Effect of energetic–particle induced $n=0$ instabilities to bulk–ions on LHD

M. Osakabe, T. Itoh1, K. Ogawa3,4, M. Isobe1,2, K. Toi1,3, T. Ido1,3, A. Shimizu1, S. Kubo1,3, K. Nagaoka1, Y. Takeiri1,2 and LHD experiment group

1National Institute for Fusion Science
2Department of Fusion Science, The Graduate University for Advanced Studies
3Dept. of Energy Science and Engineering, Nagoya University
4JSPS Research Fellow
1. Introduction
 ◦ Background and motivation
 ◦ Energetic-particle induced GAMs in toroidal devices.
 ◦ Energetic particle induced GAM on LHD
2. Experimental results
 ◦ LHD & experimental apparatus
 ◦ Energetic particle induced n=0 mode associated with neutral flux on LHD.
3. SUMMARY
Zonal Flow (ZF) and Geodesic Acoustic Mode (GAM) get much attention recently, since it could be a knob to regulate turbulence in plasmas and to reduce anomalous transport.

Energetic-particle (EP) induced GAMs are observed in several toroidal devices, such as JET, DIII-D and LHD. Effect of GAMs on the energetic particle behaviors needs to be investigated.

Recently, an influence of EP induced GAM was observed on LHD.

⇒ The influence of EP induced GAMs on bulk ions as well as on energetic particles needs to be investigated.
Energetic particle induced GAM (n=0 modes) on various toroidal devices.

- **JET:** Global GAM
 - H.L.Berk, et.al., Nucl. Fusion 46, S888

- **DIII-D:** Energetic-particle-induced GAM (EGAM)
 - R.Nazikian, PRL 101, 185002
 - G.Y.Fu, PRL 101, 185002

- **LHD:**
 - K.Toi: 22nd IAEA–FEC, EX P8–4
 - T.Ido: 23rd IAEA–FEC
Energetic particle induced GAM on LHD

- **Co-ECCD**
- **Rotational transform (by MSE)**

Upward-shift of the frequency in monotonic shear plasmas.

Constant at the GAM frequency in reversed shear plasmas.
\(\phi, \tilde{n}_e, \) and \(\tilde{B}_p \) associated with EP induced modes

These modes \((n=0,1)\) are not observed in plasmas without tangential NBI.
Experimental results
The confining magnetic fields are externally applied on LHD. Thus, it is free from disruptions.

Combining this feature with the high-energy N–NBI and high-power gyrotrons, **LHD could be a good plat home of exploring high-energy particle physics.**
Experimental Apparatus

- Heating Facility:
 - N-NBI: 180keV/5MW x3
 - P-NBI: 40keV/6MW x2
 - ECH: 77GHz/1MW x3
 84GHz/0.3MW
 168GHz/

- Diagnostics:
 - Tangential $E//B$–NPA.
 - Measurement of high energy ions and bulk ions.
 - Mirnov–coils:
 - Toroidal x6ch, Helical x13ch
 - $E//B$–NPA
Passive measurement.

Measureable energy range is 0.5 – 200 [keV] for Hydrogen.

Time resolution of up to 0.25ms is possible by counting mode, and ~5μs is possible to current mode.

Installed at tangential port and its sight line locates 10cm below the mid-plane. Thus, inner most observable location is limited to r/a =0.16
Up-sweeping n=0 modes associated with neutral flux increase were observed for low density LHD plasmas.

- The typical initial frequencies are 50–70kHz and their frequencies chirp-up during their mode activity activities.
- No significant increase of H_α-signals were observed.
- Typical estimated slowing-down time is $\sim 8\text{s}$ at the core.
Both energetic ions produced by NBI and energetic electron components with intensive ECRH seems to be necessary to excite these $n=0$ mode.

Up-sweeping $n=0$ mode NOT observed during ECH-only phase.

Up-sweeping $n=0$ mode disappears quickly after ECH turn-off.
The toroidal mode number is \(n=0 \), and the dominant poloidal mode number is \(m=1 \).

The initial frequency of the mode is much smaller than expected \(n=0 \) GAE frequencies (\(f>500\text{kHz} \)).
The observed $n=0$ mode can be classified into two categories.

- One has the $T_e^{0.5}$-dependence of its mode frequency. This mode can be considered to be similar to the energetic particle induced GAM on LHD.

- The other mode has weak dependence of its mode frequency on T_e. The mode frequency is larger than the usual GAM mode and is close to the orbital frequency of the NB produced energetic particles.

- Neutral flux increase was observed for both cases.
The mode grows very quickly at its initial phase ($\gamma_{\text{eff}} \approx 4.6 \times 10^3 \text{s}^{-1}$).

The ion temperature starts to increase when the mode amplitude reaches a certain value ($\approx 2 \times 10^{-2}$ [a.u.]), and the effective growth rate of the mode decreases ($\gamma_{\text{eff}} \approx 2.3 \times 10^2 \text{s}^{-1}$), simultaneously.

When the mode frequency reaches a certain frequency close to the orbital frequency of the energetic particle produced by the NB, the mode amplitude starts to decrease gradually ($\gamma_{\text{eff}} \approx -69 \text{s}^{-1}$).
At low density intensive EC heated LHD plasmas, energetic particle induced $n=0/m=1$ modes being associated with the flux increase of low energy neutrals are observed.

The modes can be categorized into two type.
- The one has $T_e^{0.5}$ dependence of its frequency and is considered as energetic particle induced GAM.
- The other has weak T_e dependence of its frequency. The frequency is almost constant at around the orbital frequency of the NB-produced fast-ions.

For both modes, the neutral flux increase was observed at the energy ranges close to the bulk ions.

The temporal behavior of the mode and the neutral flux indicates an anomalous heating or radial transport of bulk ions by the $n=0$ mode.