ordering shown in Eq. 3, the subsequent analysis for the quasilinear
operator Fourier transforms the RF time and spatial scales (consistent with the eikenol approximation used for the ray
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propagation). The source term then requires the following calculation:

SRFe =
e2nei

(2π)
5/2

L3Te

∫∫∫∫ ∞∑
m=−∞

|ψ|2e−mev
2
‖/2Tee−mev

2
⊥/2Tek⊥v⊥

(vTe)
3 (
ω + iγ − k‖v‖ −mΩce

) dk⊥dk‖dv⊥dv‖ (17)

wherein
ψ = E‖RF v‖Jm(z) + v⊥(Ek + iEζ)/2Jm−1(z) + +v⊥(Ek − iEζ)/2Jm+1(z) , (18)

and we have z = k⊥v⊥/Ωce and Jn(z) is the standard Bessel function.
The RF fields are calculated using the GENRAY code [36], which returns linear RF propagation data at a set of

points along each ray. The rays are distributed according to a pattern that can be specified to model the antenna. In
our work, we use a set of rays that begins as a set of concentric circles. As they propagate through the plasma, the ray
trajectories will distort, ultimately leading to a set of points that are (at some level) spatially unstructured. To compute
the quasilinear integrals, we must be concerned with not only the data along individual rays, but also with the collective
behavior of the ray bundle; decreases in power flux along the path of the bundle correspond to deposited RF power in
the plasma. Using an adequately large number of rays should yield numerical convergence, since increasing the ray
count within a fixed volume yields both a lower power for each individual ray and a smaller area-perpendicular-to-
flow through which this power must pass (thus maintaining a relatively constant contribution to the power flux). The
relevant areas must be calculated; to do so, we use the QHULL [37] computational geometry software to take coplanar
projections of the GENRAY points. These points constitute a grid from which a Voronoi (dual mesh) diagram can be
calculated; the areas of the Voronoi cells are then easily computed. An example of the mesh calculated is shown in
Fig. 2.

After the integration over the wave numbers is performed, velocity moments are taken to calculate the value of
the quasilinear terms in real space (recall that the Fourier wavenumbers are only applicable to RF scale lengths).
One now has the value of this term on the three-dimensional, unstructured GENRAY grid, and it is then necessary to
interpolate it onto the NIMROD grid. NIMROD uses a high-order finite-element mesh for the poloidal plane and a
pseudo-spectral method for the toroidal direction [38]; we consider each one in turn.

The magnitude of the quasilinear operator from the GENRAY ray bundle is superimposed on the poloidal mesh
of NIMROD in Fig. 3. Even though the quasilinear source is highly localized, the NIMROD grid resolution can
be increased relative to running without sources to adequately resolve this increased localization. In the figure, 421
GENRAY rays are shown. To interpolate the GENRAY data onto the NIMROD mesh, Shepard’s algorithm [39], as
given in the TOM’s library [40], is used to interpolate the scattered data.

The toroidal discretization of the RF source term is more difficult to resolve. As seen in Fig. 4, even with 32 Fourier
modes (corresponding to 32 discrete planes on which data can be deposited), peak RF deposition can occur between
the colocation points (planes) used in NIMROD’s pseudospectral method. To resolve this dataset, 512 Fourier modes
would be needed, which is prohibitive for most runs. To more easily model the salient physics, we use the following
approximation:

FRF (R,Z, φ) ≈
[∮ 2p

0

FRF (R,Z, φ)dφ

]
g(φ). (19)

As discussed in Refs. [31, 19], the function g(φ) can also represent the effects of toroidal rotation. In those references,
a square box was used. We use

g(φ) =
2π

φc
cos

(
π(φ− φc)

2φc

)2

; |φ− φc| ≤ φc (20)

In addition to giving reasonable localization, this method avoids the Gibbs phenomena that unavoidably occur when
one attempts to resolve a square box with a spectral method.
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Figure 2: An example of the mesh created from the GENRAY data points (blue). Using the QHULL package, the
Delaunay triangulation of this data (not shown) is constructed, and the outermost triangles are then reflected across
the convex hull to form ghost points (shown in red). The Voronoi diagram (black) of the GENRAY and ghost datasets
is then created, and the areas of Voronoi cells are calculated. Inclusion of ghost points ensures the finite area of the
outermost Voronoi cells.

With the details of the calculation of the terms that enter the MHD equations described, we now explain the method
of code coupling which enables the temporal evolution of our simulations. Rather than creating a single code with
all of the needed physics, we opted for a paradigm of maintaining standalone executables and coupling the data via
files. To enable this approach, we use the Integrated Plasma Simulator (IPS) framework [41] to enable the workflow
composition shown in Fig. 5. NIMROD is run continuously, outputting its data in files at every 10 time steps (with
each time step corresponding to 100τA). When the data file is written, the IPS framework detects it and executes
a preprocessing program that translates the axisymmetric fields from NIMROD to a form that GENRAY can use as
input. GENRAY then calculates the ray trajectories based on the n = 0 fields, and writes these trajectories and the
corresponding electric fields to a file. A third program then reads this data and interfaces with QHULL to calculate the
quasilinear operator. NIMROD then reads the quasilinear operator, takes the moments, and interpolates the sources
onto the NIMROD grid. The temporal advance presented here is an explicit scheme: the sources are calculated based
on fields that are older than the source update. However, the sources are updated typically within 2000τA = 2×10−4s,
which is still less than the L/R time of 0.22 s (over which the equilibrium is modified by the currents) so using an
explicit scheme is justified.

Initial results of the simulations are shown in Fig. ??. In this simulation, the TeX
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Figure 3: A plot of the magnitude of the quasilinear operator from the GENRAY ray bundle, superimposed on NIM-
ROD’s finite element mesh, shows the localized nature of the source.

Figure 4: A plot of the magnitude of the quasilinear operator from the GENRAY ray bundle, superimposed on the
poloidal planes corresponding to NIMROD’s toroidal pseudospectral representation, shows the localized nature of the
source.
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Figure 5: NIMROD and GENRAY are coupled together using the SWIM IPS framework, along with additional
auxiliary routines for calculating the n = 0 equilibrium and the quasilinear operator.
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