

Max-Planck Institute for Plasma Physics

MHD Induced Fast-Ion Redistribution & Loss in AUG

M. Garcia-Munoz¹

I. G. J. Classen², B. Geiger¹, W. W. Heidbrink³,

M. A. Van Zeeland⁴, S. Akaslompolo⁵, J. Boom², A. Burckhart¹, G. D. Conway¹, S. da Graça⁶,

A. Gude¹, V. Igochine¹, T. Kurki-Suonio⁵,

Ph. Lauber¹, N. Lazányi⁷, N. Luhmann⁸, T. Lunt¹,

M. Maraschek¹, H. Park⁹, M. Schneller¹,

G. Tardini¹, E. Viezzer¹, M. Willensdorfer¹, E. Wolfrum¹, and the ASDEX Upgrade Team

1 Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Germany 2 FOM-Institute for Plasma Physics Rijnhuizen, EURATOM Association, The Netherlands

3 University of California-Irvine, Irvine, CA 92697, USA

- 4 General Atomics, San Diego, CA 92186-5608, USA
- 5 Aalto University School of Science and Technology, Finland
- 6 CFN, EURATOM Association-IST Lisbon, Portugal
- 7 Budapest University of Technology and Economics, Hungary
- 8 University of California at Davis, California, USA
- 9 POSTECH, Pohang, Korea

M. Garcia-Munoz

Outline

0.8

0.6

0.4

0.2

-0.2

-0.4

-0.6

-0.8

1.2

1.4

ш г

1.6

R (m)

1.8

2.2

2

RSAE n=5 at ρ _pol = 0.3

Role of Fast-Ions in ELM Cycle. Especially In The Presence Of Other Core Modes

Cartoon of 2D poloidal structures in AUG

Alfvén Eigenmodes Obtained With Early 60kV Neutral Beam Injection In AUG

- Early 60 kV neutral beam injection, similar to DIII-D reference case, created spectrum of RSAEs
- Modes are accompanied by large neutron deficit (relative to TRANSP predictions) - indicative of fast ion transport
- As RSAEs disappear, neutron emission returns to classical levels

M .Garcia-Munoz et al., IAEA FEC, Daejeon, Korea (2010) M. Garcia-Munoz et al., Nucl Fusion **51** 103013 (2011)

M. Garcia-Munoz

FIDA Data Indicate Large Reduction in Core Fast-Ion Density During RSAE Activity

- FIDA SIMulation code predicts FIDA emission assuming classical fast ion profile
- Large deficit in FIDA emission relative to FIDA SIM indicates central depletion of fast ion density

B. Geiger at al., PPCF **53** (2011)

M. Garcia-Munoz

M .Garcia-Munoz et al., IAEA FEC, Daejeon, Korea (2010) M. Garcia-Munoz et al., Nucl Fusion **51** 103013 (2011)

FIDA Data Indicate Large Reduction in Core Fast-Ion Density During RSAE Activity

- **FIDA SIMulation code** predicts FIDA emission assuming classical fast ion profile
- Large deficit in FIDA emission relative to FIDA SIM indicates central depletion of fast ion density
- As with neutron emission, FIDA profile returns to classical levels after modes disappear

B. Geiger at al., PPCF 53 (2011)

M. Garcia-Munoz

M. Garcia-Munoz et al., Nucl Fusion **51** 103013 (2011) 12th IAEA Technical Meeting on Energetic Particles Austin, Texas USA

FIDA System Measures a Drop in Central Fast-Ion Population as q_{min} Passes Through an Integer

- At qmin=2 crossing, several RSAEs are excited by 60kV beams (Grand Cascade)
- Rapid drop in central fast ion density corresponding to
 peak in RSAE amplitude
- No fast ion losses observed during this event
 - May be geometrical effect. Plasma shape not FILD friendly

M .Garcia-Munoz et al., IAEA FEC, Daejeon, Korea (2010) M. Garcia-Munoz et al., Nucl Fusion **51** 103013 (2011)

M. Garcia-Munoz

B. Geiger at al., PPCF 53 (2011)

Higher Energy Beams Observed to Drive Spectrum of TAEs and RSAEs

- Repeating discharge with 90 kV beams drove spectrum of RSAEs and TAEs unstable
- Edge magnetics detect combination of RSAEs, TAEs and additional mode
- ECEI at mid-radius detects primarily RSAEs

M.Garcia-Munoz et al., IAEA FEC, Daejeon, Korea (2010) M. Garcia-Munoz et al., Nucl Fusion **51** 103013 (2011)

TAEs Observed to Cause Fast Ion Loss

TAEs Observed to Cause Fast Ion Loss

- FILD spectrogram shows clear coherent losses from beam driven TAEs
- FILD Scintillator indicates TAE induced losses appear near gyro-radius corresponding to injection energy

M .Garcia-Munoz et al., IAEA FEC, Daejeon, Korea (2010) M. Garcia-Munoz et al., Nucl Fusion **51** 103013 (2011)

Full Orbit GOURDON Code Used to Identify Orbit Topology of Escaping Ions & Wave-Particle Resonances

Full Orbit GOURDON Code Used to Identify Orbit Topology of Escaping Ions & Wave-Particle Resonances

M. Garcia-Munoz

12th IAEA Technical Meeting on Energetic Particles Austin, Texas USA

Fast-Ion Role in ELM Cycle

M. Garcia-Munoz

Fast-Ion Role in ELM Cycle

Fast-Ion Role in ELM Cycle

Energetic particle driven Wall Mode (EWM) IPP triggered ELMs in JT60U

G. Matsunaga et. al, IAEA FEC Geneva (2008) ASDEX Upgrade

Smaller and more frequent ELMs in the presence of fast-ion driven ideal kink-ballooning mode

• EWM = 2 kHz (2,1) Global Mode

Ion-Diam Direction

Energetic particle driven Wall Mode (EWM) IPP triggered ELMs in JT60U

G. Matsunaga et. al, IAEA FEC Geneva (2008) ASDEX Upgrade

Smaller and more frequent ELMs in the presence of fast-ion driven ideal kink-ballooning mode

M. Garcia-Munoz

Edge Localized n=2.5-3 & m=12, e-Diam Direction. Only Visible Before ELM

M. Garcia-Munoz

Fast-Ion Losses Observed Mainly with Low-f Edge Mode & ONLY Before ELM

Global (1,1) Kink in Ion-Diam Direction
 Doesn't Change Significantly with ELMs

Fast-Ion Losses Increasing
 Towards ELM Crash

Edge Localized n=2.5-3 & m=12, e-Diam Direction. Only Visible Before ELM

M. Garcia-Munoz

Fast-Ion Losses Observed Mainly with Low-f Edge Mode & ONLY Before ELM

Global (1,1) Kink in Ion-Diam Direction
 Doesn't Change Significantly with ELMs

Fast-Ion Losses Increasing
 Towards ELM Crash

Edge Localized n=2.5-3 & m=12, e-Diam Direction. Only Visible Before ELM Deeply trapped particles are more strongly affected

M. Garcia-Munoz

Fast-Ions Seem To Contribute To ELM Stability

Low-freq pedestal fluct. prior ELM crash leads to an increasing fast-ion loss flux which seems to contribute to the ELM triggering

 Frequent, small ELMs are often accompanied by large fluxes of fast-ion losses during and pre-ELM crash

M. Garcia-Munoz

Magnetic Fluctuation of Edge Mode Is Not Sinusoidal

Low-freq pedestal fluct. prior ELM crash leads to an increasing fast-ion loss flux which seems to contribute to the ELM triggering

• Magnetic fluctuation of Low-f (12,3) Edge Mode is not sinusoidal

M. Garcia-Munoz

Fast-Ion Losses Are in Phase with Pre-ELM Edge Fluctuation

Low-freq pedestal fluct. prior ELM crash leads to an increasing fast-ion loss flux which seems to contribute to the ELM triggering

• Magnetic fluctuation of Low-f (12,3) Edge Mode is not sinusoidal

M. Garcia-Munoz

¹²th IAEA Technical Meeting on Energetic Particles Austin, Texas USA

Pedestal n_e fluctuation prior to ELM

Pre-ELM low freq, 1-2 kHz, density fluctuation measured around separatrix with Li-Beam diagnostic (close to FILD)

sep and anti-correlated with n_e -fluctuations outside of sep

- During ELM crash fast-ion losses are not correlated with any $\rm n_e$ change

M. Garcia-Munoz

IDΠ

Pedestal n_e fluctuation prior to ELM

Pre-ELM low freq, 1-2 kHz, density fluctuation measured around separatrix with Li-Beam diagnostic (close to FILD)

sep and anti-correlated with n_e -fluctuations outside of sep

- During ELM crash fast-ion losses are not correlated with any $\rm n_e$ change

M. Garcia-Munoz

Different Loss Mechanisms in ELM Cycle

- At least 3 different loss mechanisms (time scales) are observed during the ELM cycle. Pitch-angle dependency
- Fast-ion losses due to pre-ELM fluctuations are coherent
- Amplitude evolution of pre-ELM edge n_e-fluctuation and fast-ion losses are NOT correlated
- During ELM crash fast-ion losses appear in bursting fashion

Banana Orbits Are Most Affected

Measured fast-ion losses are on banana orbits that explore entire pedestal / SOL. Contribution to Stability. Sensitive to Most Pedestal Fluctuations

Both FILD1 and FILD2 observe similar behavior not correlated with any variation in n_e profile. Not surprising but important to rule out first order effects such as prompt losses (DC signal)

M. Garcia-Munoz

- AEs have been driven unstable with NBI in AUG
- AE induced fast-ion redistribution & loss measured with FIDA & FILD
 - Drop in central fast-ion population as $\ensuremath{q_{\text{min}}}$ passes through an integer with multiple RSAEs
 - Fast-ion losses mainly due to TAEs. Mostly on passing orbits
 - Possible wave-particle resonances only with passing ions. Consistent with experimental data
- Large bursts of fast-ion losses during ELMs
- Core kink mode causes fast-ion losses correlated with smaller & more frequent ELMs
 - Fast-ion losses due to pre-ELM edge fluctuation are dominant. Significant contribution to ELM triggering
 - Deeply trapped particles strongly affected. Several loss mechanisms in ELM cycle

M. Garcia-Munoz