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Energetic Particle-driven GAM (EGAM) 

•  Energetic particle-driven GAM-like modes have been observed in tokamaks 
and stellarators (JET, DIII-D, LHD etc).  

•  The first observation came from JET where an n=0 mode was excited by 
the fast ICRF tail ions. The mode was interpreted as a MHD GAM 
eigenmode with frequency above the maximum of GAM continuum. 

      (C. J. Boswell et al., Phys. Lett. A 358, 154 (2006) 
        H. L. Berk et al., Nucl. Fusion 46, S888 (2006).) 

•  Recent DIII-D results showed count-injected beam ions can excite a n=0 
GAM-like  global mode. The mode frequency is well inside the GAM 
continuum. (R. Nazikian et al., Phys. Rev. Lett. 101,185001 (2008).) 

•  Analytic theory showed existence of EGAM with global radial mode 
structure determined by energetic particle’s finite orbit width effects. 
 (G.Y. Fu, Phys. Rev. Lett. 101,185002 (2008)) 
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Instability Mechanism of EGAM 

•  The GAM is usually stable due to n=0 (i.e., no universal 
drive due to radial gradient). Thus it is typically driven 
nonlinearly by micro-turbulence. 

•  However, energetic particles can provide instability drive 
via velocity space gradient for inverted distribution 
function ( inverse Landau damping for dF/dE >0). In this 
way, the energetic particle-driven GAM is similar to the 
bump-on-tail instability.  

•  dF/dE >0 is possible for NBI beam ions and ICRF tail 
ions due to bump-on-tail distribution. 

•  The wave particle resonance (ωGAM ~ ωbh) is possible for 
large value of safety factor (vh ~ qvt) 
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Mode Frequency Well Below ideal GAM frequency 

Interferometer 

• n=0 GAM continuum 
 ω ≈ 2Cs/R 

• ideal GAM can only exist 
above the continuum 
  - no NOVA solution  

• Mode frequencies well 
below peak in the continuum 
 - not the ideal GAM 

• Mode structure is global, not 
the local kinetic GAM 

δB/B~10-5, n=0 at wall 

R. Nazikian et al., Phys. Rev. Lett. 
101,185001 (2008).) 
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βh/βth  

Energetic particle effects induce two new 
branches of eigenmode (EGAM) 

Unstable EGAM 

GAM 

Stable EGAM 

G.Y. Fu, Phys. Rev. Lett. 101,185002 (2008)) 
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Hybrid Simulation Model for EGAM 

•  n=0 electrostatic perturbation (Er only) 

•  fluid model for thermal plasma; 

•  drift-kinetic model for energetic particles. 
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Nonlinear Hybrid Equations for EGAM 

Thermal pressure  
response 

Energetic particle 
 response 

Radial electric field  
response 

Geodesic curvature! 

density  response 
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Parameters and Profiles 

R/a=3,   qmin=4.0 

P=P0 (1-ψ)2     ρ=constant 

Λ0=0.5,  ΔΛ=0.2 



10 

Linear evolution of perturbed pressures 
t=0                                     t=T/4                                      t=T/2 

t=0                                     t=T/4                                      t=T/2 

δPth 

δPh 
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Nonlinear simulations show bursting behavior 
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Nonlinear simulation shows frequency 
chirping of EGAM 
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Strong beam-driven GAM was 
observed in DIII-D (shot #134503) 
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Nonlinear Simulation Model of Beam-driven 
EGAM in DIII-D 

•  Assume n=0 electric static perturbation (Er only); 
•  Use hybrid model --- fluid model for thermal species and 

drift-kinetic model for beam ions 
•  Realistic beam distribution from NUBEAM code including 

both Co and Counter beams and all energy components.  
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Beam Ion Distribution from TRANSP/
NUBEAM (r/a~0.3) 
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Parameters and Profiles  
(DIII-D shot # 134503 at t=260msec) 

•  R=1.64m, a=0.62m 
•  B=2.06T, ne=1.4x1013cm-3 , Te=0.6kev 
•  qmin~5.0 
•  βth=0.15%, βbeam=0.16% 
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Evolution of  
density fluctuation  
From t ~ 260msec 

At Z=3.6cm. 

f ~ 16 kHz 

δne  ~ 3% 

outward propagation! 



 Density fluctuation evolution at 
R=1.88m 
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Er and δne (2D mode structure) 
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Up-down asymmetric density fluctuation ! 



Density fluctuation amplitude and phase 
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Summary: Simulation of beam-driven 
EGAM in DIII-D 

•  Carried out hybrid simulations with realistic 
beam distribution function (full f PIC method). 

•  Nonlinear simulations yield mode frequency, 
mode amplitude and outward radial propagation 
consistent with experimental measurement of 
density fluctuation from BES. 
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This Work 

•  Consider nonlinear generation of the second harmonic in 
density fluctuation due to beam-driven GAM; 

•  Motivated by recent DIII-D data which show that there is 
a large 2nd harmonic in the measured density fluctuation 
associated with the beam-driven GAM (R. Nazikian, 
2009). 
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G.Y. Fu, “On Nonlinear Self-interaction of Geodesic Acoustic Mode Driven by 
Energetic Particles”, PPPL report #4527, J. Plasma Physics, 2011 
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Kinetic/MHD Hybrid Equations 



Er Equation 



Linear Fluid Equations 



GAM dispersion relation 



Nonlinear Fluid Theory: second order 
radial electric field is zero 

P21 is an even function of θ


This result is the same as the gyrokinetic result  of H.S. Zhang et al. 2009 
Nucl. Fusion 49, 125009 



Nonlinear Fluid Theory: second order 
density perturbation 



Properties of the second order density 
perturbation 

•  Zero frequency and second harmonic have equal 
amplitude; 

•  Second order perturbation breaks up-down asymmetry; 
•  Second order density perturbation is negative on low 

field side; 
•  Near mid-plane, ρ2 is comparable to ρ1 since ρ1 ~sinθ
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Simulation of density fluctuation including fluid 
nonlinearity shows clear negative perturbation 
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R=1.88m 



Kinetic/MHD hybrid equations 



Nonlinear expansion of distribution function 



Energetic particles can generate 
a second harmonic in radial electric field 

Energetic particle effects can generate 
second harmonic in Er  



Second order density perturbation due to 
energetic particles 

Spatial structure of energetic particle-induced second harmonic is  
the same as the fundamental harmonic! 



Simulations without fluid nonlinearity shows evidence 
of second harmonic due to energetic effects 
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δne 

f (kHz) 

R=1.74m 
Z=0.18m 

Second harmonic 



Summary: Nonlinear theory of generation 
of second harmonic  

•  Fluid Model: 
–  GAM self-interaction cannot generate a second harmonic in the 

radial electric field; 
–  A second harmonic of density fluctuation is generated by 

convective nonlinearity. A DC component is also present. 
–  The density perturbation is negative near the mid-plane for 

strong instability. 
–  These results are consistent with DIII-D experiments. 

•  Energetic Particle Effects: 
–  Energetic particle effects can generate a second harmonic in 

radial electric field; 
–  The energetic particle-induced second harmonic of the density 

perturbation scales as sinθ. The EP contribution is small near the 
mid-plane. 
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