Measurement and theoretical modelling of the damping rate of medium-n TAEs in JET

D.Testa¹, T.Panis¹, <u>A.Fasoli¹</u>, P.Blanchard^{1,2}, H.Carfantan³, A.Goodyear⁴, N.Mellet^{1,5}, S.E.Sharapov⁴, D.Spong⁶, JET-EFDA contributors

JET-EFDA, Culham Science Centre, OX14 3DB, Abingdon, UK

[1] Centre de Recherches en Physique des Plasmas, Ecole Polytechnique Fédérale de Lausanne, Association EURATOM – Confédération Suisse, CH

[2] JET-EFDA Close Support Unit, Culham Science Centre, Abingdon, UK

[3] Laboratoire d'Astrophysique de Toulouse – Tarbes, Université de Toulouse – CNRS, FR

[4] Culham Center for Fusion Energy, Culham Science Centre, Abingdon, UK

[5] Association Euratom CEA, Cadarache, Saint-Paul-lez-Durance, France

[6] Oak Ridge National Laboratory, Fusion Energy Theory Group, Oak Ridge, USA

LEUROPEAN FUSION DEVELOPMENT AGREEMENT

Alfvén Eigenmode Active Diagnostics

Aim: address physics of mode damping, identify modes most prone to instability in different burning plasma scenarios, and parameters to control stability

ITER-relevance for size and shape scaling, scenarios

D.Testa, CRPP-EPFL

JET AE antennas

Unique capability: real-time tracking to follow mode evolution as plasma parameters change

Oct 8 (2005)

Ex. of γ/ω measurements for n=7 TAE

Note: in the absence of fast ion drive, γ/ω is the mode damping rate

Outline

- Real-time mode decomposition and tracking
- Measurements of TAE damping rate
 - Database and trends
 - Parameter ranges in which measurements are possible
 - Parametric dependencies for dominant damping mechanism(s)
 - Individual discharge analysis
 - Essential for detailed comparisons with theory
 - Ex.: modeling of n=3 TAEs using LEMan, CASTOR, TAEFL
- Outlook: Active diagnostic upgrade

Real-time detection and tracking of individual n-components

- Antenna spectrum contains several frequencydegenerate modes
- Discrimination of n's done in real-time using sparse representation method (SparSpec)
- Computation within $850 \mu s$

Example

- Antenna configuration to drive odd modes (3<|n|<11)
- n=3 mode dominates
- Weaker n=5, 7 modes

Post-pulse analysis (no time limitations for calculation) reveals entire set of modes For modes also measured in real-time the difference in f, γ/ω and n are within 20% D.Testa, CRPP-EPFL

AE damping database Range of plasma parameters

plasma parameter	min	max
I_p (MA)	0.93	2.58
B_0 (T)	1.87	3.37
q_0	0.72	2.70
q 95	2.63	6.56
<i>8</i> 95	2.21	4.73
K95	1.25	1.71
δ_u	-0.02	0.34
δ_l	-0.01	0.33
ROG (m)	0.01	0.12
β_N	0.15	0.54
β_t (%)	0.06	0.46
β_p	0.13	0.25
$n_{e0} \ (10^{19} \ {\rm m}^{-3})$	~1	~ 3
T_{e0} (keV)	~1	~ 4

~10000 TAE damping rate measurements in ohmic plasmas

AE damping database Looking for correlations

plasma quantity	n							
Paring quantity	1	2	3	4	5	6	7	-
q_0	-0.05	-0.00	-0.30	-0.17	-0.05	0.09	-0.42	-
q 95	-0.05	-0.03	-0.18	-0.06	0.11	0.04	-0.57	
$q_{95} - q_0$	-0.05	-0.05	-0.09	0.04	0.20	0.02	-0.52	
q_{95}/q_0	0.14	-0.04	0.24	0.20	0.16	-0.21	0.11	(
<i>8</i> 95	0.60	0.22	0.31	0.29	0.09	-0.28	0.02	C
K95	0.49	0.19	0.22	0.25	-0.13	-0.26	-0.18	r
δ_u	0.36	0.12	0.10	0.21	0.07	-0.39	-0.05	
δ_l	0.30	0.22	0.04	0.29	0.20	-0.29	-0.13	
I_p	-0.40	-0.04	-0.00	0.12	-0.24	-0.14	-0.24	
β_N	0.22	0.04	0.32	0.13	0.01	0.04	0.38	
β_t	0.28	0.07	0.38	0.17	-0.09	0.02	0.50	
β_p	0.09	-0.07	0.04	0.09	0.21	-0.03	-0.09	
B_0	-0.69	-0.09	-0.34	-0.07	-0.24	-0.06	-0.51	
ROG	-0.01	-0.07	0.03	0.21	-0.05	0.05	0.12	
T_{e0}	-0.20	-0.01	-0.13	0.09	-0.38	0.01	-0.10	
n_{e0}	-0.16	-0.09	-0.02	-0.07	-0.23	-0.27	-0.29	
λ	0.75	0.18	0.23	0.29	-0.05	0.05	0.05	

Correlation coefficient $r = \frac{\sum_{i=1}^{N} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{N} (x_i - \bar{x})^2 \sum_{i=1}^{N} (y_i - \bar{y})^2}}$

AE damping database Looking for correlations

	plasma quantity		n						
	problem quantity	1	2	3	4	5	6	7	_
ſ	q_0	-0.05	-0.00	-0.30	-0.17	-0.05	0.09	-0.42	
	q 95	-0.05	-0.03	-0.18	-0.06	0.11	0.04	-0.57	
	$q_{95} - q_0$	-0.05	-0.05	-0.09	0.04	0.20	0.02	-0.52	
	q_{95}/q_0	0.14	-0.04	0.24	0.20	0.16	-0.21	0.11	Correlation apofficient
ſ	<i>8</i> 95	0.60	0.22	0.31	0.29	0.09	-0.28	0.02	Correlation coefficient
L	K95	0.49	0.19	0.22	0.25	-0.13	-0.26	-0.18	$r = \frac{\sum_{i=1}^{N} (x_i - \bar{x})(y_i - \bar{y})}{2}$
	δ_u	0.36	0.12	0.10	0.21	0.07	-0.39	-0.05	$\sqrt{\sum_{i=1}^{N} (x_i - \bar{x})^2 \sum_{i=1}^{N} (y_i - \bar{y})^2}$
	δ_l	0.30	0.22	0.04	0.29	0.20	-0.29	-0.13	v
	I_p	-0.40	-0.04	-0.00	0.12	-0.24	-0.14	-0.24	
	β_N	0.22	0.04	0.32	0.13	0.01	0.04	0.38	
	β_t	0.28	0.07	0.38	0.17	-0.09	0.02	0.50	
	β_p	0.09	-0.07	0.04	0.09	0.21	-0.03	-0.09	
	B_0	-0.69	-0.09	-0.34	-0.07	-0.24	-0.06	-0.51	
	ROG	-0.01	-0.07	0.03	0.21	-0.05	0.05	0.12	
	T_{e0}	-0.20	-0.01	-0.13	0.09	-0.38	0.01	-0.10	
	n_{e0}	-0.16	-0.09	-0.02	-0.07	-0.23	-0.27	-0.29	
ſ	λ	0.75	0.18	0.23	0.29	-0.05	0.05	0.05	

γ/ω for 1<|n|<7 TAEs vs. q_0

- No clear general trend in $\gamma/\omega = f(q_0)$
- Try selection of shots with similar
 q₉₅ and varying q₀ during q-profile
 relaxation

γ/ω for 1<|n|<7 TAEs vs. q₀ Selection of shots with fixed q₉₅

- For same q₉₅, Alfvén continuum gaps get less and less aligned as q-profile relaxes (q₀ decreases)
- This effect is quantified by $1/[q\sqrt{n_e(r)}]$
- Estimate of continuum damping

γ/ω for 1<|n|<7 TAEs vs. q₀ Selection of shots with fixed q₉₅

- For same q₉₅, Alfvén continuum gaps get less and less aligned as q-profile relaxes (q₀ decreases)
- This effect is quantified by $1/[q\sqrt{n_e(r)}]$
- Estimate of continuum damping

 Evidence for difference between nranges: continuum and radiative damping less effective as n increases

γ/ω for 1<|n|<7 TAEs vs. λ

- Non-ideal parameter $\lambda \propto q_{95}s_{95}\sqrt{T_{e0}}/B_0$ provides estimate of radiative damping
- Clear trend for $|n|=1: \gamma/\omega_{|n|=1} \propto \lambda$
- Similar trend for $2 \le |n| \le 4$, only for large λ
- No clear trend for |n|≥5

Edge shape effect on TAE damping

Old, saddle coil driven n=1 measurements indicated a clear trend

γ/ω for 1<|n|<7 TAEs vs. edge shape

- No data points for which $\gamma/\omega < 7\%$ for large values of κ_{95} and s_{95}
- Clear trend only visible in general for low-n
- To assess effect for medium-n a single shot approach is necessary
 D.Testa, CRPP-EPFL
 IAEA-TCM-EP, Austin, 07-10 September 2011

γ/ω for |n|=3, 7 TAEs vs. edge shape Single shot approach

- In single shot, single-n measurements, edge elongation leads to increase in damping
- Why is this trend not visible in database?
- Disentangle two dependences, e.g. q-profile and edge shape in specific experiment

D.Testa, CRPP-EPFL

Disentangling influence of edge shape and q-profile on n=3 TAE damping

Differences in γ/ω for same κ_{95} in different discharges seem related to 'span' of q-profile, quantified by q_{95}/q_0 and q_{95} - q_0 (proportional to number of poloidal harmonics)

- Damping increases with q_{95}/q_0 and $q_{95}-q_0$
- Trend consistent with electron Landau damping scaling $(\gamma/\omega)_{ELD} \propto n^2 (q_{95}-q_0)^2$

n=3 TAE damping: modeling shape effect

- CASTOR: fluid
 - Large discrepancies with data

TAEFL: gyro-fluid

- γ/ω extrapolated back from marginal stability threshold for fast-ion driven modes
- Good agreement with data, important to test validity of modeling approach

• LEMan: gyro-kinetic

- Good agreement with data
- Electron Landau damping of mode converted kinetic AW
- Note: good agreement was also found in comparisons with gyro-kinetic code LIGKA IAEA-TCM-EP, Austin, 07-10 September 2011

Summary

- JET AE exciter drives and detects real-time selected spectrum of medium-n Aes
- Damping measurements database suggests some global trends for damping rates
- Individual discharge and n analysis is needed to disentangle complex dependences of γ/ω on various parameters and profiles
- Agreement with numerical codes based on gyro-kinetic or gyro-fluid models has reached quantitative level

Limitations of present AE system

- Coupling
 - Even with optimal matching and coils from both antennas, with one amplifier (I_{max}~5A), core amplitudes are very small
 - $\sim 0.05 \text{mG/1A}$ in the plasma core for modes with n $\sim 7-15$
 - Tracking is difficult in the presence of noise (e.g. during strong additional heating) and if LCFS is distant from antennas
 - Mode identification requires sophisticated n-detection algorithms
- Mode selection
 - Wide spectrum; plasma preferentially selects low-n's

n distribution of damping rate measurements

Upgrade to 8 independent amplifiers

- Maximize antenna currents within feed-through limits (25A)
- Better definition of antenna spectrum
 - Gain in single mode excitation by ~ factor of 4
 - More balanced distribution of currents without transformer coupling
- Arbitrary phasing
 - Definition of sign of n (traveling wave): identification of fast ion contribution
 - Simultaneous excitation of selected modes (different n's or frequencies)
 - Stronger constraint on theory simulations for ITER extrapolation
 - Multi-point diagnostic applications
 - q(r₁, r₂,..), A_{EFF}(r₁, r₂,..), $\omega_{TOR}(r_1, r_2,..)$
- Test of burn control ideas
 - Real time control of fast ion stability by mode tracking

the Sparse Representation Method

SparSpec minimizes the L1-norm penalized criterion:

$$J(x) = \frac{1}{2} \left\| \mathbf{y} - W \mathbf{x} \right\|^2 + \lambda \sum_{k=-K}^{K} \left| x_k \right|_{L_1}$$

y: vector of data taken at time t_k [= position ϕ_k] **W**: spectral window exp(i2πt_kf_n) [= exp(i2π ϕ_k n)] **x**: vector of (I,Q) signals for frequencies f_n λ : parameter fixed to obtain a satisfactory sparse solution \rightarrow penalty criterion for invoking more modes to find adequate solution λ can be fixed a-priori from known noise variance

- the sparse signal representation method is ideally suited for mode number analysis in fusion plasmas:
 - specifically designed for un-evenly distribution of sensors
 - allowable mode numbers are discretized: $|n| = 0, \pm 1, \pm 2, \pm 3...$
 - large (n,m)-range, number of modes not assumed a priori
 - amplitude and phase equally important for fitting algorithm
 - no need for a-posteriori tresholding to discriminate between solutions as λ -penalty determined a-priori from knowledge of noise variance
 - very efficient, very fast convergence \rightarrow ideal for real-time applications
 - now implemented and fully validated in JET real-time and postpulse mode tracking algorithm for stable Alfvén Eigenmodes
 - accuracy need correct interpretation of the spectral window

γ/ω measurements for medium-n AEs: data available for theory comparisons

- database compiled of $\gamma/\omega(n)$ as function of plasma parameters and configurations for individual mode numbers
 - in excess of 10'000 individual $\gamma/\omega(n)$ measurements already analyzed
 - in excess of 60 individual discharges already analyzed
 - various dedicated scans in plasma parameters have been run:
 - elongation scan during ohmic phase, 1.25< \$\kappa 95<1.65\$ without IRCF
 - add ICRF with PRF=2MW and PRF=3MW, different phasing (dipole and +/-90)
 - add PRF modulations 2MW +1MW/300ms, different phasing (dipole and +/-90)
 - ohmic Bfield/ne scan, change RF deposition profile and edge continuum ٠
 - add PRF with power ramp-up to 4.5MW, different phasing (dipole and +/-90)
- damping rate as function of plasma isotope composition and ion Larmor radius
- damping rate for medium-n (n=3-7) TAEs at ICRF power switch off with constant plasma parameters
 - direct measurement of MeV-ions drive to the modes?
- effect of ripple in the magnetic field medium-n (n=3-7) TAEs with/out fast ions:
 - fast ion losses (resonant NBI ions with $V_{\parallel} \sim V_A/3$), affecting drive for the modes?
 - change density scale length at plasma edge, affecting the continuum damping?

