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Particle Transport Mechanisms of Interest

®* Neoclassical: Large excursions of resonant
particles (banana orbits) + collisional mixing

® Quasilinear: Phase-space diffusion over a set of
overlapped resonances

®* Convective: Transport of phase-space holes and clumps
by modes with frequency chirping

Important Issue: Individual resonances are narrow. How can
they affect every particle in phase space?
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Outline

] Quasilinear relaxation near instability threshold

J Phase space holes and clumps (reminder)
(d Remnants of frequency sweeping events

J Recurrent production of holes and clumps

(] Global redistribution of fast particles
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Quasilinear Equations for Bump-on-Tail Instability
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4 Kinetic equation for fast particles:
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d Wave kinetic equation:
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E = Z(VL - Vd)D

U Instability drive:
o JT e oF
= on v

 Background damping: V4
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Quasilinear Relaxation

F Strongly unstable case
(Va= 0)

Initial distribution

Quasilinear plateau

Near-threshold case

4

Initial distribution
Final marginal distribution
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Single Mode Theory

Unstable initial distribution of energetic particles Fy(v).
One linearly unstable mode.

Instability drive, Y., due to wave-particle resonance (w-kv=0).

O O 0D DO

Background dissipation rate, ¥, determines the critical
gradient for the instability.

Critical slope
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Single Mode Formalism
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Spontaneous Chirping of Weakly Unstable Mode

O Simulation of near-threshold bump-on-tail instability (N. Petviashvili, 1997) reveals
spontaneous formation of coherent phase space structures (clumps and holes)
with time-dependent frequencies.

U The phase space structures seek lower energy states to compensate
energy losses due to background dissipation.

O Clumps move to lower energies and holes move to higher energy regions.

Spatially averaged distribution function Mode power spectrum
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Global Transport Mechanism

A single hole or clump affects only a small fraction of the
energetic particle phase space.

1 A sweeping event leaves a dent/bulge in the particle distribution
function after the wave field decays.

1 Global redistribution requires either many coexisting modes
(quasi-linear diffusion scenario) or many sweeping events (this

work).

1 Holes and clumps can be generated continuously without a
source until the distribution changes globally.
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Dynamics of Holes and Clumps at Early Times

 Holes/clumps are the original resonant particles

d They move slowly compared to the bounce period

d The wave amplitude is
constant:
FA

w, =(16/37%)y,

1 Particles cant get inside
separatrix.

O Hole/clump gets deeper/
higher as it moves:

w/k Vil 6w=(16/3n2)yL\/2ydt/3

H.L. Berk, B.N. Breizman, N.V. Petviashvili, Phys. Lett. A234, 213 (1997)
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Global Relaxation via Recurrent Sweeping

yd/yl_=0.9, N=10, S o= 20, 3001 s points, Atxyl_=0.013, At/As=1
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M K. Lilley, B.N. Breizman, S.E. Sharapov, Phys. Plasmas (2010)
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Sweeping modes arise continuously without a source
Each mode creates a narrow distortion in the particle distribution
The distribution remains perturbed after the mode dies

"Stacked up” holes and clumps modify the distribution globally
FA
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Dynamics of Global Relaxation
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Wave Spectrum During Global Relaxation
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Conclusions

1 An isolated resonance can generate recurrent frequency
sweeping events that lead to global change in the fast particle

distribution.

4 This transport mechanism is convective and it can be more
efficient than quasilinear diffusion in the near-threshold regime.
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Rapid Frequency Chirping Events
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Recurrent Chirping Events
Maintain Marginally Stable Distribution

Relaxation of unstable double-humped distribution,
with source,sink, and background plasma dissipation.

R.Vann, et al., PRL 99, 025003 (2007)
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Chirping events facilitate energy exchange between the
energetic particles and the bulk plasma. *’FS
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Intermittent Quasilinear Diffusion

A weak source (with insufficient power to overlap the
resonances) is unable to maintain steady quasilinear diffusion

e

Bursts occur near the marginally stable case

f _-Classical distribution

g Metastable distribution

f Marginal distribution
Y Sub-critical distribution

RESONANCES
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Time Scales and Mode Evolution Phases

YL -linear growth rate due to resonant particles

Y4 - background damping rate due to bulk plasma

W, - trapped particle bounce frequency

1. Linear near-threshold instability
(excitation of a plasma eigenmode)
T, ~1/(y, v, <<llw,

2. Explosive nonlinear growth of the mode
Formation of phase-space holes and clumps with trapped particles
Initiation of frequency sweeping

T, ~1/y, ~1/w,

3. Slow (adiabatic) evolution of phase-space holes and clumps
Significant frequency sweeping
Transition from the bulk plasma eigenmode to a beam mode
T,>1/y, ~1/w,
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