Investigation of fast ion transport in TORPEX

A. Bovet, A. Fasoli, I. Furno, K. Gustafson, P. Ricci

TORPEX basic plasma physics group

Centre de Recherches en Physique des Plasmas (CRPP)
École Polytechnique Fédérale de Lausanne, Switzerland (EPFL)

IAEA TM Energetic Particles, Austin, 2011
Motivation

- Address fundamental aspects of the interaction between suprathermal ions and plasma fluctuations
  - Orbit averaging
  - Nature of ion transport
  - Role of semi-coherent waves, turbulence structures and turbulence

- Basic devices allow direct measurements of fast ion phase space evolution during their interaction with turbulence, and of waves, turbulence and plasma profiles

- Key experimental control parameters can be varied systematically
  - Ion energy, pitch angle, $E_{\text{ion}}/T_e$, Larmor radius, turbulence parameters, …
Outline

- The TORPEX device
- Fast ion generation and detection
- Experimental results in interchange-mode dominated plasmas
- Theoretical interpretation and experiment – simulation comparisons
- Summary and outlook
The TORPEX device

- Open field lines - no plasma current
- Plasma production by EC waves
- Extensive diagnostic coverage (electrostatic, magnetic, fast camera)
- $\nabla B$, curvature, pressure gradients

H$_2$, D, He, Ne, Ar plasmas

- $R = 1 \text{ m}; a = 0.2 \text{ m}$
- $B_t = 76 \text{ mT}; B_z = 0 - 6 \text{ mT}$
- $T_e = 2 - 20 \text{ eV}$
- $n_e = 0.1 - 5 \times 10^{16} \text{ m}^{-3}$
The TORPEX fast ion source and detector

- Double grid for small beam divergence
- Thermo-ionic effect (~1200°; heating 30W)
- Extraction voltage: 0.1 – 1kV
- Ion current ~ 10µA

- Two identical Gridded Energy Analyzers for noise reduction
- 6mm spatial resolution
Fast ion source and detector arrangement

- Ion source and GEA on 2D movable systems ⇒ complete coverage of poloidal section
- Toroidal spacing ~ 10 cm - 5 m
Fast ion beam modulation and detection scheme

- Screen grid at plasma/ground potential ⇒ reduce plasma disturbance
- 0.1-1kV modulated (~1kHz) power supply ⇒ synchronous detection to increase SNR
Target plasma

- H₂ plasma
  - \( P_{\text{rf}} = 150 \) W
  - \( B_{\text{tor}} = 76 \text{ mT}; B_z = 2.1 \text{ mT} \)
  - \( p_{\text{gas}} = 6.0 \times 10^{-5} \text{ mbar} \)

- Elongated profiles with strongly sheared \( v_{\text{ExB}} \)

- Ion source and detector 42 cm toroidally apart
Target plasma

- **H$_2$ plasma**
  - $P_{rf} = 400$ W
  - $B_{tor0} = 76$ mT; $B_z = 2.1$ mT
  - $p_{gas} = 6.0 \times 10^{-5}$ mbar

- Elongated profiles with strongly sheared $v_{ExB}$

- Ion source and detector 42 cm toroidally apart
Target plasma

- **H$_2$ plasma**
  - $P_{rf} = 400$ W
  - $B_{tor0} = 76$ mT; $B_z = 2.1$ mT
  - $p_{gas} = 6.0 \times 10^{-5}$ mbar

- Elongated profiles with strongly sheared $v_{ExB}$
- Ion source and detector 42 cm toroidally apart
Experimental fast ion current density profiles, $\Delta \phi=42\text{cm}$

- $E = 88\text{eV}$, without plasma
- $E = 142\text{eV}$, without plasma
- $E = 190\text{eV}$, without plasma
- $E = 290\text{eV}$, without plasma

- $E = 88\text{eV}$, with plasma
- $E = 142\text{eV}$, with plasma
- $E = 190\text{eV}$, with plasma
- $E = 290\text{eV}$, with plasma
Measured spreading of fast ion beam at $\Delta \phi = 42\text{ cm}$
Simulated fast ion motion in turbulent E-field

- Motion of tracer particles in turbulence calculated by 2D fluid simulations

Periodic boundary conditions

$k_{||}=0$

2D simulation

Source with spread in energies ($\Delta E/E=10\%$) and in angular distribution (0.2rad)
Simulated 3D fast ion current density profile
Synthetic diagnostic of fast ion current profile evolution
Synthetic diagnostic of fast ion current profile evolution
Synthetic diagnostic of fast ion current profile, $\Delta \phi = 42 \text{cm}$
Beam spreading from synthetic diagnostic at $\Delta \phi = 42\text{cm}$
Fast ion current profile – theory vs. experiment, $\Delta \phi = 42 \text{cm}$

<table>
<thead>
<tr>
<th>Theory</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without plasma</td>
<td>Without plasma</td>
</tr>
<tr>
<td>With plasma</td>
<td>With plasma</td>
</tr>
</tbody>
</table>

---

**Theory**

- $E = 88\text{eV no plasma}$
- $E = 143\text{eV no plasma}$
- $E = 190\text{eV no plasma}$
- $E = 300\text{eV no plasma}$

---

**Experiment**

- $E = 88\text{eV , without plasma}$
- $E = 142\text{eV , without plasma}$
- $E = 190\text{eV , without plasma}$
- $E = 290\text{eV , without plasma}$

---

- $E = 88\text{eV , with plasma}$
- $E = 142\text{eV , with plasma}$
- $E = 190\text{eV , with plasma}$
- $E = 290\text{eV , with plasma}$
Fast ion beam spreading – theory vs. exp. at $\Delta \phi = 42\text{cm}$

**Theory**

**Experiment**
Simulation reveals complex 3D beam evolution

Standard deviation of particle distance from mean position

Gyro-motion influence on 3D dynamics is stronger for higher ion energies
Summary

- Miniaturized fast ion source and detector have been developed for TORPEX simple magnetized plasmas

- First experiments reveal effects of plasma turbulence on fast ion profiles: small but systematic broadening detected in the presence of plasma with interchange modes/turbulence

- Simulation qualitatively explains the shape of the experimental profiles: radial broadening due to turbulence

- Complex 3D nature of fast ion orbits and beam spreading
Outlook

- Transport of fast ions in the presence of well diagnosed waves and turbulence will be investigated in different magnetic configurations, from the SMP described here to one with rotational transform induced by an internal wire, varying
  - $E_{\text{ion}}/T_e$ (varying both $E_{\text{ion}}$ and $T_e$), pitch angle, turbulence characteristics

- Ex. measured fast ion spreading due to interchange modes with different $k_z$ obtained in SMP by varying vertical B-field

- Small $k_z$ ($\sim 20 \text{m}^{-1}$)
- Medium $k_z$ ($\sim 30 \text{m}^{-1}$)
- Large $k_z$ ($\sim 40 \text{m}^{-1}$)
Outlook

Transport of fast ions in the presence of well diagnosed waves and turbulence will be investigated in different magnetic configurations, from the SMP described here to one with rotational transform induced by an internal wire, varying

- E/T (varying both E and T), pitch angle, turbulence characteristics
- Distance between source and detectors (continuously)

 Discriminate sub-, super-diffusion according to ion energy
Theory development: fluid model

- 2-Fluid model, evolving $N$, $\phi$, $T_e$.
- VB and curvature taken into account.
- 2D geometry with dissipation in the parallel direction.
- Diffusion coefficients from Braginskii equations.
- Source terms from the experiment.

\[
\begin{align*}
\frac{dN}{dt} &= D_n \nabla^2 N + \frac{2}{R} \left( N \frac{\partial T_e}{\partial z} + T_e \frac{\partial n}{\partial z} - n \frac{\partial \phi}{\partial z} \right) + \sigma N \sqrt{T_e} e^{\Lambda - \phi/T_e} + S_n \\
\frac{dT_e}{dt} &= D_T \nabla^2 T_e + \frac{4}{3R} \left( \frac{7}{2} T_e \frac{\partial T_e}{\partial z} + T_e^2 \frac{\partial n}{\partial z} - T_e \frac{\partial \phi}{\partial z} \right) + \sigma \sqrt{T_e^3} e^{\Lambda - \phi/T_e} + S_T \\
\frac{d\nabla^2 \phi}{dt} &= D_\phi \nabla^4 \phi + \frac{2}{R} \left( \frac{T_e}{n} \frac{\partial n}{\partial z} + \frac{\partial T_e}{\partial z} \right) + \sigma \sqrt{T_e} \left( 1 - e^{\Lambda - \phi/T_e} \right) + S_T
\end{align*}
\]
Simulation of interchange-dominated plasmas

- The simulation is started from constant values and energy and particles increase during first phase.
- An interchange mode is destabilized. During the non linear stage, the generation of blobs is observed.
- A framework for experiment-simulation comparison has been developed ⇒ definition of observables [P. Ricci, et al., Phys Plasmas (2008)]
Phase space diagram for SMT instabilities

Ideal Interchange

$\kappa_\parallel = 0, \ k_z = 2\pi \frac{N}{L_v}$

Resistive Interchange

$\kappa_\parallel = 0, \ \kappa_z = 2\pi \frac{N}{L_v}$

Interchange drive not important

P. Ricci et al., PRL (2010)