Nonlinear Theory and Simulation of Energetic Particle-induced Geodesic Acoustic Mode

Guoyong Fu

Princeton Plasma Physics Laboratory

In collaboration with

R. Nazikian, R.V. Budny, M. Gorelenkova, M. Van Zeeland

The 12th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems, September 7-10, 2011, Austin, Texas
Outline

• Introduction
• Nonlinear Simulation of EGAM in DIII-D
• Nonlinear Theory of EGAM: generation of second harmonic
Energetic Particle-driven GAM (EGAM)

- Energetic particle-driven GAM-like modes have been observed in tokamaks and stellarators (JET, DIII-D, LHD etc).

- The first observation came from JET where an $n=0$ mode was excited by the fast ICRF tail ions. The mode was interpreted as a MHD GAM eigenmode with frequency above the maximum of GAM continuum. (C. J. Boswell et al., Phys. Lett. A 358, 154 (2006) H. L. Berk et al., Nucl. Fusion 46, S888 (2006).)

- Recent DIII-D results showed count-injected beam ions can excite a $n=0$ GAM-like global mode. The mode frequency is well inside the GAM continuum. (R. Nazikian et al., Phys. Rev. Lett. 101,185001 (2008).)

- Analytic theory showed existence of EGAM with global radial mode structure determined by energetic particle’s finite orbit width effects. (G.Y. Fu, Phys. Rev. Lett. 101,185002 (2008))
Instability Mechanism of EGAM

• The GAM is usually stable due to $n=0$ (i.e., no universal drive due to radial gradient). Thus it is typically driven nonlinearly by micro-turbulence.
• However, energetic particles can provide instability drive via velocity space gradient for inverted distribution function (inverse Landau damping for $dF/dE > 0$). In this way, the energetic particle-driven GAM is similar to the bump-on-tail instability.
• $dF/dE > 0$ is possible for NBI beam ions and ICRF tail ions due to bump-on-tail distribution.
• The wave particle resonance ($\omega_{GAM} \sim \omega_{bh}$) is possible for large value of safety factor ($v_h \sim qv_t$)
Mode Frequency Well Below ideal GAM frequency

• $n=0$ GAM continuum
 \[\omega \approx \frac{2C_s}{R} \]
 - ideal GAM can only exist above the continuum
 - no NOVA solution

• Mode frequencies well below peak in the continuum
 - not the ideal GAM

• Mode structure is global, not the local kinetic GAM

\[\delta B/B \sim 10^{-5}, \; n=0 \; \text{at wall} \]

Energetic particle effects induce two new branches of eigenmode (EGAM)

Hybrid Simulation Model for EGAM

- n=0 electrostatic perturbation (Er only)
- fluid model for thermal plasma;
- drift-kinetic model for energetic particles.
Nonlinear Hybrid Equations for EGAM

\[E = -\nabla \Phi = E_r \nabla r, \quad v = \frac{E \times B}{B^2} \]

Radial electric field response

\[\frac{\partial}{\partial t} < \frac{\rho |\nabla r|^2}{B^2} > = E_r = -< G(r, \theta)(2P_{th} + P_{\parallel h} + P_{\perp h}) > \]

Geodesic curvature!

\[G(r, \theta) = -\frac{B_\phi R}{J B^3} \frac{\partial B}{\partial \theta} \]

Density response

\[\frac{\partial}{\partial t} \rho + v \cdot \nabla \rho = -\nabla \cdot v \rho \]

Thermal pressure response

\[\frac{\partial}{\partial t} P_{th} + v \cdot \nabla P_{th} = -\gamma \nabla \cdot v P_{th} \]

Energetic particle response

\[P_{\parallel h} + P_{\perp h} = \int d^3v (mv^2_{\parallel} + \frac{1}{2}mv^2_{\perp})f_h \]
Parameters and Profiles

\[R/a=3, \quad q_{\text{min}}=4.0 \]

\[P=P_0 (1-\psi)^2 \quad \rho=\text{constant} \]

\[
f = \frac{1}{v^3 + v_{\text{crit}}^3} \exp \left[- \frac{P_\phi}{e\Delta\Psi} - \left(\frac{\Lambda - \Lambda_0}{\Delta\Lambda} \right)^2 \right]
\]

\[\Lambda_0=0.5, \quad \Delta\Lambda=0.2 \]
Linear evolution of perturbed pressures

δP_{th}

δP_{h}
Nonlinear simulations show bursting behavior
Nonlinear simulation shows frequency chirping of EGAM
Outline

• Introduction
• Nonlinear Simulation of EGAM in DIII-D
• Nonlinear Theory of EGAM: generation of second harmonic
Strong beam-driven GAM was observed in DIII-D (shot #134503)
Nonlinear Simulation Model of Beam-driven
EGAM in DIII-D

• Assume $n=0$ electric static perturbation (E_r only);
• Use hybrid model — fluid model for thermal species and
drift-kinetic model for beam ions
• Realistic beam distribution from NUBEAM code including
both Co and Counter beams and all energy components.

\[
\left< \frac{\rho |\nabla r|^2}{B^2} \right> \frac{\partial}{\partial t} E_r = - \left< G(r, \theta)(2P_c + P_{\parallel h} + P_{\perp h}) \right> \\
\frac{\partial}{\partial t} P_c = 2\gamma G(r, \theta)E_r P_c \\
G(r, \theta) = -\frac{B_{\varphi} R}{J B^2} \frac{\partial B}{\partial \theta} \\
P_{\parallel h} + P_{\perp h} = \int m(\mathbf{v}_{\parallel}^2 + \frac{1}{2} \mathbf{v}_{\perp}^2) f \, d\mathbf{v}
\]
Beam Ion Distribution from TRANSP/NUBEAM (r/a~0.3)

R. Budny
Parameters and Profiles
(DIII-D shot # 134503 at t=260msec)

- $R=1.64m$, $a=0.62m$
- $B=2.06T$, $n_e=1.4\times10^{13}\text{cm}^{-3}$, $T_e=0.6\text{kev}$
- $q_{\text{min}}\sim5.0$
- $\beta_{\text{th}}=0.15\%$, $\beta_{\text{beam}}=0.16\%$
Evolution of density fluctuation
From $t \sim 260 \text{msec}$
At $Z=3.6 \text{cm}$.

$f \sim 16 \text{ kHz}$

$\delta n_e \sim 3\%$

outward propagation!
Density fluctuation evolution at R=1.88m
E_r and δn_e (2D mode structure)

Up-down asymmetric density fluctuation!
Density fluctuation amplitude and phase
Summary: Simulation of beam-driven EGAM in DIII-D

• Carried out hybrid simulations with realistic beam distribution function (full f PIC method).

• Nonlinear simulations yield mode frequency, mode amplitude and outward radial propagation consistent with experimental measurement of density fluctuation from BES.
Outline

- Introduction
- Nonlinear Simulation of EGAM in DIII-D
- Nonlinear Theory of EGAM: generation of second harmonic
This Work

• Consider nonlinear generation of the second harmonic in density fluctuation due to beam-driven GAM;

• Motivated by recent DIII-D data which show that there is a large 2^{nd} harmonic in the measured density fluctuation associated with the beam-driven GAM (R. Nazikian, 2009).

\(2\omega_{\text{GAM}}\), \(\omega_{\text{GAM}}\), and DC
Kinetic/MHD Hybrid Equations

\[\rho \left(\frac{\partial}{\partial t} \mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v} \right) = -\nabla P_c - \nabla \cdot \mathbf{P}_h + \mathbf{J} \times \mathbf{B} \]

\[\frac{\partial}{\partial t} \rho + \mathbf{v} \cdot \nabla \rho = -\nabla \cdot \mathbf{v} \rho \]

\[\frac{\partial}{\partial t} P_c + \mathbf{v} \cdot \nabla P_c = -\gamma \nabla \cdot \mathbf{v} P_c \]

\[\mathbf{E} + \mathbf{v} \times \mathbf{B} = 0 \]
\[E_r \text{ Equation} \]

\[
\rho \left(\frac{\partial}{\partial t} \mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v} \right) = -\nabla P_c - \nabla \cdot \mathbf{P}_h + \mathbf{J} \times \mathbf{B}
\]

\[
< \frac{\rho |\nabla r|^2}{B^2} > \frac{\partial}{\partial t} E_r + < \frac{\rho}{B^2} (\nabla r \times \mathbf{B}) \cdot (\mathbf{v} \cdot \nabla \mathbf{v}) > = - < \frac{\nabla r \times \mathbf{B}}{B^2} \cdot (\nabla P_c + \nabla \cdot \mathbf{P}_h) >
\]

\[
< \frac{\rho |\nabla r|^2}{B^2} > \frac{\partial}{\partial t} E_r + < \frac{\rho}{B^2} (\nabla r \times \mathbf{B}) \cdot (\mathbf{v} \cdot \nabla \mathbf{v}) > = - < G(r, \theta)(2P_c + P_\parallel + P_\perp) >
\]

\[
G(r, \theta) = -\frac{B_\Phi R}{JB^3} \frac{\partial B}{\partial \theta} \approx -\frac{1}{BR} \sin(\theta)
\]
Linear Fluid Equations

\[
< \frac{\rho | \nabla r |^2}{B^2} > \frac{\partial}{\partial t} E_{r1} = -2 < G(r, \theta) P_{c1} >
\]

\[
\rho \frac{\partial}{\partial t} v_{||1} = -b \cdot \nabla P_{c1}
\]

\[
\frac{\partial}{\partial t} P_{c1} = -\gamma (B \cdot \nabla (\frac{v_{||1}}{B}) - 2G(r, \theta)E_{r1})P_c
\]

\[
\frac{\partial}{\partial t} P_{c1} = 2\gamma P_c (L^{-1}G(r, \theta))E_{r1}
\]

\[
L = 1 + \frac{\gamma P_0}{\rho \omega^2} B \cdot \nabla \frac{1}{B^2} B \cdot \nabla
\]
GAM dispersion relation

\[\frac{\rho |\nabla r|^2}{B^2} \frac{\partial}{\partial t} E_{r_1} = -2 \langle G(r, \theta)P_{c1} \rangle \]

\[\frac{\partial}{\partial t} P_{c_1} = 2\gamma P_c (L^{-1}G(r, \theta))E_{r_1} \]

\[\omega^2 = \omega_{GAM}^2 \equiv \frac{4\gamma P}{\rho} \frac{\langle GL^{-1}G \rangle}{\langle |\nabla r|^2 / B^2 \rangle} \approx \frac{2\gamma P}{\rho R^2} (1 + \frac{1}{2q^2}) \]
Nonlinear Fluid Theory: second order
radial electric field is zero

\[
\left< \frac{\rho |\nabla r|^2}{B^2} \right> \frac{\partial}{\partial t} E_{r2} = \left< \frac{\rho_1 |\nabla r|^2}{B^2} \right> \frac{\partial}{\partial t} E_{r1} - \left< \frac{\rho}{B^2} (\nabla r \times \mathbf{B}) \cdot (\mathbf{v}_1 \cdot \nabla \mathbf{v}_1) \right> - 2 \left< G(r, \theta) P_{c2} \right>
\]

\[
\frac{\partial}{\partial t} P_{c2} = -\mathbf{v}_1 \cdot \nabla P_{c1} - \gamma \nabla \cdot \mathbf{v}_1 P_{c1} - \gamma \nabla \cdot \mathbf{v}_2 P_{c}
\]

\[
P_{c2} = P_{21} + P_{22} E_{r2}
\]

\(P_{21} \) is an even function of \(\theta \) \rightarrow \(E_{r2} = 0 \)

This result is the same as the gyrokinetic result of H.S. Zhang et al. 2009
Nucl. Fusion 49, 125009
Nonlinear Fluid Theory: second order density perturbation

\[\frac{\partial}{\partial t} \rho_2 = -v_1 \cdot \nabla \rho_1 - \nabla \cdot v_2 \rho_0 \approx -E_{r_1} \frac{\nabla r \times B}{B^2} \cdot \nabla \rho_1 \]

\[\rho_1 = 2G \int E_{r_1}(r, \tau) d\tau \approx -\frac{2}{BR} \sin(\theta) \int_0^t E_{r_1}(r, \tau) d\tau \]

\[\frac{\rho_2}{\rho_0} = -\frac{r}{R} \cos(\theta) \left(\frac{1}{rB} \int_0^t E_{r_1}(r, \tau) d\tau \right)^2 \]

\[\approx -\frac{r}{2R} \cos(\theta) \left(\frac{1}{rB \omega} \hat{E}_{r_1}(r, t) \right)^2 (1 - \cos(2\omega t)) \]

\[E_{r_1}(r, t) = \hat{E}_{r_1}(r, t) \cos(\omega t) \]
Properties of the second order density perturbation

\[
\frac{\rho_2}{\rho_0} \approx -\frac{r}{2R} \cos(\theta) \left(\frac{1}{rB\omega} \hat{E}_{r1}(r,t) \right)^2 (1 - \cos(2\omega t))
\]

- Zero frequency and second harmonic have equal amplitude;
- Second order perturbation breaks up-down asymmetry;
- Second order density perturbation is negative on low field side;
- Near mid-plane, \(\rho_2 \) is comparable to \(\rho_1 \) since \(\rho_1 \sim \sin \theta \)
Simulation of density fluctuation including fluid nonlinearity shows clear negative perturbation
Kinetic/MHD hybrid equations

\[< \frac{\rho |\nabla r|^2}{B^2} > \frac{\partial}{\partial t} E_r + < \frac{\rho}{B^2} (\nabla r \times B) \cdot (v \cdot \nabla v) >= - < G(2P_c + P_{||} + P_{\perp}) > \]

\[P_{||} + P_{\perp} = \int m(v_{||}^2 + \frac{1}{2} v_{\perp}^2) f \, d\mathbf{v} \]

\[\frac{\partial f}{\partial t} + (v_{||} b + v_d + \frac{E \times B}{B^2}) \cdot \nabla f + \frac{dE}{dt} \frac{\partial f}{\partial E} = 0 \]

\[\frac{dE}{dt} = (mv_{||}^2 + \frac{1}{2} mv_{\perp}^2) G(r, \theta) E_r \]
Nonlinear expansion of distribution function

\[
< \frac{\rho \left| \nabla r \right|^2}{B^2} > \frac{\partial}{\partial t} E_{r2} = -< G(r, \theta)(2P_{c2} + P_{\parallel h2} + P_{\perp h2}) >
\]

\[
f = f_0 + f_1 + f_2 +
\]

\[
\frac{df_1}{dt} = \frac{\partial f_1}{\partial t} + (v_{\parallel}b + v_{d}) \cdot \nabla f_1 = -\left(m v_{\parallel}^2 + \frac{1}{2} m v_{\perp}^2 \right) G(r, \theta) E_{r1} \frac{\partial f_0}{\partial E}
\]

\[
\frac{df_2}{dt} = -\frac{E_1 \times B}{B^2} \cdot \nabla f_1 - \left(m v_{\parallel}^2 + \frac{1}{2} m v_{\perp}^2 \right) G(r, \theta) \left(E_{r1} \frac{\partial f_1}{\partial E} + E_{r2} \frac{\partial f_0}{\partial E} \right)
\]
Energetic particles can generate a second harmonic in radial electric field

\[f_{1,\text{non-res}} = \frac{mv_{\|}^2 + \frac{1}{2}mv_{\perp}^2}{2BR} \hat{E}_r \frac{\partial f_0}{\partial E} \left(\frac{\cos(\omega t - \theta)}{\omega - \omega_b} - \frac{\cos(\omega t + \theta)}{\omega + \omega_b} \right) \]

\[f_2 = \frac{3(mv_{\|}^2 + \frac{1}{2}mv_{\perp}^2)}{2B^2rR} \hat{E}^2 \frac{\partial f_0}{\partial E} \left(\frac{\omega \omega_b}{(4\omega^2 - \omega_b^2)(\omega^2 - \omega_b^2)} \right) \sin \theta \cos 2\omega t + ... \]

\[E_{r,2} = -\frac{\omega_h^2}{4\omega^2 - \omega_{EGAM}^2} \frac{\hat{E}^2}{\omega Br} \sin(2\omega t) \]

Energetic particle effects can generate second harmonic in \(E_r \)

\[\omega_h^2 = -\frac{3}{2\rho R^2} \int \left(\frac{\omega^3 \omega_b}{(4\omega^2 - \omega_b^2)(\omega^2 - \omega_b^2)} \right) (mv_{\|}^2 + \frac{1}{2}mv_{\perp}^2)^2 \frac{\partial f_0}{\partial E} d^3v \]
Second order density perturbation due to energetic particles

\[
\frac{\rho_{2,h}}{\rho_0} = -\frac{\omega_h^2}{4\omega^2 - \omega_{EGAM}^2} \frac{\hat{E}^2}{\omega^2 B^2 R r} \sin(\theta) \cos(2\omega t)
\]

\[
\frac{\rho_{2,h}}{\rho_{2,f}} = -\frac{\omega_h^2}{4\omega^2 - \omega_{EGAM}^2} \frac{\sin(\theta)}{\cos(\theta)} \sim \frac{P_{||h}}{P_c} + \frac{P_{\perp h}}{P_c} \frac{\sin(\theta)}{\cos(\theta)}
\]

Spatial structure of energetic particle-induced second harmonic is the same as the fundamental harmonic!
Simulations without fluid nonlinearity shows evidence of second harmonic due to energetic effects.

\[\delta n_e \]

\[f \text{ (kHz)} \]

\[R=1.74\text{m} \]
\[Z=0.18\text{m} \]
Summary: Nonlinear theory of generation of second harmonic

- **Fluid Model:**
 - GAM self-interaction cannot generate a second harmonic in the radial electric field;
 - A second harmonic of density fluctuation is generated by convective nonlinearity. A DC component is also present.
 - The density perturbation is negative near the mid-plane for strong instability.
 - These results are consistent with DIII-D experiments.

- **Energetic Particle Effects:**
 - Energetic particle effects can generate a second harmonic in radial electric field;
 - The energetic particle-induced second harmonic of the density perturbation scales as \(\sin \theta \). The EP contribution is small near the mid-plane.