12th IAEA Technical Meeting "Energetic Particles in Magnetic Confinement Systems" September 07-10, 2011, Austin, TX

Global Transport of Energetic Particles due to Hole-Clump Production

Boris Breizman 1), Matthew Lilley 2,4), Sergei Sharapov 3), Mietek Lisak 4)

- 1) Institute for Fusion Studies, The University of Texas, Austin, Texas, 78712 USA
- ²⁾ Physics Department, Imperial College, London, SW7 2AZ, UK
- 3) Euratom/CCFE Fusion Association, Culham Science Center, Abingdon, Oxfordshire OX14 3DB, UK
- ⁴⁾ Department of Earth and Space Sciences, Chalmers University of Technology, 41296 Göteborg, Sweden

Particle Transport Mechanisms of Interest

Neoclassical: Large excursions of resonant

particles (banana orbits) + collisional mixing

Quasilinear: Phase-space diffusion over a set of

overlapped resonances

Convective: Transport of phase-space holes and clumps

by modes with frequency chirping

Important Issue: Individual resonances are narrow. How can

they affect every particle in phase space?

Outline

Quasilinear relaxation near instability threshold
 Phase space holes and clumps (reminder)
 Remnants of frequency sweeping events
 Recurrent production of holes and clumps
 Global redistribution of fast particles

Quasilinear Equations for Bump-on-Tail Instability

☐ Kinetic equation for fast particles:

$$\frac{\partial F}{\partial t} - \frac{\partial}{\partial V} D \frac{\partial F}{\partial V} = -v \left(F - F_0 \right)$$

■ Wave kinetic equation:

$$\frac{\partial D}{\partial t} = 2(\gamma_L - \gamma_d)D$$

☐ Instability drive:

$$\gamma_L = \omega_p \frac{\pi}{2n} V^2 \frac{\partial F}{\partial V}$$

Background damping: γ_d

Quasilinear Relaxation

Single Mode Theory

- \square Unstable initial distribution of energetic particles $F_0(v)$.
- ☐ One linearly unstable mode.
- □ Instability drive, γ_L , due to wave-particle resonance (ω-kv=0).
- \Box Background dissipation rate, γ_d , determines the critical gradient for the instability.

Single Mode Formalism

$$\frac{\partial F}{\partial t} + u \frac{\partial F}{\partial \xi} + \frac{ek}{2m} \left[\hat{E}(t) e^{i\xi} + \text{c.c.} \right] \frac{\partial F}{\partial u}$$

$$= \left[v^3 \frac{\partial^2}{\partial u^2} + \alpha^2 \frac{\partial}{\partial u} - \beta \right] \left(F - F_0 \right)$$

$$\frac{\partial \hat{E}}{\partial t} = -4 \frac{\omega}{k^2} \pi e \int f_1 du - \gamma_d \hat{E} \qquad u = kv - \omega$$

$$\zeta = kx - \omega t$$

$$u \equiv k\mathbf{v} - \omega$$
$$\zeta \equiv k\mathbf{x} - \omega t$$

$$F = F_0 + f_0 + \sum_{n=1}^{\infty} \left[f_n \exp(in\zeta) + c.c. \right]$$
$$E = \frac{1}{2} \left[\hat{E}(t) e^{i\zeta} + c.c. \right]$$

Spontaneous Chirping of Weakly Unstable Mode

- □ Simulation of near-threshold bump-on-tail instability (*N. Petviashvili*, 1997) reveals spontaneous formation of coherent phase space structures (clumps and holes) with time-dependent frequencies.
- ☐ The phase space structures seek lower energy states to compensate energy losses due to background dissipation.
- ☐ Clumps move to lower energies and holes move to higher energy regions.

Spatially averaged distribution function

Mode power spectrum

Global Transport Mechanism

☐ A single hole or clump affects only a small fraction of the energetic particle phase space.
☐ A sweeping event leaves a dent/bulge in the particle distribution function after the wave field decays.
☐ Global redistribution requires either many coexisting modes (quasi-linear diffusion scenario) or many sweeping events (this work).
☐ Holes and clumps can be generated continuously without a source until the distribution changes globally.

Dynamics of Holes and Clumps at Early Times

- ☐ Holes/clumps are the original resonant particles
- They move slowly compared to the bounce period

☐ The wave amplitude is constant:

$$\omega_B = \left(16 / 3\pi^2\right) \gamma_L$$

- Particles cant get inside separatrix.
- → Hole/clump gets deeper/ higher as it moves:

$$\delta\omega = \left(16 / 3\pi^2\right) \gamma_L \sqrt{2\gamma_d t / 3}$$

H.L. Berk, B.N. Breizman, N.V. Petviashvili, Phys. Lett. A 234, 213 (1997)

Global Relaxation via Recurrent Sweeping

- Sweeping modes arise continuously without a source
- ☐ Each mode creates a narrow distortion in the particle distribution
- ☐ The distribution remains perturbed after the mode dies
- □ "Stacked up" holes and clumps modify the distribution globally

M.K. Lilley, B.N. Breizman, S.E. Sharapov, Phys. Plasmas (2010)

Dynamics of Global Relaxation

Wave Spectrum During Global Relaxation

Conclusions

☐ An isolated resonance can generate recurrent frequency sweeping events that lead to global change in the fast particle distribution.

☐ This transport mechanism is convective and it can be more efficient than quasilinear diffusion in the near-threshold regime.

Rapid Frequency Chirping Events

Recurrent Chirping Events Maintain Marginally Stable Distribution

Relaxation of unstable double-humped distribution, with source, sink, and background plasma dissipation.

R.Vann, et al., PRL 99, 025003 (2007)

Chirping events facilitate energy exchange between the energetic particles and the bulk plasma.

Intermittent Quasilinear Diffusion

A weak source (with insufficient power to overlap the resonances) is unable to maintain steady quasilinear diffusion

Bursts occur near the marginally stable case

Time Scales and Mode Evolution Phases

 $\gamma_{\it L}\,$ - linear growth rate due to resonant particles

 γ_d - background damping rate due to bulk plasma

 ω_b - trapped particle bounce frequency

1. Linear near-threshold instability (excitation of a plasma eigenmode)

$$\tau_1 \sim 1/(\gamma_L - \gamma_d) \ll 1/\omega_b$$

2. Explosive nonlinear growth of the mode Formation of phase-space holes and clumps with trapped particles Initiation of frequency sweeping

$$\tau_2 \sim 1/\gamma_L \sim 1/\omega_b$$

3. Slow (adiabatic) evolution of phase-space holes and clumps Significant frequency sweeping
Transition from the bulk plasma eigenmode to a beam mode

$$\tau_3 >> 1/\gamma_L \sim 1/\omega_b$$

