Runaway electron losses enhanced by resonant magnetic perturbations

G. Papp1,2, M. Drevlak3, T. Fülöp1, P. Helander3, G. I. Pokol2

1) Chalmers University of Technology, Göteborg, Sweden
2) Budapest University of Technology and Economics, Budapest, Hungary
3) Max-Planck-Institut für Plasmaphysik, Greifswald, Germany
Introduction

• Runaway electrons generated in disruptions pose a serious threat on large devices
• Resonant magnetic perturbations (RMP) significantly alter the magnetic structure and transport of tokamaks
• The undesired population of high energy runaway electrons can be lowered by RMP in experiments

- RMP can influence the low-energy edge runaways
- Large amount of runaways can be removed in ITER
- An effective RMP configuration was identified

G. Papp et al, Nuclear Fusion 51 043004, 2011.
G. Papp et al, PPCF 53 095004, 2011.
Modelling of RMP

- **Resonant Magnetic Perturbation (RMP)** is a possible method to reduce the number of runaway electrons.
- Promising, but inconclusive experimental results\(^1,2\).
- **Theory** suggests that \(dB/B=0.1\%\) is enough to suppress the avalanche generation\(^3\).
- Runaway transport in perturbed fields is very complex. ➡️ 3D numerical modelling is required.
- Solving the complete kinetic problem requires tremendous computational power.
- **Approximation**: test particles in predefined 3D fields.

\(^{1}\) M. Lehnen *et al*, *PRL* 100 255003, 2008.
\(^{2}\) V. Riccardo *et al*, *PPCF* 52 124018, 2010.
\(^{3}\) P. Helander *et al*, *PoP* 7 4106, 2000.
Modelling of RMP

- Relativistic drift equations to follow the particle propagation in 3D EM fields
- Extended version of the ANTS (plasma simulation with drift and collisions) code\(^4\)
 - Collisions with background plasma are calculated with an MC collision operator valid for arbitrary energies\(^5\)
 - Synchrotron and Bremsstrahlung radiation losses
 - Cartesian coordinate system for the highest flexibility and accurate treatment of arbitrary magnetic fields

Modelling for TEXTOR

- TEXTOR-like plasma + Dynamic Ergodic Divertor (DED) system
 - \(n=2 \) DC configuration superposed on the VMEC equilibrium field
 - \(dB/B=0.1\% \) up to \(\psi=0.8 \) @6kA
 - Edge ergodic zone at \(\psi > 0.8 \)

![Magnetic Poincaré, \(I_{DED} = 6 \text{ kA} \)](image)

![F.-Average dB/B](image)

![Ergodic Islands](image)
• Increasing energy \Rightarrow runaway population is shifted towards the LFS \Rightarrow causes significant losses regardless of the DED
• Effect of RMP decreases with increasing particle energy

Drift topology \neq magnetic topology!

Core is intact...
Loss enhancement

- Low energy (~1 MeV) particles closer to the edge ($\psi > 0.7$) are affected
 - Particle losses initiate sooner, similar loss dynamics
 - At higher energies the difference is negligible
 - Runaway current damping rate is the same order as in experiments

- Simulations did not explain the loss of core- and high energy electrons
- It may be explained by MHD instabilities onset by the disruption6 - in small tokamaks

Runaway losses in ITER

- ITER inductive scenario #2, $I_P=15$ MA
 - RMP with the ELM perturbation coil system (9 X 3 coils)
 - $n=3$ and $n=9$ perturbations with $dB/B=0.1\%$ up to $\psi=0.5$
- $n=3$ creates broader islands, hence, is more effective - 4 configs. tested

![Averaged dB/B vs Radial position (normalized flux)](chart)

- $I_{\text{RMP}}: 60$ kA
2 out of the 4 configurations is shown.

Magnetic Poincaré

Alignement

Particle Poincaré (10 MeV)

Stochasticity

B

Non-alignement

Particle Poincaré (10 MeV)

Islands

B

C

C

G. PAPP IAEA Meeting on Energetic particles 2011-09-10
Confinement volume shrinkage

- Losses due to energy gain
- Up to 50% shrinkage for 10 MeV particles (10% without RMP)
- Up to 60% for 100 MeV >50% without RMP
 - RMP is less effective for high energies
 - Not many particles reach up to 100 MeV
- “B” is the best configuration

Time-dependent electric field

- Taken from simulations of the evolution of the radial profile of the current density and the diffusion of the electric field \cite{Smith2009}.

\[H. M. \text{ Smith et al, } \text{PPCF 51 124008, 2009.} \]
Loss enhancement

- ~ 11 ms until 100% loss for particles launched at $\psi_0=0.7$
- With RMP, losses start at 1µs, 100% loss by 0.1 ms
 - Logarithmic loss dependence on time: $N_{\text{lost}} \sim \log(t)$
 - Loss initiation depends exponentially on ψ_0
 - Particles within $\psi<0.5$ are practically untouched
Conclusions

• Identified a possible RMP configuration for runaway suppression in ITER
 ➔ RMP enhances the edge ($\psi>0.5$) particle transport that significantly increases particle losses
 ➔ Particles get lost while still at low energies
• Can be applied along with other mitigation methods (e.g. pellet or gas injection)
• Fast losses reduce the seed population for avalanche
 but might increase the electric field
• Self-consistent calculation of the runaway dynamics is feasible with the ARENA+ code in the near future

G. Papp et al, Nuclear Fusion 51 043004, 2011.
G. Papp et al, PPCF 53 095004, 2011.