Alcator

MFCRE Minority-Heated Fast-lon Distributions
on the Alcator C-Mod: Experiment and
Simulation

A. Bader!, P. Bonolil, R. Granetz!, R.W. Harvey?,

E.F. Jaegerd, R. Parker?!, S. Wukitch.
DMIT-PSFC, Cambridge, MA
2)Compx Co. Del-Mar, CA
3)ORNL, Oak Ridge, TN

IAEA Energetic Particles Technical Meeting
Austin, TX
Sept 7-10, 2011



Alcator Fast-lons are Measured and Compared
,\?M"d Quantitatively to Simulations for the
First Time

* New diagnostic capability to measure fast-ion
distributions on Alcator C-Mod (Compact Neutral
Particle Analyzer).

 Fast-ion distributions are simulated using a coupled
Full-wave/Fokker Planck model.

« Comparisons between experimental CNPA and a
new synthetic diagnostic allow for validation of the
simulation models for predicting RF minority heating
performances on future tokamaks.



)\é‘l;ﬂg Alcator C-Mod: A Compact, High-density,

High-Field Tokamak

Experimental Parameters

« R=0.67m

« a=0.22m

« B=51-54T

* I, =06-12MA

e T,=T,=2-4keV

* RF Power: 2 -4 MW

* D majority, H-minority (5-8 %)
 n,=1.0-2.0x10%° /m3

* Pulse length: 2 s
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WodCNPA Measures Minority-Heated Fast-lon
| Distributions

 CNPA = Compact Neutral Particle

0.4 preepeerrepressreeeepeesreeess
Analyzer. CNPA — 7 Ti

sightlines™_

 CNPA measures fast-ions that \
neutralize and escape the plasma. 0.2} LCFS
« Measurements are passive, no
neutral beam. € ®Br
;0.0 ®l
- For our viewing geometry, detected Z:S'c\)"nizn -
fast-ions neutralize near their \
banana tips. 202l
» Solid-state Silicon-Diode detectors -
« Radial range from ~70 cm to ~78 0.4
cm. 0.4 0.6 0.8 1.0

R (m)
* Energy range from ~200 keV to 1.5
MeV.



Alcator - Coupled Codes AORSA and CQL3D are
,f/”” od Used to Produce a Self-Consistent
Fast-ion Distribution

« AORSA (All ORders Spectral Algorithm)

— Solves for the wave fields given a general
distribution function. (e.g. as computed by CQL3D)

— Does not assume kip; << 1.

— Can assume multiple toroidal modes for a fully 3-D
solution.

 CQL3D (Collisional Quasi-Linear 3D)
— Fokker-Planck solver.
— Averages over a bounce period.
— Assumes zero banana-width.
— Assumes zero gyroradius.



Alcator Iterating Between AORSA and CQL3D
f(w"d Produces a Self-Consistent Fast-lon
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Alcator

CMod Over the Energy Range of Interest, CX
with B4 is Dominant.

* Neutral deuterium is
contributed from wall
transport and volume
recombination (no beams)

 B°>*densities are a free
parameter constrained by
Zeff. Here, we assume
that B>*is 2.5% of n,

e B4t densities are
calculated assuming that
boron is in coronal
equilibrium.

Counts per sec per €V per cm?2
per steradian

10°¢




Alcat : : : :
C_C O(ZFast-lon Tails are More Energetic at Higher

7

CNPA signals combined
over all shots during a
campaign show strong
dependence on plasma
current.

Reason for current
dependence is unclear.
(Could it be a banana
orbit effect?)

The fast-ion trend vs
current presents a good
test for zero-orbit width
simulation models.

Plasma Currents
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)‘C‘/’_",ﬂf,‘;’ Four Discharges with Varying Currents

were Simulated with AORSA-CQL3D
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)C/ng Steady State Simulation Results Show

Good Agreement with Experiment
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AI_C f,‘z,rlncreasing RF Power Raises the Density of

=
X}w the Fast-lon Tall, but not the Temperature

CNPA signals combined over

all shots during a Campaign IP = 0.8 MA; ne = 1.2E20 m? (line averaged)
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show that higher RF Power | \\ 40 MW
generates more particles in the | 35 MW
fast-ion tail. ,

“ 25 MW -
However, there is not a ‘ 2.0 MW
significant increase in the \\“ 1.5 MW

temperature of the fast-ion
distribution, as determined by
the slope of the distribution.

| ‘ 1.0 MW
\ 0.5 MW
4

1.0 1.5 2.0
Energy (MeV)

Counts per sec per eV per cm2 per steradian
—
()
D

This is different from what
might be expected from a
simple Stix model.
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Alcat : : :
)C/.Cm%r Simulation Shows Saturation of Fast-lon

Temperature at High RF Powers

1000 ¢
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10/
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CQL3D Effective Temperature (keV)

AORSA-CQL3D calculations of the fast ion temperature (left) and the estimated
flux to the CNPA (right) as a function of RF power.



Al
)jﬂggExperlments were Performed to Study the

Formation and Decay of the Minority Tall

: _ 1.0 ]
 |ICRF is modulated in orderto 4L R ]
determine the transient / -
behavior of the signal. 13— .
 Experimental data are summed o.5- Line-Averaged Density (x 10%) -
over time bins for improved 3%
statistics. 1: Electron Temperature (keV) .
« For simulations, CQL3D is al \CRE Fower (MW) ]
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AORSA every 1 ms. I — | N
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ir t%’SlmuIatlon Takes Much Longer to Reach

Steady State than the Experlment
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Alcator

)‘C%’Od Discrepancy in Time Behavior is More
Pronounced at Higher Energies.
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S Fast-ions In the CNPA View are

C-Mod
b Unaffected by Plasma Sawteeth
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» The fast-ions viewed by the CNPA do not show any significant trend with
plasma sawteeth.

« This is likely due to both viewing pitch angles away from the trapped-
passing boundaries, and detecting ions too energetic to be affected by
sawteeth.



Alcator
)S/’M"d Results Raise Various Questions

* Why, despite zero-orbit-width assumption in simulations, do
the simulation and experiment have good agreement in
steady-state over a range of plasma currents?

« What mechanism is responsible for the saturation of tall
energy with RF power?

— Doppler broadening of the resonance layer

 What is the reason for the discrepancies between experiment
and the time-dependent simulation both in the rise and the
decay?

— Any explanation for the discrepancy should have minimal effect
on the steady-state distribution.



)'éﬁﬂg New CQL3D-DC Simulations Show a

Different Distribution Function after 4 ms.

« The discrepancy between the time-dependent simulations and the
experiment can not be explained by enhanced radial diffusion or improved
iteration algorithms.

« Initial results from CQL3D-DC obtained by integrating the Lorentz force on a
particle orbit directly from the AORSA calculated fields shows a much faster
rise time for deeply trapped particles.
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CQL3D-DC (b) shows a distribution function that is more filled in than CQL3D-QL
(a) after 4 ms. R.W. Harvey et al. RF Power in Plasmas, Newport, Rl (2011)



/ﬁ;ﬁ,,f,%rCNPA Measurements have been Used to

Challenge Current Simulation Models

« Fast-ions between 200 keV and 1.5 MeV are routinely
detected on minority-heated discharges on C-Mod using a
Compact Neutral Particle Analyzer.

* Fast-ion distributions are more energetic with increased
current but are not significantly more energetic with increased
ICRF power.

« Comparisons between experiments and AORSA-CQL3D
simulations show good agreement for steady-state (df/dt = 0)
discharges.

 Simulations of time-dependent fast-ion distributions show a
discrepancy between simulation and experiment.

— Discrepancy may be resolved by employing a velocity-space
diffusion coefficient in CQL3D based on a direct orbit integration
of the fast ions using the AORSA full-wave fields.
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o EXTRA SLIDES



Alcator
)CZW"" Particle Orbits in C-Mod
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)(;wg Scaled Simulation Results Show
Discrepancies in Both Rise and Decay
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The Hammet Cordey slowing down assumes: df/dt = -f/t, where:
1/t = 2/ 1,(2/3 * E/T4-1). 14 IS the classical electron slowing down time.



Alcator
“MedEast-lon Distribution is Highly Anisotropic
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AORSA-CQL3D simulated midplane distribution at r/a = 0.3 shows a highly
anisotropic fast ion distribution
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CMod CQL3D and AORSA Converge After 3-4
Iterations.

60

Iteration 1
Iteration 2

Iteration 4

CQL3D power deposition (MW/m3)
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Convergence between successive
runs of CQL3D occurs after 3-4
iterations. After which the
absorbed power is seen to vary by
~10% between iterations.

Minority heating

cQL3D
—_ - AORSA

Majority heating |

Flux surface averaged absorbed power (MW/m3)

r/a

Convergence between AORSA and
CQL3D can be determined by
comparing the absorbed power
calculated by each code.



