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Using a quasi-toroidal set of coordinates with coaxial circular magnetic surfaces, drift kinetic 

equation is solved for collisionless plasmas, and perpendicular dielectric tensor is found for 

large aspect ratio tokamaks in a low frequency band. Taking into account plasma rotation, and 

parallel electric field induced by charge separation, it is found that an ion geodesic effect splits 

Alfvén wave continuum producing continuum minima, which depends on plasma rotation, 

electron temperature, and poloidal mode numbers at the rational magnetic surfaces. Low 

frequency geodesic ion Alfvén mode predicted below the continuum minimum has a small 

collisionless damping for Maxwell distribution of ions. The kinetic ion thermal motion that 

defines the geodesic effect may drive instability of geodesic modes due to plasma rotation.  

1. INTRODUCTION 

Geodesic Acoustic Modes (GAM) discovered in a theoretical magneto hydrodynamic 

(MHD) analysis [1] have attracted  great interest due to its relevant role on the H-mode 

and transport barrier (TB) formation to suppress plasma turbulence. The existence of 

GAMs with M= 1, N=0 poloidal/toroidal mode numbers was experimentally confirmed 

[2,3] and many theoretical and numerical investigations are currently being pursued to 

further understand the characteristics of these mode [4-6]. The formation of the H-mode 

usually occurs during neutral beam or ion cyclotron resonance heating, which are 

accompanied by poloidal and toroidal rotation of the plasma column [3]. In a non-

rotating plasma, the GAM frequency is )/1( 222 qΓsGAM +=ωω  where )/( 2
0

2 RPs ργω = , 

q= rhζ / hθ R0 is safety factor, P is plasma pressure, ρ= mini is the mass density, γ is the 

adiabatic index, R0 is the tokamak major radius, Γ=2 in MHD, and Γ=7/2 and γ =1 in 

kinetic approach [7-10]. The oscillations are electrostatic, which depend on the parallel 

(h⋅V) and binormal (h×er)⋅V velocities where h=B/B and er is radial unit vector, and 

they have poloidally symmetric radial electric field Er. These oscillations do not perturb 

the magnetic surfaces (δB=0). It has been shown that the flow effect on standard GAM 

produce a slight up-shift of the frequency [4-6,10] )/4/12( 22222
GAM ss cVq ++≈ ωω , as 

well as for ion-sound geodesic mode 222
pol

22
2 /)/31( qcV ssGAM +≈ωω . Using simplified 

equilibrium for plasmas with combined poloidal up =u0[1- ε (1+ρ1) cosθ ] with toroidal  

ut =U+ [εU - u0q(2+ρ1)]cosθ  rotation along isothermal magnetic surfaces where 

( )( ) 1222
1 122
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2 <<== stsp cUMhcuM θ ,  



and taking into account heat flux we get the dispersion equation [11]  
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The third geodesic or zonal flow (ZF) mode have been found 
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The mode frequency stays at the poloidal circulation frequency ru /0 when toroidal 

rotation 224 ~ tpt MMM << is not yet too small. For preferentially toroidal rotation, 

24
pt MM >>  we have result of Ref 4. The mode disappears in the formal limit 02 =tM . 

At the rational magnetic surfaces GAMs may intersect Alfvén wave continuum (AWC), 

which has frequency ⎟⎟
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=  is the Alfvén speed. 

It is very important to verify transitions of the continuum branches and to know where 

continuum extremum may occur because the real eigenmodes may only propagate at the 

maximum or minimum of the continuum [6]. In a quasi-cylindrical approach, the AWC 

equation may be written in the form: rrr E
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To show transitions between the 

continuum branches at the rational 

magnetic surfaces q=m/n, the squared 

frequency of the continuum is plotted 

schematically in Fig.1 as a function of 

q at the rational surface defined by 

m=3, n=2 poloidal /toroidal mode 

numbers. Typical tokamak plasma 

parameters r=0.1R0, (cA/cs) =10, and 

c/cA= 100 are chosen for the 

preferentially poloidal (Mp=0.5, 

Mt=0.05 ) or for preferentially 

toroidal (Mp=0.05 , Mt=0.5 ) rotation.           

Kinetic studies [8-10] shows 

existence of GAM like eigenmode at 



the extremum of AWC and experimental observations of Alfvén cascades and chirping 

modes [12-14] generally confirm the theory that may serve as basis of q-profile 

diagnostics during sawtooth regimes in tokamaks. 

 Here, we extend MHD study of the rotation effect on GAM and AWC using 

some kind of a drift kinetic equation [10,15] for low aspect ratio plasmas with circular 

magnetic surfaces (R=R0+r⋅cosθ, z= r⋅cosθ). We calculate a dielectric tensor taking into 

account ballooning effect, plasma rotation, and the parallel electric field. 

 The quasi-toroidal set of coordinates ( ζϑ,,r ) and the cylindrical coordinate 

system (v⊥,σ, v||) are used where are the normal, angular, and parallel projections on 

magnetic field lines in the velocity space. The standard drift corrections and flow V 

along magnetic field in force-free non-compression plasma approach 0=Vdiv are 

included into equilibrium Maxwell distribution [10,15] for the electrons and ions. The 

equilibrium balance pc ∇≈× /* Bj  is provided due to the diamagnetic current where 

the low plasma pressure p=pi+pe is assumed, 8πp<<B2. The perturbed part of the 

distribution function, is represented as one wave mode proportional to linear 

perturbations of the electric and magnetic fields, f∼ 3,2,13,2,1

~
,

~
BE ∼ ( )( )tNi z ωζ −exp where 

indexes 1,2,3 indicate the radial, binormal and parallel components. We use the method 

[10,15] where the f-amplitude is expanded into Fourier series over σ-angle. Taking into 

account three coefficients of the perturbed distribution, σσ sincos 210 ffff ++= , the 

linearized Vlasov equation is converted into the set of f1,2 –equations in the low 

frequency band ciωω << . The first order corrections similar to drift kinetic approach is 

used in f0-equation as 202
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are operators, ααα mTT =v is the thermal speed, ,αe αm are charge, and mass of the 

plasma species, which are not distinguished due to similarity of equations. To simplify 

Eq.(1) for electrons, we use quasi MHD approach [10] for typical plasma conditions 

with the hot electrons, and warm ions TiTe vRv ≥>> 0ω . Next, we eliminate E3 from Eq. 

(1) for ions using the barometric Boltzmann equation for the electrons in the form 

3
0

0
ˆ E

T

eF
fk

e

≈  or 
e

e
e T

Enenk 3||~ˆ −= . Due to plasma quasi-neutrality, we have 

i

iee

n
nFf
~

)(
0

)(
0 ≈ , and

i

i
ei n

nkTEe
~

ˆ
3 = where ( ) ⎟

⎠
⎞

⎜
⎝
⎛ +

∂
∂= ζ

ϑ

ϑ
NhR

r

h

R
k i...

1ˆ  is the parallel 

operator. Now, the electron part is eliminated and the perturbed ion distribution function  

is divided into cylindrical and toroidal parts, )(cyl)(
0

~ i
i

i fff += , where drift effect may be 

kept in cylindrical part [11] but cross corrections with drift are ignored  in the toroidal 

part due to ω* <<ω. After Fourier series )iexp(
~ )()( ϑMff

M
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parallel wave number. The Eq. (2) is valid at the rational surfaces where kM≈0 and two 

sideband harmonics (M±1) in the relation to the main harmonic M are only taken into 

account due to the approximation r2<<R2.  Then, integrating Eq. (2) in the velocity 

space, we get the equation for the geodesic ion density perturbation as follows: 
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After inserting of the ),0(
1

~ ie
Mf ± functions into the 2,1

~
f –equations taken from Ref 10, which 

have to be averaged over magnetic surface taking into account the ballooning effect, and 

integrating in the velocity space we get the tensor corrections 
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To proceed with the mode analyses, we use the approach [10,15] based on Hain-Lust 

eigenmode equation, which is reproduced here to understand following discussion, 
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approximations typical for large aspect ratio tokamaks,
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rM ω>> , which help to reduce number of terms in coefficient in the front of the 

first derivative. Drift parts of the 2211 ,εε  cylinder tensor components in Eq. (A5) of Ref 

15  are small in comparison with geodesic part but the drift parts in the ll cy
21

cy
12 ,εε  tensor 

components are large than the geodesic parts, ∗∗ >>>> ωωωωω 2
ci . Using these 

approximations, we present parts of the high complexity tensor components in 

Appendix (A1-A4), which are only necessary for the continuum equation, 
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where the geodesic function has the form: 
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where iee TTt = , and ( )[ ] 1)(11 −++= ζζχ Zte . In second order of the cold ion limit, 

|ζ-w0|
2>>1, the geodesic function can be presented in the form:  
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where a depends on number of terms taken in Z(ζ)-asymptotic expansion (a=1for three 

terms, and a=23/8 for four terms and that result is similar to the one in Ref 9).  In this 

case, upper branch of the Alfvén continuum ( ) 2
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where approximation ζ2≈2q2>>1 is used. This frequency is valid as an approximate 

value and numerical calculations of Eq. (8) have to be used to obtain a correct value. 
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in Eq. (8) , which is related to the ion sound geodesic mode [8,10,13]. We note that 

dependence on the plasma rotation is similar to MHD approach [4, 11]. The result for 

V0=0 generally coincides with [7-9, 13] in the respective conditions, and differs in 

numerical coefficients from our previous [15] due to averaging procedure in Eq. (4).  

The numerical analyzes of Eq. (7) show that two branches of GAM1,2 are jointed at q=0.8-

0.9 for comparable values of electron and ion temperatures. It should be noted that the 

GAM frequency is obtained as some limit of the AWC theory for each rational surface 

q=-M/N. In Fig.2, to demonstrate importance of the kinetic effects, the GAM and 

continuum frequencies are plotted for different values of the velocity (V/vTi=-0.28 and -

0.56) as function of q, which variation may simulate the radial dependence of the modes 

in tokamak for the monotonic q-profile. The frequencies are normalized to the ion 

circulation frequency 0RvTi . In the figure, we can observe two branches of continuum 



lines at q=2: the upper branch is related to the AWC and the ion-sound continuum (ISC) 

)/( 22
0

2 qRmT ieIS ≈ω  appears below the one. The calculations of GAM1,2 frequency show 

that there is an threshold for the modes at qth≈0.85 for electron temperature 

approximately equal to the ion one (Te=1.2 Ti). It means that there are no GAMs for 

q<qth as it shown in Fig.2 and the AWC minimum frequency may strongly jump “up” or 

“down” at the q-threshold. The calculations show that the threshold is monotonically 

diminuend to qth≈0.6 when the electron temperature grows to Te≈2 Ti. We note that that 

the continuum curves in Fig.2 moves left and up with electron temperature increasing.   

Fig.2.Plot of the geodesic frequency 

for M=0, AWC and ISC for M=2 as 

the function of q-factor for different 

V=0.28vTi (solid line) and V=0.28vTi 

(chain line) where frequency are  

normalized on the ion circulation 

frequency .  The temperature ratio is 

Te /Ti =1.1 and typical tokamak 

plasma parameters (cA/cs) =10, and 

c/cA= 100 at r=0.1R0, are chosen, 

which are the same as in Fig.1.  

Due to rotation, the continuum begins to depend on M-number and the rotation 

parameter ζϑ rhhVR /0=Ω , whose effect is related to the poloidal part of the velocity. 

Due to kinetic effects, there is strong variation of the GAM2 and IS continuum with 

changing of the sign of the parameter MΩ. Generally, the GAM1 dispersion curve 

moves up and left with increasing the rotation speed. For MΩ=const, the GAM curves 

appear as the same. For counter rotation MΩ<0, curves moves higher up in comparison 

with MΩ>0 but the difference between the positive and negative rotation is very small 

for the AWC branch. The ISC branch is strongly modified for MΩ>0. The ion sound 

continuum has maximum at the rational surface in the case of counter rotation but the 

mode disappears for co-rotation that may transforms to the rotation branch discussed in 

Refs 6 and 11.  

Basing on analysis of Eq. (5) it should be noted that the eigenmode formation at the 

continuum extremum depends strongly on the relation between gradients of plasma 

pressure and the magnetic shear [10-13]. When the plasma pressure gradients are strong, 

the AE may propagate at the maximum of the AWC; however, if the pressure gradients 



are weak and the magnetic shear large, the modes may appear at AWC minimum 

( δωωω −= geo and geoωδω << ) where geodesic frequency should be calculated using 

Eq. (7). The real part of the geodesic function is used in Eq. (8) because the imaginary 

part is not important to obtain the continuum equation (7). The imaginary part of the 

geodesic function taken from Eq.(7) is exponentially small for the AWC branch, 
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Finally, we conclude that the kinetic approach developed in the paper shows that 

the minima of the Alfvén and ion-sound continua are defined by the geodesic effect of 

the plasma ions, and can be modified by the plasma rotation at the rational magnetic 

surfaces. The MHD limits obtained from that approach stays mainly in accordance with 

published results. The geodesic effect has the q-minimum threshold defined by the 

electron temperature or the plasma rotation. The geodesic ion Alfvén modes may be 

driven by rotation below or above of the continuum minimum like some global mode.  
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