Measurement and theoretical modelling of the damping rate of medium-n TAEs in JET

D.Testa1, T.Panis1, A.Fasoli1, P.Blanchard1,2, H.Carfantan3, A.Goodyear4, N.Mellet1,5, S.E.Sharapov4, D.Spong6, JET-EFDA contributors

JET-EFDA, Culham Science Centre, OX14 3DB, Abingdon, UK

[2] JET-EFDA Close Support Unit, Culham Science Centre, Abingdon, UK
[4] Culham Center for Fusion Energy, Culham Science Centre, Abingdon, UK
[5] Association Euratom CEA, Cadarache, Saint-Paul-lez-Durance, France
[6] Oak Ridge National Laboratory, Fusion Energy Theory Group, Oak Ridge, USA
Alfvén Eigenmode Active Diagnostics

Aim: address physics of mode damping, identify modes most prone to instability in different burning plasma scenarios, and parameters to control stability.

 ITER-relevance for size and shape scaling, scenarios

high field & density, $T_e \sim T_i$

New antennas

Old saddle coils

紧l aspect ratio, broad range of β
JET AE antennas

Unique capability: real-time tracking to follow mode evolution as plasma parameters change
Ex. of γ/ω measurements for n=7 TAE

Note: in the absence of fast ion drive, γ/ω is the mode damping rate
Outline

• Real-time mode decomposition and tracking

• Measurements of TAE damping rate
 – Database and trends
 • Parameter ranges in which measurements are possible
 • Parametric dependencies for dominant damping mechanism(s)
 – Individual discharge analysis
 • Essential for detailed comparisons with theory
 • Ex.: modeling of n=3 TAEs using LEMan, CASTOR, TAEFL

• Outlook: Active diagnostic upgrade
Real-time detection and tracking of individual n-components

- Antenna spectrum contains several frequency-degenerate modes
- Discrimination of n’s done in real-time using sparse representation method (SparSpec)
- Computation within 850µs

Example
- Antenna configuration to drive odd modes (3<|n|<11)
- n=3 mode dominates
- Weaker n=5, 7 modes

Post-pulse analysis (no time limitations for calculation) reveals entire set of modes
For modes also measured in real-time the difference in f, γ/ω and n are within 20%
AE damping database

Range of plasma parameters

<table>
<thead>
<tr>
<th>Plasma parameter</th>
<th>min</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_p (MA)</td>
<td>0.93</td>
<td>2.58</td>
</tr>
<tr>
<td>B_0 (T)</td>
<td>1.87</td>
<td>3.37</td>
</tr>
<tr>
<td>q_0</td>
<td>0.72</td>
<td>2.70</td>
</tr>
<tr>
<td>q_{95}</td>
<td>2.63</td>
<td>6.56</td>
</tr>
<tr>
<td>s_{95}</td>
<td>2.21</td>
<td>4.73</td>
</tr>
<tr>
<td>κ_{95}</td>
<td>1.25</td>
<td>1.71</td>
</tr>
<tr>
<td>δ_u</td>
<td>-0.02</td>
<td>0.34</td>
</tr>
<tr>
<td>δ_l</td>
<td>-0.01</td>
<td>0.33</td>
</tr>
<tr>
<td>ROG (m)</td>
<td>0.01</td>
<td>0.12</td>
</tr>
<tr>
<td>β_N</td>
<td>0.15</td>
<td>0.54</td>
</tr>
<tr>
<td>β_t (%)</td>
<td>0.06</td>
<td>0.46</td>
</tr>
<tr>
<td>β_p</td>
<td>0.13</td>
<td>0.25</td>
</tr>
<tr>
<td>n_e0 (10^{19} \text{ m}^{-3})</td>
<td>\sim 1</td>
<td>\sim 3</td>
</tr>
<tr>
<td>T_e0 (keV)</td>
<td>\sim 1</td>
<td>\sim 4</td>
</tr>
</tbody>
</table>

~10000 TAE damping rate measurements in ohmic plasmas
AE damping database
Looking for correlations

plasma quantity	$	n	$				
	1	2	3	4	5	6	7
q_0	-0.05	-0.00	-0.30	-0.17	-0.05	0.09	-0.42
q_{95}	-0.05	-0.03	-0.18	-0.06	0.11	0.04	-0.57
$q_{95} - q_0$	-0.05	-0.05	-0.09	0.04	0.20	0.02	-0.52
q_{95}/q_0	0.14	-0.04	0.24	0.20	0.16	-0.21	0.11
s_{95}	0.60	0.22	0.31	0.29	0.09	-0.28	0.02
κ_{95}	0.49	0.19	0.22	0.25	-0.13	-0.26	-0.18
δ_u	0.36	0.12	0.10	0.21	0.07	-0.39	-0.05
δ_l	0.30	0.22	0.04	0.29	0.20	-0.29	-0.13
I_p	-0.40	-0.04	-0.00	0.12	-0.24	-0.14	-0.24
β_N	0.22	0.04	0.32	0.13	0.01	0.04	0.38
β_t	0.28	0.07	0.38	0.17	-0.09	0.02	0.50
β_p	0.09	-0.07	0.04	0.09	0.21	-0.03	-0.09
B_0	-0.69	-0.09	-0.34	-0.07	-0.24	-0.06	-0.51
ROG	-0.01	-0.07	0.03	0.21	-0.05	0.05	0.12
T_{e0}	-0.20	-0.01	-0.13	0.09	-0.38	0.01	-0.10
n_{e0}	-0.16	-0.09	-0.02	-0.07	-0.23	-0.27	-0.29
λ	0.75	0.18	0.23	0.29	-0.05	0.05	0.05

Correlation coefficient

$$r = \frac{\sum_{i=1}^{N}(x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{N}(x_i - \bar{x})^2 \sum_{i=1}^{N}(y_i - \bar{y})^2}}$$
AE damping database

Looking for correlations

<table>
<thead>
<tr>
<th>plasma quantity</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_0</td>
<td>-0.05</td>
<td>-0.00</td>
<td>-0.30</td>
<td>-0.17</td>
<td>-0.05</td>
<td>0.09</td>
<td>-0.42</td>
</tr>
<tr>
<td>q_{95}</td>
<td>-0.05</td>
<td>-0.03</td>
<td>-0.18</td>
<td>-0.06</td>
<td>0.11</td>
<td>0.04</td>
<td>-0.57</td>
</tr>
<tr>
<td>$q_{95} - q_0$</td>
<td>-0.05</td>
<td>-0.05</td>
<td>-0.09</td>
<td>0.04</td>
<td>0.20</td>
<td>0.02</td>
<td>-0.52</td>
</tr>
<tr>
<td>q_{95}/q_0</td>
<td>0.14</td>
<td>-0.04</td>
<td>0.24</td>
<td>0.20</td>
<td>0.16</td>
<td>-0.21</td>
<td>0.11</td>
</tr>
<tr>
<td>s_{95}</td>
<td>0.60</td>
<td>0.22</td>
<td>0.31</td>
<td>0.29</td>
<td>0.09</td>
<td>-0.28</td>
<td>0.02</td>
</tr>
<tr>
<td>κ_{95}</td>
<td>0.49</td>
<td>0.19</td>
<td>0.22</td>
<td>0.25</td>
<td>-0.13</td>
<td>-0.26</td>
<td>-0.18</td>
</tr>
<tr>
<td>δ_u</td>
<td>0.36</td>
<td>0.12</td>
<td>0.10</td>
<td>0.21</td>
<td>0.07</td>
<td>-0.39</td>
<td>-0.05</td>
</tr>
<tr>
<td>δ_l</td>
<td>0.30</td>
<td>0.22</td>
<td>0.04</td>
<td>0.29</td>
<td>0.20</td>
<td>-0.29</td>
<td>-0.13</td>
</tr>
<tr>
<td>I_p</td>
<td>-0.40</td>
<td>-0.04</td>
<td>-0.00</td>
<td>0.12</td>
<td>-0.24</td>
<td>-0.14</td>
<td>-0.24</td>
</tr>
<tr>
<td>β_N</td>
<td>0.22</td>
<td>0.04</td>
<td>0.32</td>
<td>0.13</td>
<td>0.01</td>
<td>0.04</td>
<td>0.38</td>
</tr>
<tr>
<td>β_t</td>
<td>0.28</td>
<td>0.07</td>
<td>0.38</td>
<td>0.17</td>
<td>-0.09</td>
<td>0.02</td>
<td>0.50</td>
</tr>
<tr>
<td>β_p</td>
<td>0.09</td>
<td>-0.07</td>
<td>0.04</td>
<td>0.09</td>
<td>0.21</td>
<td>-0.03</td>
<td>-0.09</td>
</tr>
<tr>
<td>B_0</td>
<td>-0.69</td>
<td>-0.09</td>
<td>-0.34</td>
<td>-0.07</td>
<td>-0.24</td>
<td>-0.06</td>
<td>-0.51</td>
</tr>
<tr>
<td>ROG</td>
<td>-0.01</td>
<td>-0.07</td>
<td>0.03</td>
<td>0.21</td>
<td>-0.05</td>
<td>0.05</td>
<td>0.12</td>
</tr>
<tr>
<td>T_{e0}</td>
<td>-0.20</td>
<td>-0.01</td>
<td>-0.13</td>
<td>0.09</td>
<td>-0.38</td>
<td>0.01</td>
<td>-0.10</td>
</tr>
<tr>
<td>n_{e0}</td>
<td>-0.16</td>
<td>-0.09</td>
<td>-0.02</td>
<td>-0.07</td>
<td>-0.23</td>
<td>-0.27</td>
<td>-0.29</td>
</tr>
<tr>
<td>λ</td>
<td>0.75</td>
<td>0.18</td>
<td>0.23</td>
<td>0.29</td>
<td>-0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Correlation coefficient

$$r = \frac{\sum_{i=1}^{N}(x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{N}(x_i - \bar{x})^2 \sum_{i=1}^{N}(y_i - \bar{y})^2}}$$
γ/ω for $1<|n|<7$ TAEs vs. q_0

- No clear general trend in $\gamma/\omega=f(q_0)$
- Try selection of shots with similar q_{95} and varying q_0 during q-profile relaxation
\(\gamma/\omega\) for 1<\(|n|<7\) TAEs vs. \(q_0\)

Selection of shots with fixed \(q_{95}\)

- For same \(q_{95}\), Alfvén continuum gaps get less and less aligned as q-profile relaxes (\(q_0\) decreases)
- This effect is quantified by \(1/[q\sqrt{n_e(r)}]\)
- Estimate of continuum damping
\(\gamma/\omega\) for \(1<|n|<7\) TAEs vs. \(q_0\)

Selection of shots with fixed \(q_{95}\)

- For same \(q_{95}\), Alfvén continuum gaps get less and less aligned as q-profile relaxes (\(q_0\) decreases)
- This effect is quantified by \(1/[q\sqrt{n_e}(r)]\)
- Estimate of continuum damping

- Evidence for difference between \(n\)-ranges: continuum and radiative damping less effective as \(n\) increases

D. Testa, CRPP-EPFL

IAEA-TCM-EP, Austin, 07-10 September 2011
\(\gamma / \omega \) for \(1 < |n| < 7 \) TAEs vs. \(\lambda \)

- Non-ideal parameter \(\lambda \propto q_{95} s_{95} \sqrt{T_{e0}/B_0} \) provides estimate of radiative damping
- Clear trend for \(|n|=1 \): \(\gamma / \omega |n|=1 \propto \lambda \)
- Similar trend for \(2 \leq |n| \leq 4 \), only for large \(\lambda \)
- No clear trend for \(|n| \geq 5 \)
Edge shape effect on TAE damping

Old, saddle coil driven $n=1$ measurements indicated a clear trend

$n=1$ TAE
\(\gamma/\omega \) for \(1<|n|<7 \) TAEs vs. edge shape

- No data points for which \(\gamma/\omega<7\% \) for large values of \(\kappa_{95} \) and \(s_{95} \)
- Clear trend only visible in general for low-\(n \)
- To assess effect for medium-\(n \) a single shot approach is necessary
\(\gamma/\omega \) for \(|n|=3, 7\) TAEs vs. edge shape

Single shot approach

- In single shot, single-\(n \) measurements, edge elongation leads to increase in damping
- Why is this trend not visible in database?
- *Disentangle two dependences, e.g. q-profile and edge shape in specific experiment*
Disentangling influence of edge shape and q-profile on n=3 TAE damping

• Differences in γ/ω for same κ_{95} in different discharges seem related to ‘span’ of q-profile, quantified by q_{95}/q_0 and $q_{95}-q_0$ (proportional to number of poloidal harmonics)

• Damping increases with q_{95}/q_0 and $q_{95}-q_0$

• Trend consistent with electron Landau damping scaling $(\gamma/\omega)_{ELD} \propto n^2(q_{95}-q_0)^2$
n=3 TAE damping: modeling shape effect

- **CASTOR**: fluid
 - Large discrepancies with data

- **TAEFL**: gyro-fluid
 - γ/ω extrapolated back from marginal stability threshold for fast-ion driven modes
 - Good agreement with data, important to test validity of modeling approach

- **LEMan**: gyro-kinetic
 - Good agreement with data
 - Electron Landau damping of mode converted kinetic AW
 - *Note: good agreement was also found in comparisons with gyro-kinetic code LIGKA*

IAEA-TCM-EP, Austin, 07-10 September 2011
Summary

• JET AE exciter drives and detects real-time selected spectrum of medium-n Aes

• Damping measurements database suggests some global trends for damping rates

• Individual discharge and n analysis is needed to disentangle complex dependences of γ/ω on various parameters and profiles

• Agreement with numerical codes based on gyro-kinetic or gyro-fluid models has reached quantitative level
Limitations of present AE system

• Coupling
 – Even with optimal matching and coils from both antennas, with one amplifier ($I_{\text{max}} \sim 5\text{A}$), core amplitudes are very small
 • $\sim 0.05\text{mG}/1\text{A}$ in the plasma core for modes with $n\sim 7-15$
 – Tracking is difficult in the presence of noise (e.g. during strong additional heating) and if LCFS is distant from antennas
 – Mode identification requires sophisticated n-detection algorithms

• Mode selection
 – Wide spectrum; plasma preferentially selects low-n's

![n distribution of damping rate measurements](image)
Upgrade to 8 independent amplifiers

• Maximize antenna currents within feed-through limits (25A)
• Better definition of antenna spectrum
 – Gain in single mode excitation by ~ factor of 4
 – More balanced distribution of currents without transformer coupling
• Arbitrary phasing
 – Definition of sign of n (traveling wave): identification of fast ion contribution
 – Simultaneous excitation of selected modes (different n’s or frequencies)
 • Stronger constraint on theory simulations for ITER extrapolation
 • Multi-point diagnostic applications
 – \(q(r_1, r_2, ...)\), \(A_{\text{EFF}}(r_1, r_2, ...)\), \(\omega_{\text{TOR}}(r_1, r_2, ...)\)
• Test of burn control ideas
 – Real time control of fast ion stability by mode tracking
the Sparse Representation Method

SparSpec minimizes the L1-norm penalized criterion:

\[
J(x) = \frac{1}{2} \| y - W x \|^2 + \lambda \sum_{k=-K}^{K} |x_k|_{L1}
\]

\(y\): vector of data taken at time \(t_k\) \([\equiv \text{position } \phi_k]\)
\(W\): spectral window \(\exp(i2\pi t_k f_n)\) \([\equiv \exp(i2\pi \phi_k n)]\)
\(x\): vector of \((I,Q)\) signals for frequencies \(f_n\)
\(\lambda\): parameter fixed to obtain a satisfactory sparse solution \(\Rightarrow\) penalty criterion for invoking more modes to find adequate solution
\(\lambda\) can be fixed a-priori from known noise variance

\(SparSpec\) minimizes the L1-norm penalized criterion:

\[
J(x) = \frac{1}{2} \| y - W x \|^2 + \lambda \sum_{k=-K}^{K} |x_k|_{L1}
\]

- the sparse signal representation method is ideally suited for mode number analysis in fusion plasmas:
 - specifically designed for un-evenly distribution of sensors
 - allowable mode numbers are discretized: \(|n| = 0, \pm1, \pm2, \pm3\ldots\)
 - large \((n,m)\)-range, number of modes not assumed a priori
 - amplitude and phase equally important for fitting algorithm
 - no need for a-posteriori tresholding to discriminate between solutions as \(\lambda\)-penalty determined a-priori from knowledge of noise variance
 - very efficient, very fast convergence \(\Rightarrow\) ideal for real-time applications
 - now implemented and fully validated in JET real-time and post-pulse mode tracking algorithm for stable Alfvén Eigenmodes
 - accuracy \(\Rightarrow\) need correct interpretation of the spectral window
\(\gamma/\omega \) measurements for medium-n AEs: data available for theory comparisons

- database compiled of \(\gamma/\omega(n) \) as function of plasma parameters and configurations for individual mode numbers
 - in excess of 10'000 individual \(\gamma/\omega(n) \) measurements already analyzed
 - in excess of 60 individual discharges already analyzed
 - various dedicated scans in plasma parameters have been run:
 - elongation scan during ohmic phase, \(1.25 < \kappa_95 < 1.65 \) without ICRF
 - add ICRF with PRF=2MW and PRF=3MW, different phasing (dipole and +/-90)
 - add PRF modulations 2MW +1MW/300ms, different phasing (dipole and +/-90)
 - ohmic Bfield/ne scan, change RF deposition profile and edge continuum
 - add PRF with power ramp-up to 4.5MW, different phasing (dipole and +/-90)
- damping rate as function of plasma isotope composition and ion Larmor radius
- damping rate for medium-n (n=3-7) TAEs at ICRF power switch off with constant plasma parameters
 - direct measurement of MeV-ions drive to the modes?
- effect of ripple in the magnetic field medium-n (n=3-7) TAEs with/out fast ions:
 - fast ion losses (resonant NBI ions with \(V_{||} \sim V_A/3 \)), affecting drive for the modes?
 - change density scale length at plasma edge, affecting the continuum damping?