Using velocity-space resolution to determine the mechanism of fast-ion transport on DIII-D

Presented by C.M. Muscatello^a at the IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems Austin, TX
Thursday, September 8th 2011

Co-authors: R.W. Harvey^b, W.W. Heidbrink^a Ya.I. Kolesnichenko^c, V.V. Lutsenko^c, M.A. Van Zeeland^d, Yu.V. Yakovenko^c

Special thanks to the entire DIII-D team

a) University of California, Irvine, CA USA b) CompX, Del Mar, CA USA c) Institute for Nuclear Research, Kyiv, Ukraine d) General Atomics, San Diego, CA, USA

Motivation

- Traditional measurements of energetic ion populations in tokamaks typically involve detection of fusion products
 - e.g. neutrons
 - broad phase space integration
 - lacks information on velocity distribution
- Techniques such as CER, NPA, CTS, FILD provide phasespace localized and high temporally resolved measurements
- Velocity-space discrimination of fast-ion signals provides
 - Information on source populations
 - Clues to transport mechanisms

Outline

- > Introduction
 - Velocity-space resolving fast-ion diagnostics on DIII-D and phase-space maps
- Measurements of confined fast-ion population
 - internal redistribution of fast ions at a sawtooth crash
 - moderate energy fast ions transport by flux attachment
 - high energy fast ions resonance
- Measurements of lost fast-ion population
 - coherent losses of fast ions by off-axis fishbones and Alfvén eigenmodes
 - resonant kicks into loss boundaries
- Concluding remarks

Introduction: velocity-space resolving diagnostics on DIII-D

FIDA used as active charge exchange yields confined fast-ion signal

- FIDA = fast-ion deuterium-alpha
- Neutral beam injection provides:
 - Source of particles, energy, and momentum
 - Diagnostic tool
- Energetic deuterium population created by NBI (sometimes ICRF too)
- As the energetic ions pass through the neutral beam, some charge-exchange with an injected neutral and a fast "re-neutral" is created
- Re-neutrals can become atomically excited and emit light at the $D\alpha$ wavelength λ_0 =656.1nm
- In the lab frame, wavelength of photon is Doppler-shifted
- Goal of FIDA: measure Doppler shifted wings of $D\alpha$ spectrum

FIDA approximates 1D measurement of distribution function

- FIDA involves measurement of Doppler shifted wings of $\mathrm{D}\alpha$ spectrum
- Each λ has an associated **measured** energy value, E_{λ}

 $E_{\lambda} \equiv$ measured fast-ion energy component along line-of-sight

• Particles with various different values of energy and pitch can produce a particular \mathbf{E}_{λ}

Interpreting FIDA signal as a velocity-space weight function

Goal: determine velocity-space contribution to a measured Doppler shift (E_{λ})

- → convenient to represent the **measured** signal in velocity space
- \rightarrow 3 main contributions to FIDA velocity-space weight function **S(E,v_{||}/v)**

Charge-exchange weight

Instrument function

- Spectral energy
- Sightline geometry
- Gyro weight
- Instrument resolution

function

See Heidbrink et al Plasma Phys. Control. Fusion 49 (2007) 1457 for more details.

Measured FIDA signal is an integration of velocity-space

Measured Signal $\propto \int \int \mathbf{S}(\mathbf{E},\mathbf{v}_{||}/\mathbf{v}) d\mathbf{E} d(\mathbf{v}_{||}/\mathbf{v})$

3 FIDA installations on DIII-D measure different parts of velocity space

What orbits does each system detect?

Phase space mapping of orbits provided by guiding center code [1]

- Considering the constants of motions (μ, E, P_{ζ}) , various orbital boundaries can be determined e.g. setting $v_{\parallel} = 0$ to find trapped/passing boundaries
- In addition integration of orbits yields transit, bounce, and drift times

3 FIDA installations on DIII-D measure different parts of velocity space

Predominantly measures trapped

Largely co-passing

Imaging

Majority counter-passing

Fast ion loss detector with velocity-space resolving capabilities

- Scintillator based lost detector with slit aperture discriminates particles in gyro-radius (energy) and pitch
- CCD Camera provides 2D image of scintillator face and velocity-space mapping constructed from equilibrium
- For high bandwidth measurements, PMT integrates central region of scintillator

Measurements of confined fast-ion population

observations of fast-ion transport at a sawtooth crash

Theory predicts two regimes of fast-ion transport at a sawtooth crash

Transport by flux attachment

- Sufficiently low-energy (E<E_{critical}) fast ions are approximately attached to evolving flux surfaces [1]
- Leads to flattening of afflicted fast-ion density profile across sawtooth mixing radius

Transport by resonances

- Sufficiently high-energy (E>E_{critical}) fast ions may couple to the mode via the bounce-precession resonance condition $\omega + n\omega_{pr} s\omega_{b} = 0$ [2,3]
- Resonant particles are transformed to large orbits leading to a plateau in the density profile at the resonance

^[1] Kolesnichenko et al Phys Plasmas 4 (1997) 2544.

^[2] Kolesnichenko et al Phys Plasmas 5 (1998) 729.

^[3] R. B. White, The theory of toroidally confined plasmas, Imperial College Pr, 2006.

NBI in a low-n_e L-mode discharge with uniform sawteeth

- NBI is the only auxiliary heating source
- n_e, Ip, Bt held constant to generate repeatable sawteeth
- No other MHD activity detected (such as tearing modes, fishbones, AEs)

Clear change in many plasma profiles during a crash

<u>141182:</u>

 $\begin{array}{l} \Delta \; n_e(0)/n_e(0) = \text{-}0.10 \\ \Delta \; T_i(0)/T_i(0) = \text{-}0.47 \\ \Delta T_e(0)/T_e(0) = \text{-}0.34 \\ \Delta v_r(0)/v_r(0) = \text{-}0.15 \\ \Delta n_c(0)/n_c(0) = 0.03 \end{array}$

Fast-ion profile flattens at a crash

Van Zeeland et al, Nucl. Fusion 50 (2010) 084002.

Passing ions experience greatest internal redistribution

Instrument weights

drop in density observed with co- & counter-passing fast-ions is double compared to trapped

Stronger passing-ion transport is a *general* trend under many conditions

- Database of 30+ shots
- Various plasma shapes and conditions
- Fractional change database of FIDA signals for mostly trapped ions and co-passing ions

Parameter regimes

$$\begin{split} Bt &= 1.86\text{-}2.05T \\ Ip &= 1.16\text{-}1.34MA \\ \langle \Delta T_e(0)/T_e(0) \rangle = 0.21\text{-}0.37 \\ \langle T_e(0)^{precrash} \rangle = 2\text{-}5\text{ keV} \\ \langle n_e(0)^{precrash} \rangle = 2\text{-}4\times10^{19}\text{m}^{-3} \\ \langle T_{sawtooth} \rangle = 48\text{-}108\text{ms} \end{split}$$

Observed transport due to flux attachment...

...but toroidal precession breaks flux attachment

Toroidal precession (drift) \equiv bounce/transit averaged toroidal motion due to ∇B and curvature drifts

Particle with strong toroidal precession drifts off evolving perturbed flux surface

- "Untwisted" cylindrical representation so that 1/1 mode is straight longitudinally down cylinder
- Arrows/dot indicate direction of bounce/transit-average motion

Well-passing particle with negligible precession

Trapped particle with strong precession

In reality, most particles are somewhere in the middle

Comparison of characteristic timescales yields transport conditions

•Toroidal precession ($au_{ m pr}$)

• Period of 1 precession

Conditions for strong transport

Passing: $\tau_{\psi} << \tau_{pr}$

Trapped: $\tau_{cr} << \tau_{pr}$

•Longitudinal time (au_{ψ})

- Period about perturbed flux surface
- Passing particles only

- Crash time (τ_{cr})
 - Characteristic time of rearrangement of flux surfaces
 - Sufficiently slow crash → frozen-in condition breaks

Timescale comparison can be recast in terms of energy and pitch

Transport dependence on velocity space parameters observed in FIDA spectra

Co-passing energy spectrum

 lons in the entire spectral range are redistributed

<u>Trapped energy spectrum</u>

 Change in the spectrum observed only for E_λ≤40keV

Different transport observed by FIDA systems can be explained by E_{crit}

Simulation produces results consistent with observed transport difference between passing and trapped

Drift kinetic code [1] employs Kadomtsev crash model to solve $f(\mathbf{v}, \mathbf{x}, t)$

$$\partial f/\partial t = (-\mathbf{v}_{||}^0 - \mathbf{v}_{||}^1 - \mathbf{v}_D - \mathbf{v}_E) \cdot \partial f/\partial \mathbf{x} - e(\mathbf{v} \cdot \mathbf{E}(\mathbf{x}, t)) \partial f/\partial \mathcal{E}$$

v_{||}⁰ – v along unperturbed flux surfaces

v_{||}¹ − v along perturbed flux surfaces

v_D – toroidal drift

 $\mathbf{v}_{\mathsf{F}} - \mathbf{E} \times \mathbf{B}$ drift due to

perturbation

[1] Kolesnichenko et al Phys. Plasmas 4 (1997) 2544.

...but the story changes in ICRFheated plasmas...

ICRF injected into low density L-mode discharge with uniform sawteeth

$$\begin{split} &\frac{\#141193:}{Bt=1.9T}\\ &Ip=1.15MA\\ &\langle T_e(0)^{precrash}\,\rangle=4.5~keV\\ &\langle n_e(0)^{precrash}\,\rangle=5.0\times10^{19}m^{-3}\\ &\langle P_{NBI}\,\rangle=1.2MW\\ &\langle P_{ICRF}\,\rangle=1.6MW\\ &\langle T_{sawtooth}\,\rangle=83ms\\ &\mathcal{T}_{cr}=150\mu\text{s} \end{split}$$

- Equivalent ½ source NBI &
 2 freq. (60+90MHz) fast wave provide auxiliary heating
- No other MHD activity detected (such as tearing modes, fishbones, AEs)
- •n_e, Ip, Bt held constant to generate repeatable sawteeth

Transport of trapped ions larger in ICRF heated plasma

Wavelength (nm)

Sawtooth crash affects ICRF-accelerated trapped ions strongly

- Fast-wave → Off-axis peak observed in trapped fast-ion signal [1] ("hot spot") [2]
- Sawtooth crash during ICRF phase leads to different transport characteristics compared to NBI-only phase

NBI

 no transport observed for this equilibrium (also longer crash time compared to 141182)

<u>ICRF</u>

 ~50% reduction in signal of off-axis "hot spot" fast ions

- [1] Heidbrink, et al., Plasma Physics and Controlled Fusion 49 (2007) 1457.
- [2] Jarvis, et al., Nuclear Fusion 36 (1996) 1513.

Observed "hot spot" ions mainly exceed E_{crit}

Resonances likely play key role in observed transport

100

80

60

40

20

0

 Applying ICRF populates region of phase space where bounce-precession resonances exist

$$\omega - n\omega_{pr} + s\omega_{b} = 0$$

• For the 1/1 internal kink during sawteeth $\omega \approx 0$

Sawteeth redistribute confined energetic ions with a wide range of energies

- Experiments indicate that passing fast ions experience stronger internal transport than trapped in neutral beam heated plasmas
 - Redistribution mechanism is shown to be consistent with flux attachment
 - But drifts tend to decouple the ion from an evolving flux surface and weaken its effective transport
- Observations of enhanced internal transport of trapped fast ions in ICRF-heated plasmas
 - Analysis indicates that resonant interactions between the 1/1 kink and fast ions are possible for particles in the trapped region of phase space with E>E_{crit}

Measurements of lost fast-ion population

observations of fast-ion transport by off-axis fishbones and Alfvén eigenmodes

Fishbone-like instability observed with q>1

Traditional fishbones observed as periodic bursts in magnetics with

down-chirping frequency

- → Internal kink structure (n=m=1)
- → Observed to expel trapped fast ions with a definite phase w.r.t. the magnetic perturbation
- Similar instability observed in plasmas with q>1
 - → Eigenmode situated around q=2 surface – "off-axis fishbones"
 - → Their presence in plasmas that are prone to resistive wall mode suggest they might be a branch of the external kink [1]

q=2 fishbones observed to expel fast ions with fixed phase with respect to mode

- 7 independent fast-ion loss detectors observe beacon-like losses [1]
- Losses observed at fixed phase relative to mode
 - → mode-particle pumping theory:
 E x B drift of fast ions for a fixed phase of E [2]

Losses cause neutron rate to drop by almost 10%

- measured ∆n/n ~ 10%
- TRANSP models fishboneinduced fast-ion losses
 - Expel all trapped with E>50keV

 $\rightarrow \Delta n/n = 18\%$

 Expel deeply trapped with E>50keV

 $\rightarrow \Delta n/n = 11\%$

Fishbones expel fast ions via precession resonance

 Fishbones interact mainly with trapped energetic ions at the fundamental resonance (s=0)

→ precession resonance

$$\omega - \omega_{\rm pr} + \omega_{\rm b} = 0$$

Source of fast ions from
 NBI near resonances
 → ΔP_ζ → fast ions spread
 in pitch and intersect loss
 boundaries

Slowing of toroidal rotation observed at a burst

- Non-ambipolar particle losses evidenced by drop in toroidal rotation at a burst
- Loss of fast ions from plasma negatively charges the depleted region
 - → changes E_r
 - → but must maintain radial force balance
 - changes toroidal rotation

NBI injection during current ramp excites Alfvén eigenmodes

- AEs are regularly observed in neutral beam injected plasmas during the current ramp phase of the discharge
- Most common modes observed on DIII-D consist of reverseshear AE (RSAE) and toroidicity-induced AE (TAE)

Coherent loss measurements during strong AE activity

 FILD measures strong signals due to RSAE and TAE early in the discharge [1,2]

What induces these losses and can we synthetically reproduce them?

^[1] Van Zeeland et al, Physics of Plasmas, 18 (2011) 056114.

^[2] Pace et al, Plasma Phys. Control. Fusion **53** (2011) 062001.

Resonances play key role in observed transport of fast ions during AE activity

 AE span large range of frequencies and toroidal mode numbers

 $\rightarrow \omega - n\omega_{pr} + s\omega_{b} = 0$ with no general simplifications like sawteeth and fishbones

- Zoo of resonances throughout all of velocity space
- Counter-going fast ions situated near resonance spread out in pitch and can enter loss region

Modeling yields good agreement with measurement

Can predicted eigenfunctions (with similarities to experimental ones) reproduce measured losses?

- To model losses...
 - TRANSP calculates beam distribution function
 - NOVA models eigenfunctions
 - ORBIT models particle orbits in equilibrium field + NOVA wavefileds
- → Produces results similar to experiment

losses

Van Zeeland et al, Physics of Plasmas, 18 (2011) 056114.

Summary

- ➤ Interrogation of fast-ion phase space is an essential tool for determining transport mechanisms
- Wave-particle resonances are responsible for many observed transport phenomena
 - Interaction between confined fast ions and instabilities well suited for diagnostic like FIDA e.g. sawteeth cause large internal redistribution of energetic ions
 - Velocity-space discrimination of lost fast ions provided by diagnostic like FILD e.g. off-axis fishbones and AE cause large measurable losses to the wall
- Provide us with confidence in theoretical models for extrapolation to ITER (see Van Zeeland poster P2.12)

FIDA measurement involves extraction of fast-ion feature from active Dlpha spectrum

Several features of active D-alpha spectrum:

- Halo & main ion CX between injected neutrals and surrounding thermal ions
- 2. Beam emission emission from excited injected neutrals
- 3. FIDA CX between injected neutrals and fast ions
 - $-\max \Delta\lambda$ depends on fast-ion source

Grierson et al, submitted to Nuclear Fusion.

Light is Doppler shifted depending on ion velocity

The *measured* wavelength λ of the emitted photon is Doppler-shifted due to the large velocity of the fast ion and subsequent reneutral

So...

- Particles with **same** E and pitch can produce **different** Doppler shifts
- Particles with different E and pitch can produce similar Doppler shifts

How can we represent this in phase space?

Difference in passing/trapped redistribution also evidenced by change of V_{rot} profile

- $\triangleright \Delta V_{rot} / V_{rot} \sim 15\%$ observed in the core
- > Possible explanation in terms of non-ambipolar transport:
 - Passing ions are strongly redistributed with electrons
 - \rightarrow no charge separation \rightarrow no effect on rotation
 - Electron transport not followed by trapped fast ions
 - \rightarrow positively charges the core $\rightarrow \Delta E_r \rightarrow \Delta V_{rot}$

Flux attachment in terms of 3rd adiabatic invariant

$$J = \int [m < v > + qA] \cdot dr$$

$$\frac{\int m < \mathbf{v} > \cdot d\mathbf{r}}{\int q \mathbf{A} \cdot d\mathbf{r}} \approx \frac{m \, v_d \, 2\pi r}{q \, B \, \pi r^2}$$

Action integral associated with bounceaveraged periodic motion – toroidal precession

If J is conserved and ...

- flux term >> drift term then particles attached to flux surface
- drift term >> flux term then particles decouple from flux surface

Kadomtsev crash model

- Hot core moves rigidly out → top-hat plasma displacement ξ_ψ eigenfunction
- Reconnection unites like-valued flux surfaces inside and outside q=1
- q resets to >1
 following the crash

Kadomtsev-like eigenfunction is only a rough approximation to stability simulation results

- GATO simulation indicates ξ_{ψ} eigenfunction is not quite top-hat
- The ξ_{θ} (poloidal return flow) eigenfunction is broadened presumably due to finite inertia

Crash time determined by time of expulsion of hot T_e core

Anatomy of phase space orbit map elucidates possible transport mechanism

ITER alphas may experience minimal redistribution by sawteeth

- ITER scenario 2 (baseline scenario)
 EFIT
- Alpha orbit calculation suggests standard passing/trapped orbits
- E>E_{crit} for vast majority of alphas
- For E ≤ 3.5MeV resonances overlap only narrow region of velocity space

